ON THE FINITE TWO-DIMENSIONAL LINEAR GROUPS II.(¹)

BY
PETER LORIMER

A group G is called a T_{3}-group if it contains subgroups K and $H, H \triangleleft K$, with the property that if g and g^{b} are members of $G-K$ there is exactly one $h \in H$ which satisfies the equation $g^{h}=g^{b}$. In these circumstances (G, K, H) is called a T_{3}-triple.
T_{3}-groups were studied by the author ([1], see also errata) and used there to give characterizations of the finite two-dimensional linear groups and in this paper we continue the study. In particular we will prove the following.

Theorem. If (G, K, H) is a T_{3}-triple, G is finite, a is an involution of $G-N(K)$ and $H \cap H^{a} \neq 1$, then either
(1) $K \cap K^{a} \triangleleft G$ and $G / K \cap K^{a}$ is isomorphic to a group of all similarity transformations over a finite field, or
(2) K has a conjugate K^{b} which is different from K and $K^{a}, K \cap K^{a} \cap K^{b}=Z(G)$ and $G / Z(G)$ is isomorphic to a group of all bilinear transformations over a finite field of characteristic 2 .

Throughout the paper we assume that (G, K, H) is a T_{3}-triple which satisfies the hypotheses of this theorem. In $\S 2$ we discuss the situation which gives rise to the first conclusion and in $\S 3$ we discuss the second.

Notations. We shall use the standard notations of [1]. In addition we denote the order of $H \cap K^{a}$ by α, the order of $H \cap H^{a}$ by β and the index of K in G by n.
By hypothesis we have $\beta>1$ throughout the paper.

1. Preliminaries. For reference purposes we will list here, without proof, the results from [1] which we will be using in this paper. After each result the reference is to the place in [1] where this result may be found.

Lemma 1.1. If $g \in G-K$, then $C(g) \cap H=1$.
Lemma 3.1.

Lemma 1.2. $N(K)=K$.
Theorem 4.1.

[^0]Lemma 1.3. $H \cap H^{a}$ is abelian of odd order and if $x \in H \cap H^{a}$, then $x^{a}=x^{-1}$. Lemmas 6.4 and 6.5.

Lemma 1.4. $\left(H \cap K^{a}\right)\left(H^{a} \cap K\right) / H \cap H^{a}$ is abelian.
Lemma 6.11.
Lemma 1.5. If H^{x}, H^{y} and H^{z} are three different conjugates of H, then $H^{x} \cap H^{y} \cap H^{z}=1$.

Lemma 6.6.
Lemma 1.6. G is doubly transitive on the right cosets of K in G.
Lemma 6.2.
Lemma 1.7. H is transitive on the right cosets of K which are different from K.
Lemma 6.3.

Lemma 1.8. $H-K^{a}$ intersects $n-2$ classes of K.
Lemma 6.9.

Lemmas 1.6 and 1.7 have the following consequences. G is doubly transitive on the conjugates of K under conjugacy, and H is transitive on the conjugates of K different from K under conjugacy.

Lemma 1.9. H has order $\alpha(n-1)$.
Lemma 6.8.
2. A special case. The proof of the theorem divides naturally into two parts, the first of which we investigate here. In this section we will assume that G has the additional property that if K^{x}, K^{y} and K^{z} are three different conjugates of K, then $H^{x} \cap H^{y} \subset K^{z}$. We will denote the intersection of all the subgroups conjugate to K by $K^{*} . K^{*}$ is a normal subgroup of G and our aim will be to show that $\left(G / K^{*}, K / K^{*}, H K^{*} / K^{*}\right)$ is a T_{3}-triple to which we can apply some of our previous results.

