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Galois modules arising from Faltings’s strict modules

V. Abrashkin

Abstract

Suppose that O = Fq[π] is a polynomial ring and R is a commutative unitary O-algebra.
The category of finite flat group schemes over R with a strict action of O was recently
introduced by Faltings and appears as an equal characteristic analogue of the classical
category of finite flat group schemes in the equal characteristic case. In this paper
we obtain a classification of these modules and apply it to prove analogues of properties
that were known earlier for classical group schemes.

0. Introduction

Throughout all of this paper p is a fixed prime number. Suppose thatR is a commutative unitary ring
and GrR is the category of finite flat commutative group schemes over R. By definition its objects
are G = SpecA(G), where A(G) is a commutative flat R-algebra, which is a locally free R-module of
finite rank, with the comultiplication ∆ : A(G) −→ A(G)⊗A(G), the counit e : A(G) −→ R and the
coinversion i : A(G) −→ A(G) satisfying well-known axioms. Denote by Gr′R the full subcategory
of GrR consisting of p-group schemes G, i.e. such that G is killed by some power of p idG.

If R = k is a perfect field of characteristic p, then the objects G of Gr′k can be described in
terms of Dieudonne theory, i.e. in terms of finitely generated W (k)-modules M(G) with a σ-linear
operator F and a σ−1-linear operator V such that FV = V F = p idM(G). (W (k) is the ring of Witt
vectors with coefficients in k and σ is its Frobenius automorphism induced by the pth power map
in k.)

Suppose that R is the valuation ring of a complete discrete valuation field K of characteristic 0
with a perfect residue field k of characteristic p and e = e(K/Qp) is the absolute ramification index
ofK. Then the classification of objects of the category Gr′R was made in [Fon75] under the restriction
e = 1 in terms of finite Honda systems (this classification was not complete for p = 2, for an improved
version cf. [Abr87a]). Further progress was made in [Abr90] for e � p − 1 (group schemes killed
by p), in [Con99] for e < p−1 and, finally, in [Bre00] for an arbitrary e. Most interesting arithmetic
applications of finite group schemes G ∈ Gr′R are related to the properties of ΓK = Gal(K̄/K)-
modules H = G(K̄) of their geometric points. We mention the following three results.

(a) Serre’s conjecture (proved in [Ray74]). This result describes the action of the inertia subgroup
IK ⊂ ΓK on the semi-simple envelope of H. It is given by characters χ : IK −→ k̄∗ such that
for some N ∈ N, χ = χa

N , where χN (τ) = τ(ηN )/ηN , ηpN−1
N = η is a uniformiser of K, and

a = a0 + a1p+ · · · + aN−1p
N−1 with p-digits a0, a1, . . . , aN−1 ∈ [0, e].

(b) Ramification estimates. If pM idG = 0, then the ramification subgroups Γ(v)
K of ΓK act trivially

on H if v > e(M − 1 + 1/(p − 1)), cf. [Fon85].
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(c) Complete description of the ΓK-module H (under some additional assumptions). If e = 1, p > 3
and the Fp[ΓK ]-module H satisfies the above Serre’s Conjecture and ramification estimates
(i.e. the ramification subgroups Γ(v)

K act trivially on H if v > 1/(p − 1)), then there is an
G ∈ Gr′R such that H = G(Ksep), cf. [Abr90].

Suppose now that R is an Fp-algebra. In this case the category Gr′R is not interesting because
it is ‘too big’. For example, if R is an integral domain with the fraction field K then any finite
continuous Zp[ΓK ]-module appears in the form G(Ksep) for a suitable G ∈ Gr′R. Even if we assume
that R is an O-algebra, where O is a complete discrete valuation ring (which plays a role of Zp

in the equal characteristic case), then the category Gr′(O)R of all finite flat commutative group
schemes with O-action is too big for studying special properties of finite subquotients of formal
Drinfeld O-modules over R. This unpleasant situation became completely different when Faltings
introduced a new concept of finite flat group schemes with strict O-action, cf. [Fal02]. The main
idea of Faltings’s definition can be explained as follows.

Suppose that G = SpecA(G) is a finite flat O-module over R. Present A(G) as a complete
intersection, i.e. as a quotient R[X1, . . . ,Xn]/I of a ring of polynomials by an ideal I generated
by elements of a regular sequence of length n, and define the deformation A(G)� of A(G) as
R[X1, . . . ,Xn]/(I ·I0), where I0 = (X1, . . . ,Xn). Faltings requires that the O-module structure on G,
which is given by the endomorphisms [o] : A(G) −→ A(G), o ∈ O, should have an extension to
an O-module structure of the deformation (A(G), A(G)�) of the algebra A(G) and this extension
must satisfy the condition of strictness. This means that if o ∈ O and [o]� : A(G)� −→ A(G)� is
an extension of [o], then [o]� must induce the ‘scalar’ multiplication by o on I0/I

2
0 and I/(I · I0).

This definition gives (in our notation) the category DGr(O)R of finite strict O-modules (G,G�),
where G� = SpecA(G)�, and its objects have many interesting properties discussed in [Fal02].
Note that the condition of strictness can be viewed as the absence of the first obstacle in the
problem of embedding given finite flat local O-module scheme into a Drinfeld (= formal) O-module.

This paper deals with the classification of finite flat commutative group schemes over R with
strict O-action, where O = Fq[π] with fixed variable π. Note that this approach can be easily ‘sheafi-
fied’ to obtain the classification over arbitrary Fp-schemes S. Remarkably (for any O-algebra R!),
this classification is an almost complete analogue of the classical Dieudonne theory of conven-
tional group schemes over a perfect field of characteristic p. Main applications are obtained for the
full subcategory DGr′(O)R of π-torsion group subschemes. In particular, we prove an analogue of
Raynaud’s theorem, i.e. that locally on R any (G,G�) ∈ DGr′(O)R can be embedded into a
π-divisible group consisting of objects of the category DGr(O)R. If G is a local scheme then this gives
locally an embedding of G into a formal Drinfeld O-module over R. In other words, the condition of
strictness, when treated as vanishing of the first obstacle for embedding of a local G into a formal
O-module, appears as a necessary and sufficient condition for the existence of such an embedding.
We also study number-theoretic properties of Galois modules G(Ksep) if R is the valuation ring in a
complete discrete valuation field K and (G,G�) ∈ DGr(O)R. These properties are precise analogues
of the above mentioned properties (a)–(c) of conventional group schemes over complete discrete
valuation rings of mixed characteristic.

The paper is structured as follows. In § 1 we recall the concept of a strict O-module following
the basic idea of Faltings’s original definition. In § 2 we describe the category of strict Fq-modules
over R and apply this in § 3 to classify the objects of the category DGr(O)R if O = Fq[π].
This classification is based on the study of primitive elements (i.e. the elements a ∈ A(G) such
that ∆a = a ⊗ 1 + 1 ⊗ a, where ∆ is the comultiplication on G) of the R-algebra A(G), where
(G,G�) ∈ DGr(O)R. In § 4 we apply this classification to prove that any object of DGr′(O)R can
be embedded into a π-divisible group over R. This section also contains a comparison of our anti-
equivalence with the parallel results in the theory of conventional finite flat group schemes and p-adic
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representations in the mixed characteristic case from the papers [Abr87a, Abr90, Bre00, Fon90].
In § 5 we establish analogues of the above properties (a), (b) and (c) in the category DGr′(O)R,
where R is the valuation ring of a complete discrete valuation field K containing the ring O.

The author expresses a very deep gratitude to the referee. The original version of this paper
dealt only with group schemes over a complete discrete valuation rings of characteristic p with etale
generic fibre. The referee proposed to generalize the approach by the use of the classical description of
finite flat group schemes having zero Verschiebung from SGA3, cf. [Gab70]. This allowed the author
to develop methods from the thesis [Gib04] and to obtain the classification of strict modules over
arbitrary ring R of characteristic p. The referee report also contains other interesting observations
(the author is very sorry to not be able to mention all of them). In particular, in § 4.2 we follow
the referee’s ideas to prove the following statement conjectured in [Fal02]: if O = Fq[π], (G,G�) ∈
DGr′(O)R and rkRA(G) = qh, then G is killed by [π]h.

Notation and conventions
Everywhere in the paper p is a fixed prime number, O is a unitary commutative Fp-algebra (in most
cases O is the polynomial ring Fq[π]) and R is a commutative unitary O-algebra. If f : A −→ B
and g : B −→ C are maps of sets, then we denote their decomposition as f ◦ g, i.e. for any a ∈ A,
(f ◦ g)(a) = g(f(a)).

1. Definition and simplest properties

An R-algebra A will be called finite if it is a locally free R-module of finite rank.

1.1 Deformations of augmented R-algebras
For an augmented O-algebra A, we agree to use the following notation: εA : A −→ O, the morphism
of augmentation, and Ker εA = IA, the augmentation ideal. If R[X̄ ] = R[X1, . . . ,Xn], n � 0, is a
polynomial ring we always assume that its augmentation ideal IR[X̄] = (X1, . . . ,Xn).

The objects of the category DAugR are the triples A = (A,A�, iA), where A is a finite
augmented R-algebra, A� is an augmented R-algebra and iA : A� −→ A is an epimorphic map
of augmented R-algebras such that there is a polynomial ring R[X̄] = R[X1, . . . ,Xn], n � 0, and
an epimorphism of augmented R-algebras j : R[X̄] −→ A� satisfying the following properties:

• the ideal I := Ker(j ◦ iA) is generated by elements of a regular sequence of length n in R[X̄ ];

• Ker j = I · IR[X̄].

