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ON THE FINITE TWO-DIMENSIONAL LINEAR 
GROUPS II.C) 

BY 

PETER LORIMER 

A group G is called a T3-group if it contains subgroups K and H, H<\K, with 
the property that if g and gb are members of G—K there is exactly one he H which 
satisfies the equation gh=gb. In these circumstances (G, K, H) is called a r3-triple. 

TVgroups were studied by the author ([1], see also errata) and used there to give 
characterizations of the finite two-dimensional linear groups and in this paper we 
continue the study. In particular we will prove the following. 

THEOREM. If(G, K, H) is a Ts-triple, G is finite, a is an involution of G—N(K) 
and H C\Ha^\, then either 

(1) K n Ka<\ G and G/K n Ka is isomorphic to a group of all similarity trans
formations over a finite field, or 

(2) Khas a conjugate Kb which is different from K and Ka, K C\ Ka C\ Kb=Z(G) 
and G\Z(G) is isomorphic to a group of all bilinear transformations over a finite field 
of characteristic 2. 

Throughout the paper we assume that (G, K, H) is a r3-triple which satisfies the 
hypotheses of this theorem. In §2 we discuss the situation which gives rise to the 
first conclusion and in §3 we discuss the second. 

Notations. We shall use the standard notations of [1]. In addition we denote the 
order of H n Ka by a, the order of H n Ha by ft and the index of AT in G by n. 

By hypothesis we have /3>1 throughout the paper. 

1. Preliminaries. For reference purposes we will list here, without proof, the 
results from [1] which we will be using in this paper. After each result the reference 
is to the place in [1] where this result may be found. 

LEMMA 1.1. If g e G-K, then C(g) n H=l. 
Lemma 3.1. 

LEMMA 1.2. N(K)=K. 

Theorem 4.1. 
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LEMMA 1.3. H n Ha is abelian of odd order and ifx e H C\ Ha, then xa=x~1. 
Lemmas 6.4 and 6.5. 

LEMMA 1.4. (H n Ka)(Ha n K)/H n # a w ofo/fcw. 

Lemma 6.11. 

LEMMA 1.5. If Hx,Hy and Hz are three different conjugates of H, then 
Hx r\Hy n # 2 = l . 

Lemma 6.6. 

LEMMA 1.6. G is doubly transitive on the right cosets ofK in G. 
Lemma 6.2. 

LEMMA 1.7. H is transitive on the right cosets ofK which are different from K. 
Lemma 6.3. 

LEMMA 1.8. H—Ka intersects n—2 classes ofK. 
Lemma 6.9. 

Lemmas 1.6 and 1.7 have the following consequences. G is doubly transitive on 
the conjugates of K under conjugacy, and H is transitive on the conjugates of K 
different from K under conjugacy. 

LEMMA 1.9. H has order a(w—1). 

Lemma 6.8. 

2. A special case. The proof of the theorem divides naturally into two parts, the 
first of which we investigate here. In this section we will assume that G has the 
additional property that if Kx, Ky and Kz are three different conjugates of K, then 
Hx n Hy <= Kz. We will denote the intersection of all the subgroups conjugate to 
K by K*. K* is a normal subgroup of G and our aim will be to show that 
(G/K*, K/K*, HK*jK*) is a r3-triple to which we can apply some of our previous 
results. 

An interpretation of the extra condition is 

LEMMA 2.1. Ifx, yeG andKx^Ky, then Hx n Hv c K*. 

However, we can prove more. 

PROPOSITION 2.2. Ifx, yeG and Kx^Ky, then Hx n Kv a K*. 

Proof. By the double transitivity property of G (Lemma 1.6), it is sufficient to 
show that H r\Ka cz K*. 
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Suppose he(H n Ka)—K*. Since h is not contained in K*, h e G—Kb for some 
conjugate Kb ofK. Clearly Kb^K and Kb^Ka. Consider the subgroup if n i/&. By 
assumption H n Hb c: K* ^ Ka so that H n Hb ^ H n Ka. Also heH C\Ka 

so that the conjugates of A by members of H n Hb are members of H n Ka. 
H n Hb has order /? and heG—Kb so A has exactly /? conjugates by members 
of H n if&. Moreover, if n Hais a normal subgroup of if n Shaving order /? and 
H n Za/if n # a is abelian (Lemma 1.4). Thus the conjugates of h by members of 
H C\Hb form the coset h{H n # a ) . 