An interpretation of the extra condition is
Lemma 2.1. If $x, y \in G$ and $K^{x} \neq K^{y}$, then $H^{x} \cap H^{y} \subset K^{*}$.
However, we can prove more.
Proposition 2.2. If $x, y \in G$ and $K^{x} \neq K^{y}$, then $H^{x} \cap K^{y} \subset K^{*}$.
Proof. By the double transitivity property of G (Lemma 1.6), it is sufficient to show that $H \cap K^{a} \subset K^{*}$.

Suppose $h \in\left(H \cap K^{a}\right)-K^{*}$. Since h is not contained in $K^{*}, h \in G-K^{b}$ for some conjugate K^{b} of K. Clearly $K^{b} \neq K$ and $K^{b} \neq K^{a}$. Consider the subgroup $H \cap H^{b}$. By assumption $H \cap H^{b} \subset K^{*} \subset K^{a}$ so that $H \cap H^{b} \subset H \cap K^{a}$. Also $h \in H \cap K^{a}$ so that the conjugates of h by members of $H \cap H^{b}$ are members of $H \cap K^{a}$. $H \cap H^{b}$ has order β and $h \in G-K^{b}$ so h has exactly β conjugates by members of $H \cap H^{b}$. Moreover, $H \cap H^{a}$ is a normal subgroup of $H \cap K^{a}$ having order β and $H \cap K^{a} / H \cap H^{a}$ is abelian (Lemma 1.4). Thus the conjugates of h by members of $H \cap H^{b}$ form the coset $h\left(H \cap H^{a}\right)$.

Now consider $H^{a} \cap H^{b}$ in the same fashion. We have $H^{a} \cap H^{b} \subset H^{a} \cap K$ and by Lemma $1.4, H \cap H^{a}$ is a normal subgroup of the group $\left(H \cap K^{a}\right)\left(H^{a} \cap K\right)$ and the factor group is abelian. As in the last paragraph, the conjugates of h by members of $H^{a} \cap H^{b}$ also form the coset $h\left(H \cap H^{a}\right)$.

By hypothesis, $H \cap H^{a}$ has order $\beta>1$ so we can find $s \in H \cap H^{b}, s \neq 1$ and $t \in H^{a} \cap H^{b}, t \neq 1$ such that $h^{s}=h^{t}$. Since $H \cap H^{a} \cap H^{b}=1$ (by Lemma 1.5) we have $s \neq t$. h is not a member of K^{b} and hence the T_{3}-property of G is contradicted. Thus no such h exists. This proves the result.

Proposition 2.3. $\left(G / K^{*}, K / K^{*}, H K^{*} / K^{*}\right)$ is a T_{3}-triple.
Proof. If $g, g^{b} \in G-K$, then by the property T_{3}, H contains a member h with the property $g^{h}=g^{b}$. Hence $\left(h K^{*}\right)^{-1}\left(g K^{*}\right)\left(h K^{*}\right)=\left(b K^{*}\right)^{-1}\left(g K^{*}\right)\left(b K^{*}\right)$. It remains to show that $h K^{*}$ in this equation is unique. If also $h_{1} \in H$ and $h_{1} K^{*}$ satisfies this equation in place of $h K^{*}$, we have $g^{h_{2}} K^{*}=g K^{*}$ where $h_{2}=h h_{1}^{-1}$. Then $g h_{2} g^{-1} \in$ $h_{2} K^{*} \subset K$ so that $h_{2} \in K^{g}$. But $g \in G-K$ so that $K \neq K^{g}$. Hence $h_{2} \in H \cap K^{g} \subset K^{*}$ by Proposition 2.2. Thus $h_{1} K^{*}=h K^{*}$ which proves the proposition.