A morphism f̄ = (f, f �) : A −→ B = (B,B�, iB) in DAugR is given by morphisms of augmented
R-algebras f : A→ B and f � : A� −→ B� such that iA ◦ f = f � ◦ iB.

Note that if (A,A�, iA) ∈ DAugR, then A� is a finite R-algebra.
Below, we use the simpler notation (A,A�) instead of (A,A�, iA) if it does not lead to a

misunderstanding.
In the category DAugR, R = (R,R, idR) is an initial object and any A = (A,A�, iA) has a

natural augmentation to R, εA = (εA, εA�) : A −→ R, where Ker εA� = Ann(Ker iA) := IA� .
Introduce the R-modules t∗A = IR[X̄]/I

2
R[X̄]

and NA = I/(I · IR[X̄ ]). They do not depend on
the choice of the above covering j : R[X̄ ] −→ A�. Indeed, the first coincides with IA�/I2

A� and the
second with Ker iA. Note also that both R-modules are free. (This is obvious for the first module
and follows from the fact that A is a complete intersection for the second.)

If A = (A,A�) and B = (B,B�) are objects in DAugR and f : A −→ B is a morphism of
augmented R-algebras, then the set of all f � such that (f, f �) ∈ HomDAugR

(A,B) is not empty and
has a natural structure of a principal homogeneous space over the group HomR -mod(t∗A, NB).
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Let DAug∗R be a quotient category for DAugR: it has the same objects but its morphisms are
equivalence classes of morphisms from HomDAugR

(A,B) arising from the same R-algebra morphisms
f : A −→ B. Then the above description of morphisms in the category DAugR implies that the
forgetful functor (A,A�) �→ A is an equivalence of DAug∗R and the category of augmented finite
R-algebras.

1.2 Deformations of affine group schemes

Let DSchR be the dual category for DAugR. Its objects appear in the form H = SpecA =
(H,H�, iH), where H = SpecA and H� = SpecA� are finite flat pointed R-schemes, A = (A,A�, iA)
∈ DAugR, and iH : H → H� is a closed embedding of pointed R-schemes induced by iA. We agree
to use the simpler notation (H,H�) if there is no danger of misunderstanding. The category DSchR

has direct products: if for i = 1, 2, Ai = (Ai, A
�
i , iAi) with Ai = R[X̄i]/Ii, A�

i = R[X̄i]/(Ii · I0i)
(where I0i = IR[X̄i]), then the product SpecA1 × SpecA2 is given by Spec(A1 ⊗ A2), where
A1 ⊗ A2 := (A1 ⊗R A2, (A1 ⊗R A2)�, κ), (A1 ⊗R A2)� is the quotient of R[X̄1 ⊗ 1, 1 ⊗ X̄2] by the
product of ideals I1 ⊗ 1 + 1 ⊗ I2 and I01 ⊗ 1 + 1 ⊗ I02 and κ is the natural projection. Note that
for i = 1, 2, the projections pri : Spec(A1 ⊗A2) −→ SpecAi come from the natural embeddings of
R[X̄i] into R[X̄1 ⊗ 1, 1 ⊗ X̄2].

Let DGrR be the category of group objects in DSchR. If G = SpecA ∈ DGrR, then its group
structure is given via the comultiplication ∆̄ = (∆,∆�) : A −→ A ⊗ A, the counit ε̄ = (ε, ε�) :
A −→ R and the coinversion ı̄ = (i, i�) : A −→ A morphisms, which satisfy the usual axioms.
The morphisms in DGrR are morphisms of group objects. Clearly, DGrR is an additive category.

Note that:

(a) G = SpecA is a finite flat group scheme over R with the comultiplication ∆, the counit ε and
the coinversion i;

(b) ε̄ = εA, where εA is the natural augmentation from § 1.1;

(c) the counit axiom gives for i = 1, 2, that ∆�
i ◦ pri = idA� and implies the uniqueness of ∆� as a

lifting of ∆;

(d) if A = (A,A�, iA) ∈ DAugR and G = SpecA is a finite flat group scheme over R, then there is
a unique structure of a group object on SpecA, which is compatible with that of G;

(e) if f : G −→ H is a morphism of group schemes and (f, f �) ∈ HomDSchR
(G,H), then (f, f �) ∈

HomDGrR
(G,H).

The above properties have the following interpretation. Define the quotient category DGr∗R as
the category consisting of the objects of the category DGrR but where HomDGr∗R(G,H) consists
of equivalence classes of morphisms from the category DGrR which induce the same morphisms of
group schemes G→ H. Then the forgetful functor G �→ G is an equivalence of categories.

1.3 The categories of strict O-modules

Suppose that G is an O-module object in the category DSchR. Then G is an object of DGrR and
there is a map O −→ EndDGrR

(G) satisfying the usual axioms from the definition of O-modules.
For o ∈ O and G = SpecA, denote by ¯[o] = ([o], [o]�) the morphism of action of o on A = (A,A�, iA).
Clearly, G = SpecA is an O-module in the category of finite flat schemes over R. For any such G,
the O-module structure on the deformation (G,G�) ∈ DGrR is given by liftings [o]� : A� −→ A�

of morphisms [o] : A −→ A, o ∈ O. Note that [o]� are morphisms of augmented algebras. All such
liftings are automatically compatible with the group structure on this deformation, i.e. for any o ∈ O,
one has [o]� ◦ ∆� = ∆� ◦ ([o]� ⊗ [o]�). So, the above system of liftings [o]�, o ∈ O, gives an O-module
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structure if and only if for any o1, o2 ∈ O,

[o1 + o2]� = ∆� ◦ ([o1] ⊗ [o2])�, [o1o2]� = [o1]� ◦ [o2]� (1)

where ([o1] ⊗ [o2])� is induced by [o1]� ⊗ [o2]�.
Denote by DGr(O)R the category of the above O-module objects where the corresponding

O-module structure satisfies the following condition of strictness. If G = SpecA then any o ∈ O acts
on t∗A and NA via the scalar multiplication by o. This is the basic definition from the paper [Fal02].

Suppose that G1 = (G,G�
1) = SpecA1 ∈ DGrR and G2 = (G,G�

2) = SpecA2 ∈ DGrR are two
deformations of a finite flat group scheme G over R. By § 1.2, G1 and G2 are isomorphic in the
category DGr∗R. Suppose that G1 is equipped with a strict O-action. Then there is a unique (strict)
O-action on G2 such that any (idG, φ) ∈ HomDGrR

(G1,G2) and any (idG, ψ) ∈ HomDGrR
(G2,G1) are,

actually, morphisms in the category DGr(O)R. This is implied by the following observation. If φ is
given by the morphism of R-algebras φ∗ : A(G2)� −→ A(G1)�, then it induces the identifications
A(G2)� = Imφ∗ ⊕ J2 and A(G1)� = Imφ∗ ⊕ J1, where J1, J2 are ideals such that J1 ⊂ NA1 and
J2 ⊂ NA2 .

Denote by DGr∗(O)R the quotient category of DGr(O)R where the morphisms are the equiv-
alence classes of morphisms (G,G�) −→ (H,H�) in the category DGr(O)R, which induce the same
morphismG −→ H. By the above property, all isomorphism classes of objects in DGr(O)R appear as
O-module finite flat schemes G together with a lifting of its O-action to some chosen deformation G�,
which satisfies the above conditions (1).

For example, if q = pn with n ∈ N, the objects of the category DGr(Fq)R appear as SpecA,
where A = (A,A�), A = R[X̄]/I and A� = R[X̄ ]/(I · IR[X̄ ]), the Fq-action is induced by the scalar
action of Fq on X̄ (i.e. [α](X̄) = αX̄ , α ∈ Fq) and there are generators j1, . . . , jn of the ideal I such
that [α]ji = αji for all i = 1, . . . , n and α ∈ Fq.

If O is the ring of polynomials Fq[π] and G ∈ DGr(O)R then G ∈ DGr(Fq)R and (in addition
to the above assumptions) the Fq[π]-action will be determined completely by the action of π given
by the correspondence

X̄ �→ ψπ(X̄) = πX̄ + F̄ (X̄)

where F̄ is any vector power series from I2
R[X̄]

such that F̄ (αX̄) = αF̄ (X̄) for all α ∈ Fq. This action
is strict if and only if ψπ(ji) ≡ πji mod(I · IR[X̄ ]) for the above generators j1, . . . , jn of I.

Finally, note that when classifying below the objects (G,G�) of the categories DGr(Fq)R and
DGr(Fq[π])R we use a choice of the deformation G� that depends functorially on G.

2. Group schemes with strict Fq-action
In this section we assume that R is an Fp-algebra and study the category DGr(Fp)R of strict finite
Fp-modules G over R. Clearly, DGr(Z)R = DGrR, i.e. the natural action of Z on elements of DGrR

is always strict. Therefore, (G,G�) ∈ DGr(Fp)R if and only if (G,G�) ∈ DGrR and [p]� is a zero map
on G�. In §§ 2.1 and 2.2 we give a complete description of the category DGr(Fp)R and in § 2.3 apply
it to describe the category DGr(Fq)R, where q = pN with N ∈ N.

2.1 An interpretation of strict Fp-action
Suppose that G is a finite flat commutative group scheme over R. Consider G(p) = G ×(R,σp) R,
where R is considered as an R-module via the map σp : R −→ R such that for any r ∈ R, σp(r) = rp.
Then G(p) has a natural structure of a finite flat commutative group scheme over R.

Let FG : G −→ G(p) be the relative Frobenius morphism of G over SpecR. It is given by the
morphism of R-algebras F ∗

G : A(G(p)) = A(G) ⊗(R,σp) R −→ A(G) such that for all a ∈ A(G) and
r ∈ R, F ∗

G(a⊗ r) = apr.