Now consider Ha n #& in the same fashion. We have Ha C\ Hb <=• Ha r\ iTand 
by Lemma 1.4, H n fPis a normal subgroup of the group (if n Ka)(Ha n JT) and 
the factor group is abelian. As in the last paragraph, the conjugates of h by members 
of Ha n if& also form the coset h(H n # a ) . 

By hypothesis, H n Ha has order /9>1 so we can find seH n if&, s ^ l and 
teHa n Hb, t^l such that As=/*'. Since H r\Ha C\ Hb=\ (by Lemma 1.5) we 
have .y^f. A is not a member of Kb and hence the r3-property of G is contradicted. 
Thus no such h exists. This proves the result. 

PROPOSITION 2.3. (G/K*, K/K*9 HK*/K*) is a Tz-triple. 

Proof. If g, gb e G—K, then by the property Ts, H contains a member h with the 
property gh=gb. Hence (hK*y1(gK*)(hK*)=(bK*)-1(gK*)(bK*). It remains to 
show that hK* in this equation is unique. If also hxe H and hxK* satisfies this 
equation in place of hK*, we have gh2K*=gK* where h2=hh^1. Then gh2g"1 e 
h2K* cz K so that h2 e K9. But g e G-K so that ^ J ? ' . Hence h2eH nKg c: K* 
by Proposition 2.2. Thus h±K*=hK* which proves the proposition. 

We can now combine this result with the results of [1] to prove the main theorem 
in the case considered in this section. 

By Proposition 2.3 (G/K*, K/K*, HK*/K*) is a r8-triple. If geG-K, then 
HK* nK9=(H n K°)K* c # * by Proposition 2.2. i.e. HK*jK* n ( £ / * * ) ' = 1 . 
Clearly af£* is an involution of GjK*—KjK*. Applying Theorem 2 and Lemma 5.3 
of [1] we deduce that Z(G/K*)=(K n £*)/£* and (GlK*)IZ(G/K*) is isomorphic 
to a group of similarities. Hence G/K n Ka is isomorphic to such a group. 

3. The main case. We now treat the situation excluded in §2. We may assume 
that, for some b eG,(H n Ha)—Kb is not empty. In the rest of the section we shall 
assume that Kb has this property. 

PROPOSITION 3.1. IfK»9 KQ and Kr are three different conjugates ofK then either 
H* CiH'cz Kr or HP C\ m n Kr=l. 

IfHp n Hq n Kr=l9 then Hr contains exactly one member s with the property 
p^t-ifor all teHp n HQ. Moreover s2=l. In particular H n Ha n X&=1. 
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Proof. Suppose u is a member of Hp n HQ—Kr. By Lemma 1.3 w-1 is a conjugate 
of u and, as Hp n if* has odd order, w~Vw. Hence, by the property T3, / ? r con
tains exactly one member s with the property us=ir1. From this it follows that 
ueC(s2) and since ueG—Kr, s2 e Hr it follows from Lemma 1.1 that s2=l. 
Since us=u^1 we have w G (Hp n if3) n ( i P n ffs)s. We have that the intersection 
of any three conjugates of if is 1 (Lemma 1.5) so either HPS=HP and HQS=Hq or 
Hps=Hq and Hqs=Hp. In the first case we would have seN(Hp)=Kv and 
seN(Hq)=Kq. Thus j e P O i l By the double transitivity property of G it 
follows that a has a conjugate, say c, which is not in KP C\ Kq but has the property 
that vc=vr1 for all v e Hp n Hq. Then sc-1 G C(w) and scr1 e G-Kp, u e Hp and 
w# l . This contradicts Lemma 1.1. Hence we must have Hps=Hq and Hqs=Hp. 
This implies that «s G i^if* n ifq) and considering c as above, we have s eG— 
(Kp u jR:«). It now easily follows that (Hp n Hq)+s(Hp n JfQ) is a generalized 
dihedral group and in particular f s = ^ 1 for all v e Hp n Hq. 