We can now combine this result with the results of [1] to prove the main theorem in the case considered in this section.
By Proposition $2.3\left(G / K^{*}, K / K^{*}, H K^{*} / K^{*}\right)$ is a T_{3}-triple. If $g \in G-K$, then $H K^{*} \cap K^{g}=\left(H \cap K^{g}\right) K^{*} \subset K^{*}$ by Proposition 2.2. i.e. $H K^{*} / K^{*} \cap\left(K / K^{*}\right)^{g}=1$. Clearly $a K^{*}$ is an involution of $G / K^{*}-K / K^{*}$. Applying Theorem 2 and Lemma 5.3 of [1] we deduce that $Z\left(G / K^{*}\right)=\left(K \cap K^{a}\right) / K^{*}$ and $\left(G / K^{*}\right) / Z\left(G / K^{*}\right)$ is isomorphic to a group of similarities. Hence $G / K \cap K^{a}$ is isomorphic to such a group.
3. The main case. We now treat the situation excluded in §2. We may assume that, for some $b \in G,\left(H \cap H^{a}\right)-K^{b}$ is not empty. In the rest of the section we shall assume that K^{b} has this property.

Proposition 3.1. If K^{p}, K^{q} and K^{r} are three different conjugates of K then either $H^{p} \cap H^{q} \subset K^{r}$ or $H^{p} \cap H^{q} \cap K^{r}=1$.

If $H^{p} \cap H^{q} \cap K^{r}=1$, then H^{r} contains exactly one member s with the property $t^{s}=t^{-1}$ for all $t \in H^{p} \cap H^{q}$. Moreover $s^{2}=1$. In particular $H \cap H^{a} \cap K^{b}=1$.

Proof. Suppose u is a member of $H^{p} \cap H^{q}-K^{r}$. By Lemma $1.3 u^{-1}$ is a conjugate of u and, as $H^{p} \cap H^{q}$ has odd order, $u^{-1} \neq u$. Hence, by the property T_{3}, H^{r} contains exactly one member s with the property $u^{s}=u^{-1}$. From this it follows that $u \in C\left(s^{2}\right)$ and since $u \in G-K^{r}, s^{2} \in H^{r}$ it follows from Lemma 1.1 that $s^{2}=1$. Since $u^{s}=u^{-1}$ we have $u \in\left(H^{p} \cap H^{q}\right) \cap\left(H^{p} \cap H^{q}\right)^{s}$. We have that the intersection of any three conjugates of H is 1 (Lemma 1.5) so either $H^{p s}=H^{p}$ and $H^{q s}=H^{q}$ or $H^{p s}=H^{q}$ and $H^{q s}=H^{p}$. In the first case we would have $s \in N\left(H^{p}\right)=K^{p}$ and $s \in N\left(H^{q}\right)=K^{q}$. Thus $s \in K^{p} \cap K^{q}$. By the double transitivity property of G it follows that a has a conjugate, say c, which is not in $K^{p} \cap K^{q}$ but has the property that $v^{c}=v^{-1}$ for all $v \in H^{p} \cap H^{q}$. Then $s c^{-1} \in C(u)$ and $s c^{-1} \in G-K^{p}, u \in H^{p}$ and $u \neq 1$. This contradicts Lemma 1.1. Hence we must have $H^{p s}=H^{q}$ and $H^{q s}=H^{p}$. This implies that $s \in N\left(H^{p} \cap H^{q}\right)$ and considering c as above, we have $s \in G-$ ($K^{p} \cup K^{q}$). It now easily follows that $\left(H^{p} \cap H^{q}\right)+s\left(H^{p} \cap H^{q}\right)$ is a generalized dihedral group and in particular $v^{s}=v^{-1}$ for all $v \in H^{p} \cap H^{q}$.

Suppose now that $w \in H^{p} \cap H^{q} \cap K^{r}$. Then $w \in K^{r}=N\left(H^{r}\right)$ and so $s^{-1} s^{w} \in H^{r}$. But $s^{-1} s^{w}=\left(w^{-1}\right)^{s} w=w^{2} \in H^{p} \cap H^{q}$. Thus $w^{2} \in H^{p} \cap H^{q} \cap H^{r}=1$. $H^{p} \cap H^{q}$ has odd order so we have $w=1$. Hence $H^{p} \cap H^{q} \cap K^{r}=1$.