871

https://doi.org/10.1112/S0010437X06002041 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002041


V. Abrashkin

Let VG : G(p) −→ G be the Verschiebung morphism of group schemes. Recall that it is given
by the morphism of R-algebras V ∗

G : A(G) −→ A(G(p)), which can be described as follows. We can
proceed locally on SpecR and, therefore, can assume that A(G) is a free R-module with a basis
a1, . . . , an. Let

∆(p) = ∆ ◦ (∆ ⊗ id) ◦ · · · ◦ (∆ ⊗ id⊗p−2) : A(G) −→ A(G)⊗p.

For 1 � i � n, we have a unique decomposition

∆(p)(ai) =
∑

1�i1,...,ip�n

αi,i1,...,ipai1 ⊗ · · · ⊗ aip

with all α-coefficients from R. Then the Verschiebung is defined by the relation

V ∗
G(ai) =

∑
1�j�n

αi,j,...,j ⊗ aj .

The above definitions imply easily that FG◦VG = p idG and VG◦FG = p idG(p) , cf. our agreement
about composition of maps from § 0.

Theorem 1. We have G = (G,G�) ∈ DGr(Fp)R if and only if VG = 0.

Proof. Both properties can be verified locally on SpecR. Therefore, we can assume that R is a local
ring. As we have already noticed, G ∈ DGr(Fp)R if and only if [p]� is a zero morphism.

2.1.1 Suppose first that VG = 0. Use the antiequivalence Lp of the category of finite flat
commutative group schemes G over R with zero Verschiebung and the category Mod(Fp)R of locally
free finite R-modules L equipped with an R-linear map Fp : L(p) := L ⊗R,σp R −→ L, cf. [Gab70,
VIIA, 7.4]. Here Lp(G) = (L,Fp), where

L = Hom(G,Ga) = {a ∈ A(G) | ∆(a) = a⊗ 1 + 1 ⊗ a}
is a free R-module of finite R-rank and Fp is induced by the Frobenius F ∗

G.
The inverse functor Dp can be described as follows. If L = (L,Fp) ∈ Mod(Fp)R and m1, . . . ,mn

is an R-basis for L then for 1 � i � n,

Fp(mi ⊗ 1) =
∑

1�j�n

rijmj .

Then Dp(L) = SpecA(G), where A(G) = R[X1, . . . ,Xn]/I with the ideal I generated by the
polynomials

Xp
i −

∑
1�j�n

rijXj , 1 � i � n, (2)

with the group structure given via the comultiplication ∆ such that ∆(Xi) = Xi⊗1 + 1 ⊗Xi and
the counit e such that e(Xi) = 0 for 1 � i � n. Note that A(G) is a finite flat R-algebra, given by
n equations (2) in R[X1, . . . ,Xn] and, therefore, it is a relative complete intersection.

With the above notation take G� = SpecA(G)�, where A(G)� = R[X1, . . . ,Xn]/(I · I0) with
I0 = (X1, . . . ,Xn). Note that the R-module A(G)� is free with the basis

{Xi1
1 . . . Xin

n | 0 � i1, . . . , in < p} ∪ {Xp
i | 1 � i � n}.

Similarly, A(G ×G)� is a free R-module with the basis

{Xi1
1 . . . Xin

n ⊗Xj1
1 . . . Xjn

n | 0 � i1, . . . , in, j1, . . . , jn < p} ∪ {Xp
i ⊗ 1, 1 ⊗Xp

i | 1 � i � n}.
With this notation we have e�(Xi) = 0 and

∆�(Xi) = Xi ⊗ 1 + 1 ⊗Xi +
∑

1�j�n

(r′ijX
p
j ⊗ 1 + r′′ij1 ⊗Xp

j )
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with r-coefficients from R. Then the identities

∆� ◦ (idA(G) ⊗ e)� = ∆� ◦ (e⊗ idA(G))
� = idA(G)�

imply that all r-coefficients are equal to 0. This easily implies that

[p]� = ∆(p)� ◦ mult�p = 0,

where mult�p : A(G)⊗p� −→ A(G)� is induced by the multiplication in A(G)�.

2.1.2 Suppose now that G = (G,G�) ∈ DGr(Fp)R. When proving that this implies VG = 0
we can use any flat base changes. Therefore, we can assume that R is a finitely generated complete
local ring with an algebraically closed residue field k of characteristic p. Then R is an inverse limit
of artinian rings and by transfinite induction it will be sufficient to consider the following two cases:

(a) R = k;

(b) R contains an ideal J such that J · IR = 0 (where IR is the augmentation ideal in R) and if
R̄ = R/J and Ḡ = G⊗R R̄, then VḠ = 0.

2.1.3 Case (a). Apply induction on the order |G| = pN , N ∈ N. If N = 1, then there are the
following three possibilities:

• G 
 (Z/pZ)/k, i.e. it is the constant etale group scheme of order p;
• G 
 αp, i.e. A(G) = k[x], xp = 0, ∆(x) = x⊗ 1 + 1 ⊗ x;

• G 
 µp, i.e. it is the constant multiplicative group scheme of order p.

In the first two cases VG = 0. In the third case VG = idG, but [p]� �= 0. Indeed, A(µp)� =
k[x]/(xp+1), e�(x) = 0, ∆�(1+x) = (1+x)⊗(1+x) and [p]�(1+x) = (1+x)p = 1+xp �= 1 = e�(1+x)
in A(µp)�.

Now assume that N > 1 and VG1 = 0 for any proper subquotient of G. Consider the Dieudonne
moduleM(G) = Hom(G,CWk) of G, where CWk is the k-valued Witt covectors functor, cf. [Fon75].
Then M(G) is a k-vector space of dimension N with a σp-linear operator F and a σ−1

p -linear
operator V , which are induced by FG and VG, respectively. The inductive assumption implies the
existence of a k-basis m1, . . . ,mN in M(G) such that for 1 � i � N , Fmi =

∑
1�i�N cijmj ,

V m1 = · · · = V mN−1 = 0 and V mN = c0m1 where all c-coefficients belong to k. By the Dieudonne
theory,

A(G) = k[X1, . . . ,XN ]/I,
where the ideal I is generated by the polynomials Xp

i − ∑
cijXj , 1 � i � N , with the counit

e : A(G) −→ k such that e(Xi) = 0, 1 � i � N , and the comultiplication ∆ : A(G) −→ A(G)⊗A(G)
such that for 1 � i < N , ∆(Xi) = Xi ⊗ 1 + 1 ⊗Xi and

∆(XN ) = XN ⊗ 1 + 1 ⊗XN + c0ϕ(X1 ⊗ 1, 1 ⊗X1).

Here ϕ(T,U) ∈ k[T,U ] is the polynomial 1
p(T p + Up − (T + U)p) ∈ Z[T,U ] taken modulo p.

As earlier, take A(G)� = k[X1, . . . ,XN ]/(I · I0) with I0 = (X1, . . . ,XN ). Consider the k-basis

{Xi1
1 . . . XiN

N | 0 � i1, . . . , iN < p} ∪ {Xp
i | 1 � i � N}

in A(G)� and the k-basis

{Xi1
1 . . . XiN

N ⊗Xj1
1 . . . XjN

N | 0 � is, js < p, 1 � s � N} ∪ {Xp
i ⊗ 1, 1 ⊗Xp

i | 1 � i � N}
in A(G×G)�. Similarly to § 2.1.1 one sees that

∆�(XN ) = XN ⊗ 1 + 1 ⊗XN + c0ϕ(X1 ⊗ 1, 1 ⊗X1)
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and ∆�(X1) = X1 ⊗ 1 + 1 ⊗X1. This implies easily that

∆(p)�(XN ) = XN ⊗ 1 ⊗ · · · ⊗ 1 + 1 ⊗XN ⊗ 1 ⊗ · · · ⊗ 1 + · · · + 1 ⊗ · · · ⊗ 1 ⊗XN

+ c0ϕ
(p)(X1 ⊗ 1 ⊗ · · · ⊗ 1, 1 ⊗X1 ⊗ 1 ⊗ · · · ⊗ 1, . . . , 1 ⊗ · · · ⊗ 1 ⊗X1),

where ϕ(p)(U1, . . . , Up) ∈ k[U1, . . . , Up] is the reduction of the polynomial
1
p
(Up

1 + · · · + Up
p − (U1 + · · · + Up)p) ∈ Z[U1, . . . , Up]

modulo p. Therefore, 0 = [p]�(XN ) = (∆(p) ◦ multp)�(XN ) = c0X
p
1 , hence c0 = 0 and VG = 0.

Case (a) is completely considered.

Remark. Case (a) was also considered in [Gib04].

2.1.4 Case (b). Since VḠ = 0, we can again apply the antiequivalence from [Gab70], to describe
explicitly the structure of Ḡ. It can be given by the algebra A(Ḡ) = R̄[X̄1, . . . , X̄N ]/Ī , where Ī is
generated by the polynomials

X̄p
i −

∑
1�j�N

c̄ijX̄j ∈ R̄[X̄1, . . . , X̄N ]

with the comultiplication ∆(X̄i) = X̄i ⊗ 1 + 1 ⊗ X̄i, 1 � i � N .
Let l1, . . . , ls be a k-basis of the ideal J with respect to its natural structure as a k (= R/IR)-

module. As A(G) is a flat R-module we can take liftings Xi ∈ A(G) of X̄i and cij ∈ R of c̄ij ∈ R̄
such that A(G) = R[X1, . . . ,XN ]/I, where I is generated by the polynomials of the form

Xp
i −

∑
1�j�N

cijXj −
∑

1�t�s

fitlt, 1 � i � N,

with fit ∈ A(G) ⊗ J 
 A(Gk) and Gk = G⊗ k.
Similarly,

∆(Xi) = Xi ⊗ 1 + 1 ⊗Xi +
∑

1�t�s

gitlt, 1 � i � N, (3)

where all git ∈ A(Gk ×Gk).
Consider the second Hochschild cohomology group H2(G, k). Recall that it appears as the

quotient Z2(G, k)/B2(G, k), where

Z2(G, k) = {f ∈ A(Gk ×Gk) | (∆ ⊗ id)(f) + f ⊗ 1 = 1 ⊗ f + (id⊗∆)(f)},
B2(G, k) = {∆(h) − h⊗ 1 − 1 ⊗ h | h ∈ A(Gk)}.