Suppose now that weHp n Hq n i£r. Then w G Kr=N(Hr) and so j - V e ifr. 
But 4y-15w=(w-1)sw=w2 e ^ n ^ a . Thus w2eHp n Hq n i f r = l . if* n Jï« has 
odd order so we have w = l . Hence Hp n Hq n Kr=l. 

By assumption (ff n Ha)—Kb is not empty which implies from the above, that 
if HHa nKh = l, 

This proves Proposition 3.1. 

PROPOSITION 3.2. a<«—2. 

Proof. By Proposition 3.1, Jf& contains exactly one involution, say y, with the 
property that W—tr1 for all heH C\ Ha. Now j has at least a conjugates in 
(i£ n J£a)j, namely the conjugates yk

9 k e H n i£°. If z is such a conjugate of j , 
then z 2 = l , z e N(H n ifa) and C(z) n (if n fia) = l. From this it follows that 
^= /z - i for all h G fT n ^Ta. Also, j e G - ( I U # a ) so that zeG-(KU Ka) and 
hence z is contained in a conjugate of H, not if or ifa, say z e Hc.lf Hc contains 
more than one of these conjugates of y, then so does Hb which is not possible. 
Hence the a conjugates of y are contained at most one each in n—2 subgroups. 
Hence a<n—2. 

PROPOSITION 3.3. if contains a subgroups H n ifc wzY/z ?/ze property H n 
F n ^ = l . 

Proof. Denote by i? the union of the subgroups of G which are conjugate to 
if n i / a . The intersection of any two of these subgroups is 1 by Lemma 1.5. 
Suppose that (B n H)-Kh has order y. B n if has order (»—l)( j8- l)+l so that 
J? n if n X& has order (w—l)(j8— 1)+1 —y. But H n Kb has order a so we have 
( * - l ) ( j 8 - l ) + l - y £ a . 
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We now consider the number y in more detail. First we note that if h e 
(B n H)—Kb, so is hk for each k e Hb n K and hence y is a multiple of a. By 
Lemma 3.1, H O 77° contains /?—1 members in (BnH)—Kb. Suppose h e 
(B n H)—Kb. By Lemma 1.7, 77 is transitive on the right cosets of Km G which are 
not equal to K. Thus hs G H n Ha for some s G H. By Proposition 3.1, we then 
have h, hs G G—Kb so that hs=ht for some t G Hb. Then ts*1 G C(h) c I so we 
obtain t GK and thus t G Hb n K. Thus every member of (B n H)—Kb is con
jugate to a member of 77 n 77^ by a member of 77& n K The number of such 
conjugates is at most a(/?— 1) so we obtain y <<*(/?--1). 

We have shown above that y is a multiple of a, say y=ô<x. We now have 

( n - l ) ( / ? - l ) + l < a((3+l) < (n -2 ) (3+ l ) 

by Proposition 3.2. This leads to 

» , _ (n-W-Q , 1 

Hence <5 + 1 >/5 as 5 is an integer and so <5>/8—1, i.e. y>a(/3—-1). 
Hence y = oc(/?—1). 
Combining Proposition 3.1 with this result we obtain the proposition. 

PROPOSITION 3.4. C(77 n Ha)=Kn Ka. 

Proof. By Lemma 1.1 we have C(77 n 77a) <= Kr\ Ka. We now prove the other 
inclusion. 

Let h be a fixed member of 77 n Ha, h^l and let 77 n TP be a subgroup with the 
property 77 O 77e n X 6 = l . 77 is transitive on the right cosets of K which are not 
equal to K so that H n 77e=(77 n 77a)* for some x G 77. Then hxGH nHc so 
that A G G-7£& and A* e G-7£&. Hence by the property Tz h

x=ht for some t G Hb. 
Then /r"1 G C(A) c ^ s o w e have * G 7£ i.e. t G Hb n K. 

