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Maximal operators on BMO and slices
Shahaboddin Shaabani

Abstract. We prove that the uncentered Hardy–Littlewood maximal operator is discontinuous on
BMO(Rn) and maps V MO(Rn) to itself. A counterexample to the boundedness of the strong and
directional maximal operators on BMO(Rn) is given, and properties of slices of BMO(Rn) functions
are discussed.

1 Introduction

Let A ⊂ R
n be a measurable set with positive finite measure and f ∈ L1

loc(Rn). By the
mean oscillation of f on A, we mean the quantity

O( f , A) ∶= −∫
A
∣ f − fA∣,

where −∫A f and fA mean the average of f over A, i.e., 1
∣A∣ ∫A f . Then it is said that f is of

bounded mean oscillation if O( f , Q) is uniformly bounded on all cubes Q (by a cube
we mean a closed cube with sides parallel to the axes). The space of such functions is
denoted by BMO(Rn), and modulo constants the following quantity defines a norm
on this space:

∥ f ∥BMO(Rn) ∶= sup
Q

O( f , Q).

Sometimes we use ∥ f ∥BMO(Q0), which means that we take the above supremum over
all cubes contained in Q0. BMO(Rn) is a Banach space and since its introduction
has played an important role in harmonic analysis. It is the dual of the Hardy space
H1(Rn), and it contains L∞(Rn) and somehow serves as a substitute for it. For
instance, Calderón–Zygmund singular integral operators map BMO(Rn) to itself,
and consequently these operators map L∞(Rn) to BMO(Rn) but not to itself [5].

Another important class of operators is the class of maximal operators, and the first
objective of the present paper is to investigate the action of some of these operators
on BMO(Rn). Let us recall that the uncentered Hardy–Littlewood maximal operator
is defined by

M f (x) ∶= sup
x∈Q

−∫
Q
∣ f ∣, f ∈ L1

loc(Rn),
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Maximal operators on BMO and slices 95

where the above supremum is taken over all cubes containing x. As it is well known,
M is of weak-type (1, 1) and bounded on Lp(Rn) for 1 < p ≤ ∞[5]. For a function f ∈
BMO(Rn), it might be the case that M f is identically equal to infinity. For instance,
this is the case when f (x) = log ∣x∣. However, in [2], the authors proved that if this is
not the case, then M f belongs to BMO(Rn), and for a dimensional constant c(n),
we have

∥M f ∥BMO(Rn) ≤ c(n)∥ f ∥BMO(Rn) .

Another proof of this was given in [1], and a third one in [12], where the author
proved that M preserves Poincaré inequalities. Regarding this, we ask the following
question about the continuity of the uncentered Hardy–Littlewood maximal operator
on BMO(Rn).

Question 1.1 Let f ∈ L∞(Rn), and let { fk} be a sequence of bounded functions
converging to f in BMO(Rn). Is it true that {M fk} converges to M f in BMO(Rn)?

The operator M is nonlinear, and for such operators, continuity does not follow
from boundedness. However, it is pointwise sublinear and this makes it continuous on
Lp(Rn) for 1 < p ≤ ∞. In [11], a similar question has been studied for Sobolev spaces,
where the author proved that M is continuous on W 1, p(Rn) for 1 < p < ∞. However,
in Section 2, we give a negative answer to the above question.

BMO(Rn) has an important subspace, namely V MO(Rn) or functions of vanish-
ing mean oscillation. V MO(Rn) is the closure of the uniformly continuous functions
in BMO(Rn). Another characterization of V MO(Rn) is given in terms of the
modulus of mean oscillation which is defined by

ω( f , δ) ∶= sup
l(Q)≤δ

O( f , Q),(1)

and f ∈ V MO(Rn) exactly when lim
δ→0

ω( f , δ) = 0 (in the above by l(Q)we mean the
side length of Q)[13]. Regarding this subspace, we ask the following question.