As VGk
= 0, H2(G, k) is an N -dimensional k-vector space with the basis given by the classes of

2-cocycles ϕ(Xi ⊗ 1, 1 ⊗ Xi), 1 � i � N , cf. [DG70]. This implies that the liftings Xi ∈ A(G)
of X̄i ∈ A(Ḡ) can be chosen such that in the equalities (3) for 1 � i � N and 1 � t � s,

git =
∑

1�j�N

αijtϕ(Xj ⊗ 1, 1 ⊗Xj),

where all α-coefficients belong to k.
As earlier, this implies that

∆(p)(Xi) = Xi ⊗ 1 ⊗ · · · ⊗ 1 + 1 ⊗Xi ⊗ 1 ⊗ · · · ⊗ 1 + · · · + 1 ⊗ · · · ⊗ 1 ⊗Xi

+
∑
j,t

αijtltϕ
(p)(Xj ⊗ 1 ⊗ · · · ⊗ 1, 1 ⊗Xj ⊗ 1 ⊗ · · · ⊗ 1, . . . , 1 ⊗ · · · ⊗ 1 ⊗Xj)
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and, therefore, for all 1 � i � N ,

VG(Xi) =
∑
j,t

αijtltXj .

On the other hand, we have (as earlier)

∆�(Xi) = Xi ⊗ 1 + 1 ⊗Xi +
∑
j,t

αijtltϕ(Xj ⊗ 1, 1 ⊗Xj)

in A(G)� = R[X1, . . . ,XN ]/(I · I0) and this implies that

0 = [p]�(Xi) =
∑
j,t

αijtltX
p
j .

Therefore, all α-coefficients are equal to 0 and VG = 0.
The theorem is completely proved.

The above Theorem 1 together with the antiequivalence Lp from the beginning of § 2.1.1 means
that the forgetful functor G = (G,G�) �→ G is an equivalence of the category of group schemes
over R with strict Fp-action DGr(Fp)R and the full subcategory of the category of finite flat group
schemes G over R such that VG = 0. The resulting antiequivalence of the categories DGr(Fp)R and
Mod(Fp)R will be denoted by the same symbol Lp.

2.2 Standard deformations of strict Fp-modules
By Theorem 1 the objects G ∈ DGr(Fp)R are constructed from locally free R-modules L of finite
R-rank with a given R-linear map Fp : L(p) −→ L. This construction gives G = SpecA with A =
(A(L), A(L)�, iA), where A(L) = SymR(L)/I, A(L)� = SymR(L)/(I · I0), the ideal I is generated by
{lp−Fp(l⊗1) | l ∈ L}, I0 is the augmentation ideal generated by {l | l ∈ L} and the comultiplications
∆ and ∆� are induced by the correspondences l �→ l ⊗ 1 + 1 ⊗ l. This deformation G depends
functorially on the group scheme G = SpecA(L). Note that L = {a ∈ A(L) | ∆(a) = a⊗ 1+ 1⊗ a}.
Definition. With the above notation, set L� = {l ∈ A(L)� | ∆�(l) = l ⊗ 1 + 1 ⊗ l}.

Such L� is a locally free R-module of rank 2 rkR L. In the notation of § 2.1.1 it is generated as an
R-module by the elements X1, . . . ,Xn,X

p
1 , . . . ,X

p
n in the algebra A(L)�. Clearly, we have a natural

projection iA : L� −→ L. There is also a natural inclusion

NA = {lp − Fp(l ⊗ 1) | l ∈ L}mod(I · I0) ⊂ L�,

the natural projection pr : L� −→ t∗A given by the correspondence l �→ l mod I2
0 , where l ∈ L,

and the R-linear map jA : L(p) −→ L� induced by the correspondence l �→ l̂p, where l̂ ∈ L� is such
that iA(l̂) = l.

The following lemma is an easy consequence of the above definitions.

Lemma. There are exact sequences of locally free R-modules

0 −→ NA −→ L� iA−→ L −→ 0 (4)

and

0 −→ L(p) jA−→ L� −→ t∗A −→ 0. (5)

2.3 Group schemes with strict Fq-action
Assume now that R is an Fq-algebra, where q = pN and N ∈ N, and study the category DGr(Fq)R
of strict finite Fq-modules G over R as a full subcategory of DGr(Fp)R.

875

https://doi.org/10.1112/S0010437X06002041 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002041


V. Abrashkin

For any R-module M set M (q) = M ⊗(R,σq) R, where the R-module structure on the second
component of this tensor product is given via the qth power map σq : R −→ R. If f : M −→ N is a
morphism of R-modules, then we use the notation f (q) = f ⊗(R,σq) R : M (q) −→ N (q).

Consider the category Mod(Fq)R consisting of locally free finite rank R-modules M with an
R-linear morphism Fq : M (q) −→ M . If N is another object, then HomMod(Fq)R

(M,N) consists
of R-linear morphisms f : M −→ N such that Fq ◦ f = f (q) ◦ Fq.

Define the functor Lq : DGr(Fq)R −→ Mod(Fq)R by setting for any G = (G,G�) ∈ DGr(Fq)R,
Lq(G) = (L(G), Fq) with

L(G) = {a ∈ A(G) | ∆(a) = a⊗ 1 + 1 ⊗ a, [α](a) = αa, ∀α ∈ Fq},
where Fq : L(G)(q) −→ L(G) is induced by the qth power map on A(G). If H ∈ DGr(Fq)R, Lq(H) =
(L(H), Fq) and (f, f �) : G −→ H is a morphism in the category DGr(Fq)R, then f(L(H)) ⊂ L(G)
and Lq(f) = f |L(H).

Theorem 2. The above defined functor Lq : DGr(Fq)R −→ Mod(Fq)R induces an antiequivalence
of the categories DGr∗(Fq)R and Mod(Fq)R.

Proof. The proof below is standard: cf., for example, [Ray74] (in the context of finite flat group
schemes with Fq-action) or [Gen96] (in the context of formal modules).

2.3.1 We first construct the functor Dq : Mod(Fq)R −→ DGr∗(Fq)R in a similar manner to
the construction from § 2.1.1.

If (L,Fq) ∈ Mod(Fq)R, then Dq(L,Fq) = SpecA with A = (A(G), A(G)�, iA), defined by:

• A(G) = SymR(L)/I where the ideal I is generated by {lq − Fq(l ⊗ 1) | l ∈ L}, the comulti-
plication ∆ is such that ∆(l) = l ⊗ 1 + 1 ⊗ l and the Fq-action is such that [α](l) = αl for all
l ∈ L and α ∈ Fq;

• A(G)� = SymR(L)/(I · I0) where the augmentation ideal I0 is generated by all l ∈ L, the
comultiplication ∆� is such that ∆�(l) = l ⊗ 1 + 1 ⊗ l and the Fq-action [α]� is given by
the correspondences l �→ l ⊗ 1 + 1 ⊗ l and l �→ αl for all l ∈ L and α ∈ Fq;

• iA is the natural projection from A(G)� to A(G).

Clearly, G = SpecA ∈ DGr(Fq)R and the correspondence Dq : (L,Fq) �→ G can be naturally
extended to the functor Dq : Mod(Fq)R −→ DGr(Fq)R. This functor is additive and faithful.

2.3.2 We now prove that any G ∈ DGr(Fq)R can be identified in the category DGr∗(Fq)R
with some Dq(L0, Fq), where (L0, Fq) ∈ Mod(Fq)R. Since G ∈ DGr(Fp)R we can assume that it is
presented by the deformation Spec(A,A�) where the R-algebras A and A� are described in terms of
the R-module L such that (L,Fp) = Lp(G), cf. § 2.2.

For all α ∈ Fq, there are the R-linear actions [α] : L −→ L and [α]� : L� −→ L�. Therefore, we
have the direct sum decompositions of locally free modules L =

⊕
n∈Z/NZ Ln and L� =

⊕
n∈Z/NZ L

�
n,

where for all n ∈ Z modN ,

Ln = {l ∈ L | [α](l) = σn
p (α)l,∀α ∈ Fq}, L�

n = {l ∈ L� | [α](l) = σn
p (α)l,∀α ∈ Fq}.

The exact sequence (4) from the lemma in § 2.2 implies that iA induces isomorphisms of
R-modules in : L�

n −→ Ln for all n ∈ Z/NZ, n �= 0. Similarly, exact sequence (5) from the same
lemma implies that jA induces isomorphisms of R-modules jn : Ln−1 −→ L�

n for all n ∈ Z/NZ,
n �= 0. Then from the relation jA ◦ iA = Fp it follows that for all n = 0, . . . , N − 2, Fp induces
isomorphisms Ln 
 Ln+1 and, therefore, L =

⊕
n∈Zmod N Fn

p (L0).
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Let κ : SymR(L) −→ SymR(L0) be an R-algebra morphism uniquely determined by the corre-
spondences κ : Fn

p (l0) �→ lp
n

0 for all 0 � n < N and l0 ∈ L0. Then a straightforward calculation
shows that κ induces an isomorphism of G and Dq(L0, Fq) in the category DGr∗(Fq)R. The theorem
is proved.