We have thus shown that A has a conjugate in each of the subgroups H r\ Hc with 
the property H n Hc n Kb=l by a member of Hb n if. But there are a such 
subgroups and Hb C\ K has order a. Thus A has exactly one such conjugate in each 
such subgroup and in particular, if A* G 77 n 77a and f G 775 r\ K, then f = 1. 

Suppose kGKC\Ka. We have H r\Ha<]KnKa so that hk G H n Ha. As 
H C\Ha r\Kb=\ there exists f G 77& with the property A'=Afc. Then tkrx G C(A) <= # 
so that f G K. i.e. t G Hb n K and A' G 77 n Ha. By the above f= 1 so we have 
A*=A i.e. k G C(A). This proves the proposition. 
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PROPOSITION 3.5. IfheHc\ Ha, hï£l, then h has n(n—l) conjugates in G and 
the only conjugates of h in H n Ha are h and h"1. 

Proof. By Proposition 3.4, K n Ka c C(h) and by Lemma 1.1 C(h) <= Kr\ Ka. 
K C\ Ka has index n(n— 1) so that this is the number of conjugates of h in G. 

Now H C\ Ha has \n{n— 1) conjugate subgroups and by Proposition 1.5 each 
pair of these intersects in 1. Hence H n Ha contains two conjugates of h. ha=h~1 

so that h and / r 1 are two conjugates of h in H n # a . H C\ Ha has odd order so 
that hjZhr1. This proves the result. 

PROPOSITION 3.6. <x=n-2 and for each c with KC^K, Kc^Ka, Hc n Kn Ka = l. 

Proof. Suppose he H n fP , / z^ l . heG—Kb so that A has at least one con
jugate in G—K. By the property r 3 , A then has exactly a(w— 1) conjugates in G—K. 
Since each conjugate of H C\ Ha contains two of these conjugates of h, and by 
Proposition 3.1, it follows that there are exactly Ja(w— 1) conjugates of / / n f/a 

which intersect ^ in 1 and the rest are contained in K. Hence the number of con
jugates contained in Kis i(n—a)(«— 1). j^has n conjugate subgroups so it follows 
that each conjugate of H n Ha is contained in exactly n—u. of the conjugates of K. 
Hence for a subgroups f£c we have H n i / a n f£c = 1, and so C ( # n # a ) n Hc=1 
by Lemma 1.1. Thus by Proposition 3.4 K d Ka n Hc—\. Now considering these 
a subgroups which intersect i£ n Ka in 1, it is clear that these subgroups contain 
a(«—1)—|a(a—1) conjugates of H n Ha. 

If K C\ Ka contains y conjugates of H n Ha, then using the fact that each of 
these is contained in n—a conjugates of ^Twe obtain y=\{n—ai)(n—a—1). 

Now a(w—l) —|a(a— 1)+J(«—a)(w—a— 1)=^H(W— 1) which is the total 
number of subgroups conjugate to H n if a. Hence we have proved that ifHp n iya 

is a conjugate of H n Ha, then either H» n Hq <=: K n Ka or both Hp n K n 
Ka=\ and if* n l n l a = l . 

Suppose now that a<n—2. Then for some H*> with HP?£H, Hp^Ha we have 
^ n J ^ n X V l . From the above it follows that K n Ka then contains all the 
subgroups if* n # * , HP9^HQ, p fixed. These subgroups contain (ft—1)(/?—1) + 1 
members of G so that Hv C\ K C\ Ka contains at least this number of members. 
H*> nK r\Ka c H*> C\K which has order a. Thus 

( f t - l ) ( i8- l ) + l < a 

But u<n—2 by Proposition 3.2 so we have 

( n - l ) ( ^ - l ) < n - 3 

which is a contradiction as /?>1. 
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This implies that a=«—2 so by Proposition 3.3 we have H n Hc n Kb=l for 
each Hc with H^HC, Hc^Kb which leads to the result 

PROPOSITION 3.7. If Kp, Kq and Kr are different conjugates of K then 
H* nKQ r\Kr=l. 