Question 1.2 Let f ∈ V MO(Rn) such that M f is not identically equal to infinity. Is
it true that M f ∈ V MO(Rn)?

In Section 3, we provide a positive answer to this question.
In Section 4, we consider the action of some other maximal operators on

BMO(Rn). More specifically, the directional maximal operator in the direction
e1 = (1, 0, . . . , 0), Me1 , and the strong maximal operator, Ms , which are defined as the
following:

Me1 f (x1 , x′) ∶= sup
x1∈I

−∫
I
∣ fx′ ∣, Ms f (x) ∶= sup

x∈R
−∫

R
∣ f ∣.

In the above, fx′(t) ∶= f (t, x′), where (t, x′) ∈ R ×R
n−1, and the left supremum is

taken over all closed intervals containing x1. In a similar way, one can define the
directional maximal operator Me , which is taken in the direction e ∈ Sn−1, simply
by taking the one-dimensional uncentered Hardy–Littlewood maximal operator on
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96 S. Shaabani

every line in direction e. However, since BMO(Rn) is invariant under rotations, it is
enough to study Me1 . In the above, the right supremum is taken over all rectangles
containing x, and by a rectangle, we mean a closed rectangle with sides parallel to the
axes. These are the most important maximal operators in multiparameter harmonic
analysis and are bounded and continuous on Lp(Rn) for 1 < p ≤ ∞[3]. Regarding
these operators, we ask the following question.

Question 1.3 Are there constants C , C′ ≥ 1 such that at least for every bounded
function f the following inequalities hold?

∥Me1 f ∥BMO(Rn) ≤ C∥ f ∥BMO(Rn) , ∥Ms f ∥BMO(Rn) ≤ C′∥ f ∥BMO(Rn).

To answer this question, we have to study the properties of slices of functions in
BMO(Rn), which is the second objective of this paper. Many function spaces have
the property that their slices lie in the same scale of spaces. For example, almost
every slice of a function in Lp(Rn) or W 1, p(Rn) lies in Lp(Rn−1) or W 1, p(Rn−1),
respectively [10]. The same is true for BMOs(Rn), strong BMO, which is the sub-
space of BMO(Rn) consisting of all functions with bounded mean oscillation on
rectangles[4]. This property is also satisfied by the scale of homogeneous Lipschitz
spaces Λ̇n( 1

p−1)(Rn), the duals of H p(Rn) for 0 < p < 1 [5]. Regarding this, we ask
our last question.

Question 1.4 Is it true that almost every horizontal or vertical slice of a function in
BMO(R2) belongs to BMO(R)?

In Section 4, we answer both questions negatively, and in the last theorem of this
paper, we prove a property of the slices of functions in BMO(R2).

Before we proceed further, let us fix some notation. By A ≲ B, A ≳ B, and A ≈ B,
we mean A ≤ CB, A ≥ CB, and C−1B ≤ A ≤ CB, respectively, where C is a constant
independent of the important parameters.

2 Discontinuity of M on BMO(Rn)

Our theorem in this section is the following.

Theorem 2.1 Let f be a nonnegative function supported in [0, 1], ∥ f ∥L∞ ≤ 1, and
∥ f ∥L1 > log 2. Then, there exists a sequence of bounded functions { fn} converging to
f in BMO(R) such that {M fn} does not converge to M f in BMO(R).

To prove this, we need a couple of simple lemmas which we give below.