3. Group schemes with strict Fq[π]-action

Suppose that O = Fq[π] with a fixed indeterminate π and G = SpecA(G) ∈ DGr(O)R.

3.1 The R-module L(G)�

Consider G as an object of the category DGr(Fq)R. Then there is a (L,Fq) ∈ Mod(Fq)R such that
G is isomorphic to SpecA, where A = (A(G), A(G)�, iA) is given in the notation of § 2.3.1.

Note that L = L(G) = {a ∈ A(G) | ∆(a) = a ⊗ 1 + 1 ⊗ a, [α](a) = αa, ∀α ∈ Fq}. Similarly to
§ 2.2 introduce

L� = L(G)� = {a ∈ A(G)� | ∆�(a) = a⊗ 1 + 1 ⊗ a, [α](a) = αa, ∀α ∈ Fq}.
Then L� is a locally free R-module, rkR L

� = 2 rkR L, it is generated by the images of elements
{l, lq | l ∈ L} in A(G)� and therefore can be identified with L⊕ L(q).

The action [π]G = ([π], [π]�) of π ∈ O on G is uniquely determined by R-linear endomorphisms
[π] : L −→ L and [π]� : L� −→ L� such that [π]� ◦ iL = iL ◦ [π], where iL = iA|L� : L� −→ L is an
epimorphism of R-modules.

Note that NA = Imod(I · I0) ⊂ L�. With respect to the above-mentioned identification L� =
L⊕ L(q), we have iL(l1, l2) = l1 + Fq(l2), NA = {(Fq(l),−l) | l ∈ L(q)} and the natural sequence

0 −→ NA −→ L� iL−→ L −→ 0 (6)

is an exact sequence of O-R-modules.
Consider the R-linear morphism jL : L(q) −→ L� given by the correspondence l⊗ 1 �→ l̂q, where

l ∈ L and l̂ ∈ L� is such that iL(l̂) = l. Clearly, jL ◦ iL = Fq and the sequence

0 −→ L(q) jL−→ L� pr1−−→ t∗A −→ 0 (7)

is an exact sequence of O-R-modules. (Here pr1 is induced by the natural projection IA(G)� −→ t∗A.)
Note that with respect to the identification L� = L⊕L(q), jL : l2 �→ (0, l2) and pr1 : (l1, l2) �→ l1 for
any l1 ∈ L and l2 ∈ L(q).

3.2 The morphism Vπ(G)
With the notation from § 3.1 consider the map ψπ := [π]� − π idL� : L� −→ L�. As the action of
π on G is strict, ψπ induces the zero morphisms on NA and t∗A. From the exact sequences (6) and
(7) it follows then that there is a unique R-linear morphism Vπ = Vπ(G) : L −→ L(q) such that
ψπ = iL ◦ Vπ ◦ jL.

Lemma. We have the following:

(a) Vπ ◦ Fq = [π] − π idL;

(b) Fq ◦ Vπ = [π](q) − π idL(q) .

Proof. (a) The relation jL ◦ iL = Fq implies that

iL ◦ ([π] − π idL) = ([π]� − π idL�) ◦ iL = iL ◦ Vπ ◦ jL ◦ iL = iL ◦ (Vπ ◦ Fq).

Since iL is an epimorphism, we can cancel it from this equality to give the result.
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(b) Take l ∈ L, l̂ ∈ L� such that iL(l̂) = l and compute in A(G)�:

jL(Vπ(lq)) = ([π]� − πidL�)(l̂q) = ([π]�(l̂))q − πl̂q = jL([π](l) ⊗ 1 − l ⊗ π).

Since jL is a monomorphism we can cancel both sides by jL and obtain for any l ∈ L, that

(Fq ◦ Vπ)(l ⊗ 1) = [π](q)(l ⊗ 1) − πidL(q)(l ⊗ 1).

The lemma is proved.

Remark. (a) For any G ∈ DGr(O)R, Fq induces the morphism FG ∈ HomDGr(O)R
(G,G(q)); this

follows from the identity Fq ◦ [π] = [π](q) ◦ Fq.
(b) If π ·1R = 0, then Vπ induces the morphism VG ∈ HomDGr(O)R

(G(q),G) and we have FG ◦VG =
π idG and VG ◦ FG = π idG(q) .

3.3 The functor Lq,π : DGr(O)R −→ Mod(O)R
The category Mod(O)R consists of triples (L,Fq, Vπ), where:

• (L,Fq) ∈ Mod(Fq)R, i.e. L is a locally freeR-module of finiteR-rank with an R-linear morphism
Fq : L(q) −→ L;

• Vπ : L −→ L(q) is an R-linear morphism such that (Vπ ◦ Fq + π idL)(q) = Fq ◦ Vπ + π idL(q) ;

• morphisms f : (L,Fq, Vπ) −→ (L1, Fq, Vπ) in Mod(O)R are given by R-linear morphisms f :
L −→ L1 such that Fq ◦ f = f (q) ◦ Fq and Vπ ◦ f (q) = f ◦ Vπ.

Define the contravariant functor Lq,π from DGr(O)R to Mod(O)R by setting (where Lq is the
functor from § 2.3):

• Lq,π(G) = (L(G), Fq , Vπ(G)), where (L(G), Fq) = Lq(G);

• if H = (H,H�, iH) ∈ DGr(O)R and f ∈ HomDGr(O)R
(G,H), then Lq,π(f) = Lq(f) : L(H) −→

L(G) is an R-linear map induced by the corresponding map of R-algebras A(H) −→ A(G).

Theorem 3. The functor Lq,π induces an antiequivalence of categories L∗
q,π : DGr∗(O)R −→

Mod(O)R.

Remark. The case of a perfect field R of characteristic p was considered in [Gib04].

Proof. Clearly, Lq,π is additive and faithful. We construct the inverse functor Dq,π : Mod(O)R −→
DGr∗(O)R in the following way.

Let L = (L,Fq, Vπ) ∈ Mod(O)R. Take G = Dq(L) = Spec(A(G), A(G)�, iA) ∈ DGr(Fq)R, where
Dq is the functor from § 2.3.1, and provide it with a functorial strict action of π as follows.

Define

Lq :=
{∑

i

ril
q
i

∣∣∣∣ li ∈ L, ri ∈ R

}
⊂ SymR(L).

Then the R-module Lq can be identified with L(q) by the map

∑
i

li ⊗ ri �→
(∑

i

li ⊗ ri

)(q)

:=
∑

i

ril
q
i .

Consider the map of R-algebras φπ : SymR(L) −→ SymR(L) such that φπ : l �→ πl+ Vπ(l)(q) for
any l ∈ L. Then

φπ(lq − Fq(l ⊗ 1)) = φπ(l)q − πFq(l ⊗ 1) − ((Fq ◦ Vπ)(l ⊗ 1))(q)

= πqlq + (Vπ(l)(q))q − πFq(l ⊗ 1) − ((Fq ◦ Vπ)(l ⊗ 1))(q). (8)
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From the definition of objects of Mod(O)R we obtain

(Fq ◦ Vπ)(l ⊗ 1)(q) = −πlq + πqlq + ((Vπ ◦ Fq)(l))q .

Substituting this in (8) we obtain for any l ∈ L,

φπ(lq − Fq(l ⊗ 1)) = π(lq − Fq(l ⊗ 1)) + (Vπ(l)(q) − Fq(Vπ(l)))q.

Therefore, φπ induces morphisms of R-algebras [π] : A(G) −→ A(G) and [π]� : A(G)� −→ A(G)�,
which determine an action of π. This action is strict because (Vπ(l)(q) − Fq(Vπ(l)))q ∈ I · I0.

So, we obtain an object of the category DGr(O)R which will be denoted by Dq,π(L). Clearly,
Lq,π(Dq,π(L)) = L.

Suppose that L1 = (L1, Fq, Vπ) ∈ Mod(O)R and f ∈ HomMod(O)R
(L,L1). Then we have the

R-linear morphism f : L −→ L1 such that f ◦ Vπ = Vπ ◦ f (q) and f (q) ◦ Fq = Fq ◦ f . Therefore,
f induces the morphism of R-algebras

ψf : SymR(L) −→ SymR(L1),

which determines the morphism ψ̄f in the category Mod(Fq)R. It remains to prove that ψ̄f commutes
with the action of π on Dq,π(L) and Dq,π(L1).

For any l ∈ L, let Vπ(l) =
∑
li ⊗ ri ∈ L(q). Then Vπ(ψf (l)) = Vπ(f(l)) = f (q)(Vπ(l)) =∑

f(li) ⊗ ri =
∑
ψf (li) ⊗ ri. Therefore,

ψf (φπ(l)) = ψf (πl + Vπ(l)(q)) = ψf

(
πl +

∑
i

ril
q
i

)

= πψf (l) +
∑

riψf (l)q = πψf (l) + Vπ(ψf (l))(q) = φπ(ψf (l)).

So, ψ̄f ∈ HomDGr(O)R
(Dq,π(L1),Dq,π(L)). It is easy to see that Lq,π(ψ̄f ) = f .

The theorem is proved.

Remark. The above theorem shows that the category of strict O-modules DGr∗(O)R is equivalent
to the category of finite v-modules introduced by Taguchi in [Tag95].

4. The category of π-torsion strict modules

Denote by DGr′(O)R, respectively by DGr′∗(O)R, the full subcategory in DGr(O)R, respectively in
DGr∗(O)R, consisting of ‘π-torsion objects’, i.e. of (G,G�) ∈ DGr(O)R such that [π]G : A(G) −→
A(G) is nilpotent.