Proof. G is doubly transitive on the right cosets of Kin G and by Proposition 3.6 
Hc n K n Kb=1 for all Hc with K\ KzxA Kh different. This is sufficient to prove 
the result. 

PROPOSITION 3.8. H is a Frobenius group with Frobenius kernel of order n—\ and 
H n Ka is a Frobenius complement. 

Proof. Consider Hn Ka. If heH-Ka, then Kah^Ka so that (H n Ka) n 
( # n Ka)h=H n Ka n Kah=l by Proposition 3.7. Hence H nKa is a, Frobenius 
complement in H. H C\ Ka has order n—2 and # has order («—2)(«—1) so the 
Frobenius kernel has order «—1. 

PROPOSITION 3.9. # n i£a is abelian and H is isomorphic to a group of similarities 
over a finite field. Moreover C(H n Ka)=K n i£a. 

Proof. By Proposition 3.8, H is a Frobenius group with kernel of order n—\ 
and complement of order «—2. Hence the kernel contains 1 and one class of H. 
By Lemma 1.9, H—Ka contains n—2 classes of K. Hence, from the properties of 
Frobenius groups, H n Ka contains 1 and intersects n—3 other classes of K. 
Thus H n Ka is abelian and C(/f n ^Ta)=^ n # a . 

PROPOSITION 3.10. Kn Ka n Kb=Z(G) and G/Z(G) has a triply transitive 
representation of degree n in which only the identity fixes 3 members. Also 
H n Ha=H n # a . 

Proof. Put L=K n Kan Kb. By Proposition 3.9 we have bothL c C(# n Za) 
and L <= C ( # n i£&). # is a Frobenius group and H n Ka

9 H n Kb are comple
ments of orders greater than one and so these two subgroups generate H. Hence 
L <= C(H), and similarly L <= C(#a)-

Let Ĝ  be the subgroup of G generated by H, Ha and L. Clearly L <= Z(G±), by the 
above. We have Hah c: d for each he H so by Proposition 1.7, Gx contains every 
conjugate of H. Let y be the index of L in G .̂ We have H n i e z H nKa nKb= 
1, Ha nL=l similarly and # n # a has order 0, so that y>;l//?((«-l)(«-2))2 . 
Now K n Ka r\Kb has index <n(n— l)(/i—2) in G so that the index of Gx in G is 
less than the quotient of these two numbers, i.e. n/ifcn— l)(n—2) which is <n[n—l 
as j8<«—2. Hence this index is < 1 and so G=GV 
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We thus have K n Ka n Kb <= Z(G) and the other inclusion is clear from 
Proposition 1.1. 

From the above, we also have the inequality 

n ( n _ l ) ( l l _ 2 ) >h(n-l){n-2)f 
P 

and so fi>(n— l)(n—7)\n. Now n>2 as 77 C\ Ka has order n—2 and so fi>\(n—2). 
j8 is the order of H n Ha which is a subgroup of H C\ Ka which has order n—2. 
Hence, by Lagrange's theorem /?=/2—2 and we deduce that H n Ha=H n i£a. 

Applying this result to the above inequalities we have y>(n—l)2(n—2). But G 
is doubly transitive on the right cosets of K in G and N(K)=K so that y is a divisor 
of «0z - l )0z -2 ) . Thus y=7i («- l ) ( / i -2) as »>2 . 

The representation of G\Z{G) on the right cosets of K in G has the desired 
properties. 

Our theorem now follows from the results of Zassenhaus [2]. From this paper 
and the two previous propositions, we deduce that G\Z(G) is isomorphic to a group 
of all bilinear transformations over a finite field of order n— 1. By Proposition 3.10 
and Lemma 1.3, n—2—^ has odd order so that n— 1 is even and thus a power of 2. 
Thus the finite field referred to has characteristic 2 which proves the main theorem. 
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