Lemma 2.2 Let T > 0 and h ∈ BMO[0, T
2 ]. Then the even periodic extension of h,

which is defined by

H(x) ∶= h(x), x ∈ [0, T
2
], H(−x) = H(x), H(x + T) = H(x), x ∈ R,

is in BMO(R) and ∥H∥BMO(R) ≤ 10∥h∥BMO[0, T
2 ]

.
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Proof For an arbitrary interval I, there are two possibilities:
(i) ∣I∣ ≤ T

2 .
In this case by a translation by an integer multiple of T and using periodicity of H,

we may assume either I ⊂ [− T
2 , T

2 ] or I ⊂ [0, T]. Suppose I ⊂ [− T
2 , T

2 ] and note that
if 0 ∉ I, we have either I ⊂ [0, T

2 ] or I ⊂ [− T
2 , 0] and from the symmetry O(H, I) ≤

∥h∥BMO[0, T
2 ]

. If 0 ∈ I, then take the interval J centered at zero with the right half J+,
which contains I and ∣J∣ ≤ 2∣I∣. Again from symmetry, we get

O(H, I) ≤ 2 ∣J∣∣I∣O(H, J) ≤ 4O(H, J+) ≤ 4∥h∥BMO[0, T
2 ]

.

The same argument works for I ⊂ [0, T]. This time we use the symmetry of H
around T

2 .
(ii) ∣I∣ ≥ T

2 .
This time take J = [nT , mT] with n, m ∈ Z which contains I and ∣J∣ ≤ ∣I∣ + 2T ≤

5∣I∣. And again like the previous cases, from the symmetry and periodicity of H, we get

O(H, I) ≤ 2 ∣J∣∣I∣O(H, J) ≤ 10O(h, [0, T
2
]) ≤ 10∥h∥BMO[0, T

2 ]
.

The proof is now complete. ∎

In the above, the norm of the extension operator is independent of T, and we will
use this in the proof of the next lemma.

Remark 2.3 There are much more general ways to extend BMO functions to the
outside of domains, but for the purpose of our paper, the above simple lemma is
enough. See [8] for more on extensions.

Lemma 2.4 For c < −1, there exists a sequence of functions {gn}, n ≥ 1 with the
following properties:
(1) gn ≥ 0,
(2) gn = 0 on [c, 1],
(3) ∥gn∥L∞ ≤ 1,
(4) lim

n→∞
−∫[0,n] gn = 1,

(5) lim
n→∞

∥gn∥BMO(R) = 0.

Proof Let log+ ∣x∣ = max{0, log ∣x∣} be the positive part of the logarithm, and con-
sider the function hn(x) = log+ x on the interval [0, n], which belongs to BMO[0, n]
with ∥hn∥BMO[0,n] ≤ ∥ log+ ∣ ⋅ ∣∥BMO(R). Then an application of Lemma 2.2 with T =
2n gives us a sequence of nonnegative functions Hn with ∥Hn∥BMO(R) ≲ 1 (here our
bounds are independent of n). Now, let gn = 1

1+log n Hn(x) (1 − χ[c ,0](x)). Then, the
first three properties are immediate from the definition, the forth one follows from
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integration, and the last one from

∥gn∥BMO(R) ≤
1

1 + log n
(∥Hn∥BMO(R) + ∥Hn χ[c ,0]∥L∞) ≲

log ∣c∣
1 + log n

n ≥ 1.

This finishes the proof. ∎

Now, we turn to the proof of the above theorem.

Proof of Theorem 2.1 Let f be as in the theorem, a = ∫
1

0 f , c < 0 a constant with
large magnitude to be determined later, and let gn be the sequence constructed in
Lemma 2.4.

We will show that

lim
n→∞

∥M fn − M f ∥BMO(R) > 0, fn ∶= f + a
1 − c

gn , n ≥ 1.(2)

This proves the theorem once we note that since f and gn are bounded functions,
fn is bounded too. Also, from the fifth property of {gn} in the above lemma, { fn}
converges to f in BMO(R).