Clearly, the functor Lq,π induces an antiequivalence of DGr′∗(O)R and the full subcategory
Mod′(O)R in Mod(O)R, which consists of (L,Fq, Vπ) such that [π]L = π idL +Vπ ◦ Fq is a nilpotent
endomorphism of L.

4.1 Let R∗ be the multiplicative group of invertible elements of R.

Proposition. Suppose that π · 1R ∈ R∗ and G = (G,G�) ∈ DGr(O)R. Then G is etale over R.

Proof. Let Lq,π(G) = (L,Fq, Vπ). Then [π]L acts on L/ImFq via the scalar multiplication by
π · 1R ∈ R∗. On the other hand, this action should be nilpotent. Therefore, L = ImFq and G is
etale over R.

Corollary. Suppose that R is an integral domain, K = FracR and ΓK = Gal(Ksep/K).
If (G,G�) ∈ DGr′(O)R, then G⊗K is etale and G(Ksep) is a finite O[ΓK ]-module of order rkRA(G).
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4.2 The following statement was conjectured in [Fal02] and is proved here following the referee’s
idea.

Theorem 4. Suppose that (G,G�) ∈ DGr′(O)R and rkRA(G) = qh, then [π]hG = 0.

Note that for any G = (G,G�) ∈ DGr(Fq)R with Lq(G) = (L,Fq), we have rkRA(G) = qh, where
h = rkR L.

Via the antiequivalence Lq,π, Theorem 4 can be obtained from the following proposition.

Proposition. Suppose that R is a local ring, L = (L,Fq, Vπ) ∈ Mod′(O)R and h = rkR L.
Then [π]hL = 0.

Proof. Let e1, . . . , eh be an R-basis of L. Let C = (cij) ∈ Mh(R) and D = (dij) ∈ Mh(R) be such
that for all 1 � j � h,

Vπ(ej) =
∑

i

ei ⊗ cij , Fq(ej ⊗ 1) =
∑

i

eidij .

Here and below we use the matrix notation ē = (e1, . . . , eh), Vπ(ē) = ē⊗ C and Fq(ē) = ēD.
Then the R-linear morphism Vπ◦Fq is given by the matrix DC in the basis e1, . . . , en and Fq◦Vπ,

and by the matrix CD in the basis e1 ⊗ 1, . . . , eh ⊗ 1. From the definition of objects of the category
Mod(O)R it follows that

D(q)C(q) + πqE = CD + πE,

where E is the unit matrix of order h and C(q) = (cqij), D
(q) = (dq

ij). Note also that if Π ∈ Mh(R)
is such that [π]L(ē) = ēΠ, then DC + πE = Π and CD + πE = Π(q).

Let λ be an indeterminate.

Lemma. We have det(CD − λE) = det(DC − λE).

Proof. We can assume that all coefficients in C and D are independent variables over Q. Then our
lemma holds over a Zariski closed subset V in A2h2

Q , which must contain the Zariski open subset
detC �= 0 (where CD and DC become conjugate). Therefore, V = A2h2

Q . The lemma is proved.

Corollary. Let Φ(λ) be the characteristic polynomial for [π]L. Then Φ(λ) ∈ Fq[λ] ⊂ R[λ].

Proof. It will be sufficient to prove that Φ(λ) = Φ(q)(λ), where all coefficients of Φ(q) are qth powers
of the corresponding coefficients of Φ

Φ(λ) = det(Π − λE) = det(DC + (π − λ)E)

= det(CD + (π − λ)E) = det(Π(q) − λE) = Φ(λ)(q).

We now complete the proof of our proposition. Let k be the residue field of R. Then [π]L ⊗ k is
a nilpotent endomorphism of L ⊗ k with the same characteristic polynomial Φ(λ) ∈ Fq[λ] ⊂ k[λ].
Therefore, Φ(λ) = λh and by the Cayley–Hamilton theorem [π]hL = 0.

The proposition is proved.

The above method also gives the following property.

Corollary. Suppose that SpecR is connected, x ∈ SpecR with the residue field k(x) and G ∈
DGr(O)R. Then G ∈ DGr′(O)R if (and only if) G ⊗ k(x) ∈ DGr′(O)k(x).
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4.3 Embedding into a π-divisible group

By § 1 the objects G of the category DGr(O)R can be treated as conventional group schemes with an
endomorphism [π]G , which satisfies an extra condition of strictness. Therefore, we can consider short
exact sequences in DGr(O)R and define the concept of a π-divisible group following the original
definition of Tate, cf. [Tat67]. Then a π-divisible group appears as an inductive system {Gn | n ∈ N}
of objects Gn = (Gn, G

�
n) ∈ DGr(O)R such that the corresponding inductive system {Gn | n ∈ N} is

a π-divisible group in the category of finite flat O-module schemes over R. Note that for any n ∈ N,
[π]nGn

= 0 in DGr∗(O)R and, therefore, Gn ∈ DGr′(O)R for all n ∈ N.

Theorem 5. Any G ∈ DGr′(O)R admits locally on R an embedding into a π-divisible group in the
category DGr(O)R.

Proof. Suppose that Lq,π(G) = (L,Fq, Vπ). Then we can assume that L has an R-basis ē =
(e1, . . . , eh). Therefore, Vπ and Fq can be given via the matrices C,D ∈Mh(R) such that with nota-
tion as in § 3.4, Vπ(ē) = ē⊗C and Fq(ē⊗1) = ēD. Recall that DC+πE = Π and CD+πE = Π(q),
where [π]L(ē) = ēΠ and Π(q) = σqΠ.

For N ∈ N, consider the inductive system of R-modules L̃N =
⊕

1�n�2N Ln, where each Ln

is just a copy of the R-module L. Use the notation ēn for the basis ē of Ln. Define the structural
morphisms Ṽπ : L̃N −→ L̃

(q)
N and F̃q : L̃(q)

N −→ L̃N by setting for 1 � n � N ,

Ṽπ(ē2n) = ē2n ⊗ C + ē2n−1 ⊗ 1, Ṽπ(ē2n−1) = −ē2n−1 ⊗D − ē2n ⊗ Π(q) + δ∗n1ē2n−2 ⊗ 1

F̃q(ē2n ⊗ 1) = ē2nD + ē2n−1, F̃q(ē2n−1 ⊗ 1) = −ē2n−1C − ē2nΠ + δ∗n1ē2n−2,

where δ∗ is the opposite Kronecker symbol, i.e. δ∗n1 = 0 if n = 1 and δ∗n1 = 1, otherwise. Then a
straightforward computation shows that for 1 � n � 2N ,

(Ṽπ ◦ F̃q + π idL̃N
)(ēn) = δ∗n1δ

∗
n2en−2

(F̃q ◦ Ṽπ + π id
L̃

(q)
N

)(ēn ⊗ 1) = δ∗n1δ
∗
n2en−2 ⊗ 1.

Therefore, each L̃N is an object of the category Mod(O)R and for all 1 � n � 2N , one has
[π]L̃N

(ēn) = δ∗n1δ
∗
n2ēn−2. This means that {L̃N | N � 1} is a π-divisible group in the category

Mod(O)R. We have also an epimorphic map from (L̃h, F̃q, Ṽπ) to (L,Fq, Vπ) given by the correspon-
dences ē2n �→ [π]h−n

L (ē) and ē2n−1 �→ 0̄ if 1 � n � h.

Finally, applying the antiequivalence Lq,π we obtain the statement of our theorem.

4.4 For any Fq-algebra R define the category Mod1(O)R as follows. Its objects are the triples
(L,Fq,Π) such that:

• (L,Fq) ∈ Mod(Fq)R and Fq is injective;

• Π ∈ EndR(L) is nilpotent, Π(q) ◦ Fq = Fq ◦ Π and for any l ∈ L, Π(l) ≡ πlmod(ImFq).

The morphisms f : (L,Fq) −→ (L1, Fq) in Mod1(O)R arise from the morphisms of the category
Mod(Fq)R that commute with Π.

Consider the functor M1
π : Mod′(O)R −→ Mod1(O)R given by the correspondence (L,Fq, Vπ) �→

(L,Fq, [π]L). The following theorem easily follows from the proposition of § 4.1.

Theorem 6. If R is an integral domain then the functor L1
q = Lq,π ◦M1

π gives an antiequivalence

of the categories DGr∗′(O)R and Mod1(O)R.
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4.5 Relation to the mixed characteristic case
In this section R is the valuation ring in a complete discrete valuation field K of characteristic p.
We denote by k the residue field in K and by η one of its uniformisers. We assume also that the
O-algebra structure on R is given via the embedding O ⊂ R such that π /∈ R∗. Then Ô = Fq[[π]]
is the valuation ring of a complete discrete valuation subfield E in K. We denote below by e(K/E)
the ramification index of K over E.

With the above notation introduce the full subcategory DGr1(O)R in DGr∗(O)R consisting of
objects killed by [π]. Via the functor L1

q this category is antiequivalent to the full subcategory
Mod1

1(O)R in Mod1(O)R consisting of the objects (L,Fq, 0).

4.5.1 Suppose that e(K/E) = 1. Introduce the category SH1(Fq)R with objects (M0,M1,

ϕ0, ϕ1), where M0 is an R-module of finite length such that πM0 = 0, ϕ0 : M (q)
0 −→ M0 is an

R-linear morphism,M1 = Kerϕ0, ϕ1 : M (q)
1 −→M0 is an R-linear morphism and Imϕ0+Imϕ1 =M .