By assumption ($H \cap H^{a}$) $-K^{b}$ is not empty which implies from the above, that $H \cap H^{a} \cap K^{b}=1$.

This proves Proposition 3.1.

Proposition 3.2. $\alpha \leq n-2$.

Proof. By Proposition 3.1, H^{b} contains exactly one involution, say y, with the property that $h^{y}=h^{-1}$ for all $h \in H \cap H^{a}$. Now y has at least α conjugates in ($K \cap K^{a}$) y, namely the conjugates $y^{k}, k \in H \cap K^{a}$. If z is such a conjugate of y, then $z^{2}=1, z \in N\left(H \cap H^{a}\right)$ and $C(z) \cap\left(H \cap H^{a}\right)=1$. From this it follows that $h^{z}=h^{-1}$ for all $h \in H \cap H^{a}$. Also, $y \in G-\left(K \cup K^{a}\right)$ so that $z \in G-\left(K \cup K^{a}\right)$ and hence z is contained in a conjugate of H, not H or H^{a}, say $z \in H^{c}$. If H^{c} contains more than one of these conjugates of y, then so does H^{b} which is not possible. Hence the α conjugates of y are contained at most one each in $n-2$ subgroups. Hence $\alpha \leq n-2$.

Proposition 3.3. H contains α subgroups $H \cap H^{c}$ with the property $H \cap$ $H^{c} \cap K^{b}=1$.

Proof. Denote by B the union of the subgroups of G which are conjugate to $H \cap H^{a}$. The intersection of any two of these subgroups is 1 by Lemma 1.5. Suppose that $(B \cap H)-K^{b}$ has order $\gamma . B \cap H$ has order $(n-1)(\beta-1)+1$ so that $B \cap H \cap K^{b}$ has order $(n-1)(\beta-1)+1-\gamma$. But $H \cap K^{b}$ has order α so we have $(n-1)(\beta-1)+1-\gamma \leq \alpha$.

We now consider the number γ in more detail. First we note that if $h \in$ ($B \cap H$) - K^{b}, so is h^{k} for each $k \in H^{b} \cap K$ and hence γ is a multiple of α. By Lemma 3.1, $H \cap H^{a}$ contains $\beta-1$ members in $(B \cap H)-K^{b}$. Suppose $h \in$ $(B \cap H)-K^{b}$. By Lemma 1.7, H is transitive on the right cosets of K in G which are not equal to K. Thus $h^{s} \in H \cap H^{a}$ for some $s \in H$. By Proposition 3.1, we then have $h, h^{s} \in G-K^{b}$ so that $h^{s}=h^{t}$ for some $t \in H^{b}$. Then $t s^{-1} \in C(h) \subset K$ so we obtain $t \in K$ and thus $t \in H^{b} \cap K$. Thus every member of $(B \cap H)-K^{b}$ is conjugate to a member of $H \cap H^{a}$ by a member of $H^{b} \cap K$. The number of such conjugates is at most $\alpha(\beta-1)$ so we obtain $\gamma \leq \alpha(\beta-1)$.

We have shown above that γ is a multiple of α, say $\gamma=\delta \alpha$. We now have

$$
(n-1)(\beta-1)+1 \leq \alpha(\delta+1) \leq(n-2)(\delta+1)
$$

by Proposition 3.2. This leads to

$$
\begin{aligned}
\delta+1 & \geq \frac{(n-1)(\beta-1)}{n-2}+\frac{1}{n-2} \\
& >\beta-1+\frac{1}{n-2}
\end{aligned}
$$

Hence $\delta+1 \geq \beta$ as δ is an integer and so $\delta \geq \beta-1$, i.e. $\gamma \geq \alpha(\beta-1)$.
Hence $\gamma=\alpha(\beta-1)$.
Combining Proposition 3.1 with this result we obtain the proposition.
Proposition 3.4. $C\left(H \cap H^{a}\right)=K \cap K^{a}$.