This is an analogue of Fontaine’s category of ‘filtered modules of length 1 killed by p’.
Consider the functor SH : Mod1

1(O)R −→ SH1(Fq)R defined by the correspondence (L,Fq, 0) �→
(M0,M1, ϕ0, ϕ1), where M0 = LmodπL, ϕ0 = Fq modπL and ϕ1 is induced by 1

πFq. The functor
SH is an equivalence of categories if q > 2 and is ‘very close’ to such an equivalence if q = 2.
This shows that strict O-modules have a similar description as conventional group schemes in the
case e(K/E) = 1.

4.5.2 Suppose that e(K/E) � q − 1. Define the category SH1(O)R of the collections (M,M0,
M1, ϕ0, ϕ1), where M is an R-module of finite length killed by π, M0 = {m ∈ M | ηm = 0},
ϕ0 : M (q)

0 −→ M is an R-linear map, M1 = Kerϕ0, ϕ1 : M (q)
1 −→ M is an R-linear map, and

Imϕ0 + Imϕ1 = M . This category is an analogue of the category SHO from[Abr90].
Consider the functor SH : Mod1

1(O)R −→ SH1(O)R defined by the correspondence (L,Fq , 0) �→
(M,M0,M1, ϕ0, ϕ1), where:

• M is the image of η
πFq(L(q)) + 1

πFq(L
(q)
1 ) in η

πLmod(ηL) with L(q)
1 = {l ∈ L(q) | Fq(l) ∈ ηL};

• M0 = L mod ηL and ϕ0 : M (q)
0 −→M is induced by η

πFq;

• M1 = L
(q)
1 mod ηL and ϕ1 : M (q)

1 −→M is induced by 1
πFq.

If e < q − 1 then SH is an equivalence of categories and, if e = q − 1, then SH is ‘very close’ to
such an equivalence.

Note that when working in the equal characteristic case, the category SH1(O)R can be replaced
by a simpler category SH′

1(O)R consisting of triples (M,M0, ϕ), where M̄ is an R-module of finite
length killed by π, M0 = {m ∈ M | ηm = 0} and ϕ : M (q)

0 −→ M is an R-linear morphism
such that Imϕ = M . The functor SH′ : Mod1

1(O)R −→ SH′
1(O)R is defined by the correspondence

(L,Fq, 0) �→ (M,M0, ϕ), where M = 1
πL

(q) mod ηL, M0 = L mod ηL and ϕ is induced by 1
πFq (this

map is additive because of the equal characteristic assumption).

4.5.3 Suppose that e(K/E) is arbitrary. Introduce the category BR1(O)R. Its objects are
the triples (M,M1, ϕ), where M is an R-module of finite length such that πM = 0, M1 is an
R1-submodule in M ⊗RR1, where R1 = R[η1] with ηq

1 = η, and ϕ : M (q)
1 −→M is an R-linear map

such that ϕ(M1) = M ⊗R R1. This category is an equicharacteristic version of Breuil’s category
Mod/S1

that appeared in his classification of period p group schemes in the mixed characteristic
case, cf. [Bre00].

Again there is a natural functor from Mod1
1(O)R to BR1(O)R defined by the correspondence

(L,Fq, 0) �→ (M,M1, ϕ), where M = L modπL and ϕ is induced by 1
πFq.
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4.5.4 Again e(K/K0) is arbitrary. Introduce an equal characteristic analogue of the concept
of ‘p-etale ϕ-module of q-height r over S’ from [Fon90].

Let r ∈ N. Introduce the category Modr(O)R by generalizing the definition of Mod1(O)R from
§ 4.4. Its objects are (L,Fq ,Π), where:

• (L,Fq) ∈ Mod(Fq)R and Fq is injective;

• Π ∈ EndR L is nilpotent and satisfies the relation Fq ◦ Π = Π(q) ◦ Fq;
• for any l ∈ L, (Π − π idL)r(l) ∈ ImFq.

The morphisms in this category are morphisms of the category Mod(O)R, which commute with Π.
Let MG(O)K be the category of finite continuous O[ΓK ]-modules. Consider the functor MG :

Modr(O)R −→ MG(O)K defined by the correspondence (L,Fq,Π) �→ G(Ksep), where Dq(L,Fq) =
(G,G�) ∈ DGr(Fq)R, cf. § 2.3.1, and the action of O = Fq[π] on G(Ksep) comes from the Fq-action
on G and the action of π via the morphism Dq(Π).

For any r ∈ N, let MGr(O)K be the full subcategory in MG(O)K consisting of the O[ΓK ]-modules
MG(L), where L ∈ Modr(O)R. The study of properties of its objects appears as equicharacteristic
analogue of the problem of study of finite subquotients of crystalline representations with Hodge–
Tate weights from [0, r]. If r = 1, then objects of MG1(O)K come from the Galois modules of generic
fibres of strict O-modules over R.

4.6 Several remarks about duality in DGr∗(O)R
Suppose that L = (L,Fq, Vπ) ∈ Mod(O)R. Let LD = HomR -mod(L,R). Then LD is a locally free
R-module and LD(q) = HomR -mod(L(q), R). Therefore, we have R-linear maps Fq : LD(q) −→ LD

and Vπ : LD −→ LD(q) such that for any l̃ ∈ LD and l ∈ L, Fq(l̃ ⊗ 1)(l) = (l̃ ⊗ 1)(Vπl) and
Vπ(l̃)(l ⊗ 1) = l̃(Fq(l ⊗ 1)).

It can be easily verified that LD := (LD, Fq, Vπ) ∈ Mod(O)R. The correspondence L �→ LD gives
a perfect duality in Mod(O)R that has all nice functorial properties. This duality was introduced
and studied in [Tag95].

Consider the formal Lubin–Tate group GLT = SpfR[[X]] such that EndR(GLT ) = Ô and the
endomorphism [π]LT of multiplication by π ∈ O is given by [π]LT (X) = Xq + πX. Then for
h ∈ N, GLT,h := Ker[π]hLT has a natural structure of an object GLT,h of the category DGr(O)R.
Let Lq,π(GLT,h) = LLT,h = (Lh, Fq, Vπ). Then LLT,h ∈ Mod′(O)R and Lh =

⊕
1�i�hRmi, where for

1 � i � h, Fq(mi ⊗ 1) = mi−1 − πmi and Vπ(mi) = mi ⊗ 1 with the agreement m0 = 0.
Suppose that L = (L,Fq, Vπ) ∈ Mod′(O)R and [π]hL = 0. Then LD = (LD, Fq, Vπ) ∈ Mod′(O)R

and [π]h
LD = 0. Consider the R-linear map

c : Lh −→ L⊗ LD = HomR(L,L),

which is uniquely determined by the requirements c(m) = idL and c ◦ Fq = Fq ◦ c(q). Consider
the natural embeddings Lh ⊂ A(GLT,h), L ⊂ A(G) and LD ⊂ A(GD), where G = (G,G�) and
GD = (GD, GD�) are such that Lq,π(G) = L and Lq,π(GD) = LD. Together with the above map c
these embeddings determine a morphism of R-schemes G × GD −→ GLT,h, which induces a non-
degenerate bilinear pairing of strict O-modules

C : G × GD −→ GLT,h.

This is an analogue of the Cartier duality. Its direct construction is given in [Fal02]. In the context
of finite v-modules, cf. the remark at the end of § 3.3, the pairing C appears in [Tag95].

Remark. The referee pointed out that the existence of the pairing C implies a short proof of the
difficult part of our Theorem 1 from § 2.1.
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5. Properties of Galois modules from MG1(O)K

As in § 4.5, E ⊂ K are complete discrete valuation fields of characteristic p with uniformisers π and,
respectively, η. The valuation ring of E is Ô = Fq[[π]] and the residue field k of K is perfect and
the valuation ring of K is R.

Suppose that G = (G,G�) ∈ DGr′(O)R, H = G(Ksep) is the O[ΓK ]-module of geometric points
of G and e = e(K/E) – is the ramification index of K over E. We also set ΓK = Gal(Ksep/K) and
denote by IK the inertia subgroup of ΓK .

5.1 Characters of the semisimple envelope of H

Suppose that k̄ is an algebraic closure of k and the character χ : IK −→ k̄∗ appears with a nonzero
multiplicity in the semisimple envelope of the O[ΓK ]-module H. An analogue of the Serre conjecture
for H can be stated as follows.

Theorem 7. For the above character χ, there are a,N ∈ N \ pN such that χ = χa
N , where a =

a0 + a1q + · · · + aN−1q
N−1 with 0 � ai � e and χN : IK −→ k̄∗ is such that for any τ ∈ IK ,

χN (τ) = τ(ηN )/ηN , where ηN ∈ Ksep and ηqN−1
N = η.

Proof. This can be deduced in the same way as it has been obtained in the case of usual group
schemes in [Ray74]. First, we can assume that k = k̄ and e < q − 1. Then any simple object
of the category Mod1(O)R appears in the form (L,Fq , 0), where L =

⊕
0�i<nRmi, Fqm0 =

ηa0m1, . . . , FqmN−1 = ηaN−1m0 with 0 � ai � e, 0 � i < N .
Then the corresponding Galois module consists of Ksep-points of the R-algebra R[T0, . . . , TN−1],

where T q
0 = ηa0T1, . . . , T

q
N−1 = ηaN−1T0. It can be naturally identified with the Fq[ΓK ]-module

{αηa
N | α ∈ FqN}, where a = a0 + a1q + · · · + aN−1q

N−1. Clearly, IK acts on it via the conjugacy
class of characters {σiχa

N | 0 � i < N}.