Proof. By Lemma 1.1 we have $C\left(H \cap H^{a}\right) \subset K \cap K^{a}$. We now prove the other inclusion.

Let h be a fixed member of $H \cap H^{a}, h \neq 1$ and let $H \cap H^{c}$ be a subgroup with the property $H \cap H^{c} \cap K^{b}=1 . H$ is transitive on the right cosets of K which are not equal to K so that $H \cap H^{c}=\left(H \cap H^{a}\right)^{x}$ for some $x \in H$. Then $h^{x} \in H \cap H^{c}$ so that $h \in G-K^{b}$ and $h^{x} \in G-K^{b}$. Hence by the property $T_{3} h^{x}=h^{t}$ for some $t \in H^{b}$. Then $t x^{-1} \in C(h) \subset K$ so we have $t \in K$ i.e. $t \in H^{b} \cap K$.

We have thus shown that h has a conjugate in each of the subgroups $H \cap H^{c}$ with the property $H \cap H^{c} \cap K^{b}=1$ by a member of $H^{b} \cap K$. But there are α such subgroups and $H^{b} \cap K$ has order α. Thus h has exactly one such conjugate in each such subgroup and in particular, if $h^{t} \in H \cap H^{a}$ and $t \in H^{b} \cap K$, then $t=1$.

Suppose $k \in K \cap K^{a}$. We have $H \cap H^{a} \triangleleft K \cap K^{a}$ so that $h^{k} \in H \cap H^{a}$. As $H \cap H^{a} \cap K^{b}=1$ there exists $t \in H^{b}$ with the property $h^{t}=h^{k}$. Then $t k^{-1} \in C(h) \subset K$ so that $t \in K$. i.e. $t \in H^{b} \cap K$ and $h^{t} \in H \cap H^{a}$. By the above $t=1$ so we have $h^{k}=h$ i.e. $k \in C(h)$. This proves the proposition.

Proposition 3.5. If $h \in H \cap H^{a}, h \neq 1$, then h has $n(n-1)$ conjugates in G and the only conjugates of h in $H \cap H^{a}$ are h and h^{-1}.

Proof. By Proposition 3.4, $K \cap K^{a} \subset C(h)$ and by Lemma 1.1 $C(h) \subset K \cap K^{a}$. $K \cap K^{a}$ has index $n(n-1)$ so that this is the number of conjugates of h in G.

Now $H \cap H^{a}$ has $\frac{1}{2} n(n-1)$ conjugate subgroups and by Proposition 1.5 each pair of these intersects in 1 . Hence $H \cap H^{a}$ contains two conjugates of $h . h^{a}=h^{-1}$ so that h and h^{-1} are two conjugates of h in $H \cap H^{a} . H \cap H^{a}$ has odd order so that $h \neq h^{-1}$. This proves the result.

Proposition 3.6. $\propto=n-2$ and for each c with $K^{c} \neq K, K^{c} \neq K^{a}, H^{c} \cap K \cap K^{a}=1$.
Proof. Suppose $h \in H \cap H^{a}, h \neq 1 . h \in G-K^{b}$ so that h has at least one conjugate in $G-K$. By the property T_{3}, h then has exactly $\alpha(n-1)$ conjugates in $G-K$. Since each conjugate of $H \cap H^{a}$ contains two of these conjugates of h, and by Proposition 3.1, it follows that there are exactly $\frac{1}{2} \alpha(n-1)$ conjugates of $H \cap H^{a}$ which intersect K in 1 and the rest are contained in K. Hence the number of conjugates contained in K is $\frac{1}{2}(n-\alpha)(n-1)$. K has n conjugate subgroups so it follows that each conjugate of $H \cap H^{a}$ is contained in exactly $n-\alpha$ of the conjugates of K. Hence for α subgroups K^{c} we have $H \cap H^{a} \cap K^{c}=1$, and so $C\left(H \cap H^{a}\right) \cap H^{c}=1$ by Lemma 1.1. Thus by Proposition $3.4 K \cap K^{a} \cap H^{c}=1$. Now considering these α subgroups which intersect $K \cap K^{a}$ in 1, it is clear that these subgroups contain $\alpha(n-1)-\frac{1}{2} \alpha(\alpha-1)$ conjugates of $H \cap H^{a}$.