Following Raynaud’s method, cf. [Ray74], one can deduce from the above description of simple
objects in Mod1(O)R that if e < q−1, then the functor (G,G�) �→ G(Ksep) is a fully faithful functor
from DGr′(O)R to the category MG(O)K of finite O[ΓK ]-modules. The proof uses induction on the
length of the Jordan–Hoelder series for G(Ksep) and the description of simple objects in Mod1(O)R
from the proof of the above Theorem 7.

5.2 Ramification estimates
These estimates are given in Theorem 8 below and are very similar to the known estimates in the
case of conventional group schemes, cf. [Fon85]. The proof is based on the knowledge of ‘equations’
of the strict module G and is done below by the methods of [Abr98]. Note that the methods from
[Fon93] can also be adjusted to obtain similar estimates, cf. also [Tag92]. Our method is simpler,
but it works only in positive characteristic.

Theorem 8. If H is killed by [πN ], then the ramification subgroups Γ(v)
K act trivially on H for

v > e(N + 1/(q − 1)) − 1.

Proof. By Theorem 5 we can assume that there is a π-divisible group {Gn}n�1 of a height h in
DGr(O)R such that GN = G.

5.2.1 Let L1
q(G) = (L,Fq,Π), cf. § 4.4. Then L is a free R-module of rank hN and we can

choose its R-basis in the form

m1, . . . ,mh,Πm1, . . . ,Πmh, . . . ,ΠN−1m1, . . . ,ΠN−1mh.
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For 1 � i � N , introduce the vector-columns m̄(i) = (ΠN−im1, . . . ,ΠN−imh)t and set Fqm̄
(i) =

(Fq(ΠN−imt
1), . . . , Fq(ΠN−imt

h))t. Then, the condition Im(Π− π idL) ⊂ ImFq implies the existence
of unique matrices C1, . . . , CN ∈Mh(R) such that

C1Fqm̄
(N) + C2Fqm̄

(N−1) + · · · + CNFqm̄
(1) = πm̄(N) − m̄(N−1)

C1Fqm̄
(N−1) + · · · + CN−1Fqm̄

(1) = πm̄(N−1) − m̄(N−2)

...

C1Fqm̄
(1) = πm̄(1).

Note that C1 divides πEh, where Eh is the unit matrix of order h.
Consider the vector columns X̄i = (Xi1, . . . ,Xih)t of independent variables Xij , 1 � i � N ,

1 � j � h. Then the algebra A(G) ⊗R K appears as the quotient of K[X̄1, . . . , X̄N ] by the ideal
generated by the equations ∑

1�i�s

CiX̄
q
s+1−i = πX̄s − X̄s−1 (9)

where 1 � s � N and by definition X̄0 = 0̄.
Consider the points of G(Ksep) as solutions ā = (ā1, . . . , āN ) of the system (9).

Lemma. We have the following.

(a) If ā = (ā1, . . . , āN ) ∈ G(Ksep), then ā1, . . . , āN have coordinates in OKsep .

(b) If ā′ = (ā′1, . . . , ā
′
N ) ∈ G(Ksep) and ā ≡ ā′ modπ1/(q−1)msep, where msep is the maximal ideal

of the valuation ring of Ksep, then ā = ā′.

Proof. Both statements follow easily by induction on N from the above equations for points of G.
Statement (b) requires only that C1, . . . , Ch ∈ Mh(R), in statement (a) we need also that C1

divides πEh.

5.2.2 Suppose that α ∈ Q>0 has the zero p-adic valuation. Then α = m/(qM − 1) with suitable
m,M ∈ N, (m, p) = 1. Note that the presentation of α in the form of fraction m/(qM − 1) is not
unique and can always be chosen with an arbitrary large value of M . For any such α there is an
extension Kα of K of degree qM with the Herbrand function

ϕKα/K(x) =



x, for 0 � x � α

α+
x− α

qM
, for x � α.

Note that ϕKα/K has only one edge point x = α.
Explicit construction of Kα can be found in [Abr98] and can be briefly described as follows.

Let ηM ∈ Ksep be such that ηqM−1
M = η and let Lα = K(ηM )(T ), where

T qM − T = η−m
M .

Then Kα = K(ηα), where ηα is a uniformising element in Kα such that η−m
α = T qM−1. From the

above construction of Kα, it follows that

ηqM

α (1 − ηm
α )−1/α = η,

where (−1/α)th power is taken via the binomial series. In particular,

η ≡ ηqM

α mod(ηηm
α ). (10)
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Note that Kα is totally ramified over K and, therefore, there is a field isomorphism hα :
K −→ Kα such that hα(η) = ηα and hα|k = id. (Here k is the residue field of K and Kα.)

Relation (10) now implies that for any a ∈ ηR, a = hα(a)q
M

+ ã, with ã ∈ Kα such that
vK(ã) � vK(a) + α(1 − q−M) (vK is the valuation in K such that vK(η) = 1). Below we use the
following consequence of this fact: if a ∈ R, then vK(a− hα(a)q

M
) � 1 + α(1 − q−M ).

5.2.3 Denote by the same symbol an extension of hα to an isomorphism of Ksep onto
Kα,sep = Ksep. Clearly, X̄ = (X̄1, . . . , X̄s) �→ hα(X̄) = (hα(X̄1), . . . , hα(X̄s)) is a one-to-one
correspondence between solutions of the system (9) and solutions Ȳ = (Ȳ1, . . . , ȲN ) of the simi-
lar system ∑

1�i�s

hα(Ci)Ȳ
q
s+1−i = hα(π)Ȳs − Ȳs−1 (11)

where 1 � s � N and by definition Ȳ0 = 0̄.

Lemma. If α(1− 1/qM ) > e(N + 1/(q − 1))− 1, then for any solution X̄(0) of (9) there is a unique

solution Ȳ (0) of (11) such that X̄(0) ≡ Ȳ (0)qM
modπ1/(q−1)msep.

Proof. The correspondence Ȳ �→ Z̄ = Ȳ qM − X̄(0) establishes a one-to-one correspondence between
solutions Ȳ of (11) and solutions Z̄ = (Z̄1, . . . , Z̄N ) of the system of equations∑

1�i�s

CiZ̄
q
s+1−i = πZ̄s − Z̄s−1 − F̄s (12)

where 1 � s � N , Z̄0 = 0 and

F̄s = π̃Ȳ qM

s −
∑

1�i�s

C̃iȲ
qM+1

s+1−i ∈ πN+1/(q−1)msep

because the vK -valuations of π̃ = π− hα(π)q
M

and of C̃i = Ci − hα(Ci)(q
M ) are strictly bigger than

e(N + 1/(q − 1)).
Now induction on s shows that the system (12) has a unique solution Z̄ = (Z1, . . . , ZN ) with

coordinates in π1/(q−1)msep. (Note that these coordinates Z1, . . . , ZN are such that for 1 � s � N ,
Z̄s ≡ 0̄ modπN−s+1/(q−1)msep.)

The lemma is proved.

With the above notation and assumptions we have the following corollary.

Corollary. Suppose that L, respectively Lα, is obtained by joining to K, respectively Kα,
all coordinates of all solutions of the system of equations (9), respectively (11), in Ksep.
Then LKα = Lα.

Proof. Suppose that τ ∈ Gal(Ksep/Kα). Then τ ∈ Gal(Ksep/LKα) if and only if for any solution
X̄(0) of the system (9), we have (cf. the lemma in § 5.2.1)

τX̄(0) ≡ X̄(0) modπ1/(q−1)msep.

By the above lemma this is equivalent to the congruences

τ Ȳ (0) ≡ Ȳ (0) modπ1/(q−1)
α msep

for all solutions Ȳ (0) of the system (11), and this means that τ ∈ Gal(Ksep/Lα).
The corollary is proved.
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5.2.4 For any finite extension F ⊂ F1 in Ksep, let v(F1/F ) be the minimal rational number
such that the ramification groups Γ(v)

F act trivially on F1 if v > v(F1/F ).

Proposition. With the notation from § 5.2.3 there is the following inequality

v(L/K) � e

(
N +

1
q − 1

)
− 1

Proof. Suppose that this inequality does not hold. Then there is a rational number α = m/(qM − 1)
satisfying the assumptions from the beginning of n.5.2.2 and the inequalities

v(L/K) > α > α

(
1 − 1

qM

)
> e

(
N +

1
q − 1

)
− 1.

(We can always choose a sufficiently large M .)
Then by the lemma of § 5.2.3 one has Lα = LKα and this implies that

v(Lα/K) = max{v(L/K), v(Kα/K)} = v(L/K). (13)

On the other hand, looking at the maximal edge points of Herbrand functions we obtain from
the composition property ϕLα/K = ϕLα/Kα

◦ ϕKα/K that

v(Lα/K) = max
{
v(Kα/K), ϕKα/K(v(Lα/Kα))

}
= max

{
α,
v(Lα/Kα) − α

q
+ α

}
< v(Lα/Kα),

because α < v(L/K) = v(Lα/Kα). However, this contradicts (13).
Theorem 8 is proved.

5.3 As was noticed in § 3.5.1, if e = 1 then strict O-modules that are killed by [π] behave very
similarly to group schemes of period p over Witt vectors. For this reason, one can apply directly
methods from [Abr87b] to prove the following result.

Theorem 9. Suppose that q � 4 and H is an Fq[ΓK ]-module such that:

(a) the action of the inertia subgroup of ΓK on the semisimple envelope of H is given by characters,
which satisfy Serre’s conjecture, cf. Theorem 7;

(b) the ramification subgroups Γ(v)
K act trivially onH if v > 1/(q − 1) (i.e. the ramification estimate

from Theorem 8 holds for H).

Then there is a G = (G,G�) ∈ DGr′(O)R such that H 
 G(Ksep).
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