If $K \cap K^{a}$ contains γ conjugates of $H \cap H^{a}$, then using the fact that each of these is contained in $n-\alpha$ conjugates of K we obtain $\gamma=\frac{1}{2}(n-\alpha)(n-\alpha-1)$.

Now $\alpha(n-1)-\frac{1}{2} \alpha(\alpha-1)+\frac{1}{2}(n-\alpha)(n-\alpha-1)=\frac{1}{2} n(n-1)$ which is the total number of subgroups conjugate to $H \cap H^{a}$. Hence we have proved that if $H^{p} \cap H^{q}$ is a conjugate of $H \cap H^{a}$, then either $H^{p} \cap H^{q} \subset K \cap K^{a}$ or both $H^{p} \cap K \cap$ $K^{a}=1$ and $H^{q} \cap K \cap K^{a}=1$.

Suppose now that $\alpha<n-2$. Then for some H^{p} with $H^{p} \neq H, H^{p} \neq H^{a}$ we have $H^{p} \cap K \cap K^{a} \neq 1$. From the above it follows that $K \cap K^{a}$ then contains all the subgroups $H^{p} \cap H^{q}, H^{p} \neq H^{q}, p$ fixed. These subgroups contain $(n-1)(\beta-1)+1$ members of G so that $H^{p} \cap K \cap K^{a}$ contains at least this number of members. $H^{p} \cap K \cap K^{a} \subset H^{p} \cap K$ which has order α. Thus

$$
(n-1)(\beta-1)+1 \leq \alpha
$$

But $\alpha \leq n-2$ by Proposition 3.2 so we have

$$
(n-1)(\beta-1) \leq n-3
$$

which is a contradiction as $\beta>1$.

This implies that $\alpha=n-2$ so by Proposition 3.3 we have $H \cap H^{c} \cap K^{b}=1$ for each H^{c} with $H \neq H^{c}, H^{c} \neq K^{b}$ which leads to the result

Proposition 3.7. If K^{p}, K^{q} and K^{r} are different conjugates of K then $H^{p} \cap K^{q} \cap K^{r}=1$.

Proof. G is doubly transitive on the right cosets of K in G and by Proposition 3.6 $H^{c} \cap K \cap K^{b}=1$ for all H^{c} with K^{c}, K and K^{b} different. This is sufficient to prove the result.

Proposition 3.8. H is a Frobenius group with Frobenius kernel of order n-1 and $H \cap K^{a}$ is a Frobenius complement.

Proof. Consider $H \cap K^{a}$. If $h \in H-K^{a}$, then $K^{a h} \neq K^{a}$ so that $\left(H \cap K^{a}\right) \cap$ $\left(H \cap K^{a}\right)^{h}=H \cap K^{a} \cap K^{a h}=1$ by Proposition 3.7. Hence $H \cap K^{a}$ is a Frobenius complement in H. $H \cap K^{a}$ has order $n-2$ and H has order ($n-2$)($n-1$) so the Frobenius kernel has order $n-1$.

Proposition 3.9. $H \cap K^{a}$ is abelian and H is isomorphic to a group of similarities over a finite field. Moreover $C\left(H \cap K^{a}\right)=K \cap K^{a}$.

Proof. By Proposition 3.8, H is a Frobenius group with kernel of order $n-1$ and complement of order $n-2$. Hence the kernel contains 1 and one class of H. By Lemma 1.9, $H-K^{a}$ contains $n-2$ classes of K. Hence, from the properties of Frobenius groups, $H \cap K^{a}$ contains 1 and intersects $n-3$ other classes of K. Thus $H \cap K^{a}$ is abelian and $C\left(H \cap K^{a}\right)=K \cap K^{a}$.

Proposition 3.10. $K \cap K^{a} \cap K^{b}=Z(G)$ and $G / Z(G)$ has a triply transitive representation of degree n in which only the identity fixes 3 members. Also $H \cap H^{a}=H \cap K^{a}$.

Proof. Put $L=K \cap K^{a} \cap K^{b}$. By Proposition 3.9 we have both $L \subset C\left(H \cap K^{a}\right)$ and $L \subset C\left(H \cap K^{b}\right)$. H is a Frobenius group and $H \cap K^{a}, H \cap K^{b}$ are complements of orders greater than one and so these two subgroups generate H. Hence $L \subset C(H)$, and similarly $L \subset C\left(H^{a}\right)$.

Let G_{1} be the subgroup of G generated by H, H^{a} and L. Clearly $L \subset Z\left(G_{1}\right)$, by the above. We have $H^{a h} \subset G_{1}$ for each $h \in H$ so by Proposition 1.7, G_{1} contains every conjugate of H. Let γ be the index of L in G_{1}. We have $H \cap L \subset H \cap K^{a} \cap K^{b}=$ 1 , $H^{a} \cap L=1$ similarly and $H \cap H^{a}$ has order β, so that $\gamma \geq 1 / \beta((n-1)(n-2))^{2}$. Now $K \cap K^{a} \cap K^{b}$ has index $\leq n(n-1)(n-2)$ in G so that the index of G_{1} in G is less than the quotient of these two numbers, i.e. $n \beta /(n-1)(n-2)$ which is $\leq n / n-1$ as $\beta \leq n-2$. Hence this index is ≤ 1 and so $G=G_{1}$.

We thus have $K \cap K^{a} \cap K^{b} \subset Z(G)$ and the other inclusion is clear from Proposition 1.1.

From the above, we also have the inequality

$$
n(n-1)(n-2) \geq \frac{1}{\beta}((n-1)(n-2))^{2}
$$

and so $\beta \geq(n-1)(n-2) / n$. Now $n>2$ as $H \cap K^{a}$ has order $n-2$ and so $\beta>\frac{1}{2}(n-2)$. β is the order of $H \cap H^{a}$ which is a subgroup of $H \cap K^{a}$ which has order $n-2$. Hence, by Lagrange's theorem $\beta=n-2$ and we deduce that $H \cap H^{a}=H \cap K^{a}$.

Applying this result to the above inequalities we have $\gamma \geq(n-1)^{2}(n-2)$. But G is doubly transitive on the right cosets of K in G and $N(K)=K$ so that γ is a divisor of $n(n-1)(n-2)$. Thus $\gamma=n(n-1)(n-2)$ as $n>2$.

The representation of $G / Z(G)$ on the right cosets of K in G has the desired properties.

Our theorem now follows from the results of Zassenhaus [2]. From this paper and the two previous propositions, we deduce that $G / Z(G)$ is isomorphic to a group of all bilinear transformations over a finite field of order $n-1$. By Proposition 3.10 and Lemma 1.3, $n-2=\beta$ has odd order so that $n-1$ is even and thus a power of 2 . Thus the finite field referred to has characteristic 2 which proves the main theorem.

References

1. Peter Lorimer, On the finite two dimensional linear groups, J. Algebra 10 (1968), 419-435.
2. H. Zassenhaus, Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Abh. Math. Sem. Univ. Hamburg 2 (1936), 17-40.

[^0]: Received by the editors November 13, 1970.
 ${ }^{(1)}$ This paper was written while the author was a visiting Associate Professor at the University of Victoria, B.C.