To begin with, we claim that M fn = M f on [c, 0]. To see this, note that from the
positivity of f and gn , M fn(x) ≥ M f (x) for all values of x, and it remains to show
that the reverse inequality holds also. For x ∈ [c, 0], M f (x) ≥ ∫

1
c f

1−c = a
1−c , and for any

interval I which contains x, we have two possibilities:
(i) either I ⊂ (−∞, 0), in which case from the third property of gn we have

−∫
I

fn = −∫
I
( f + a

1 − c
gn) =

a
1 − c

−∫
I

gn ≤
a

1 − c
∥gn∥L∞ ≤ a

1 − c
≤ M f (x),

(ii) or I ∩ [0, 1] ≠ ∅, in which case the second and third properties of gn give us

−∫
I

fn = −∫
I
( f + a

1 − c
gn) =

∣I ∩ [x , 1]∣
∣I∣

−∫
I∩[x ,1]

f + ∣I/[x , 1]∣
∣I∣

a
1 − c

−∫
I/[x ,1]

gn

≤ ∣I ∩ [x , 1]∣
∣I∣ M f (x) + ∣I/[x , 1]∣

∣I∣
a

1 − c
≤ M f (x).

This proves our claim.
Next, we look at the mean oscillation of M fn − M f on [2c, 0]. Because this

function vanishes on [c, 0], we have

O(M fn − M f , [2c, 0]) ≥ 1
4
−∫
[2c ,c]

(M fn − M f ).(3)

To bound the right-hand side of the above inequality from below, we note that
0 ≤ f ≤ χ[0,1], so M f (x) ≤ M(χ[0,1])(x) = 1

1−x for x ≤ 0. Also, for x ≤ 0, we have

M fn(x) = M ( f + a
1 − c

gn)(x) ≥ a
1 − c

−∫
[x ,n]

gn ≥
a

1 − c
. n
n − x

−∫
[0,n]

gn .

So, we get the following estimate for the right-hand side in (3):

−∫
[2c ,c]

(M fn − M f ) ≥ a
1 − c

−∫
[0,n]

gn −∫
[2c ,c]

n
n − x

dx − −∫
[2c ,c]

1
1 − x

dx .(4)
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Combining (3) and (4) gives us

∥M fn − M f ∥BMO(R) ≥
1
4
( a

1 − c
−∫
[0,n]

gn −∫
[2c ,c]

n
n − x

dx + 1
c

log(1 + c
c − 1

)) .

Now, taking the limit inferior as n →∞ and using the forth property of gn give us

lim
n→∞

∥M fn − M f ∥BMO(R) ≥
1
4
( a

1 − c
+ 1

c
log(1 + c

c − 1
)) .

This shows that if we have

a > c − 1
c

log(1 + c
c − 1

) ,(5)

then (2) holds. Here, we note that the function on the right-hand side of (5) attains
its minimum, which is log 2, at infinity. Also, from the assumption, a > log 2, so if we
choose ∣c∣ sufficiently large, (5) holds, and this completes the proof. ∎

By lifting the above functions to higher dimensions with

f (x1 , . . . , xn) = f (x1), gm(x1 , . . . , xn) = gm(x1),(6)

we obtain a counterexample for continuity of the n-dimensional uncentered Hardy–
Littlewood maximal operator on BMO(Rn), simply because the BMO(Rn) norms
and the maximal operator become one-dimensional.

Corollary 2.5 The uncentered Hardy–Littlewood maximal operator is bounded on
L∞(Rn) equipped with the BMO norm, but it is not continuous.

3 The uncentered Hardy–Littlewood maximal operator
on V MO(Rn)

As it was mentioned before, V MO(Rn) is the BMO(Rn)-closure of the uniformly
continuous functions which belong to BMO(Rn). The operator M reduces modulus
of continuity, because it is pointwise sublinear, so it preserves uniformly continuous
functions. But from our previous result, one cannot deduce boundedness of M on
V MO(Rn) by a limiting argument. Nevertheless, we have the following theorem.

Theorem 3.1 Let f ∈ V MO(Rn) and suppose M f is not identically equal to infinity.
Then M f belongs to V MO(Rn).

Before we prove this, we bring the following lemma, which is needed later.

Lemma 3.2 Let A be a measurable subset of a cube Q of positive measure and f ∈
BMO(Rn) with ∥ f ∥BMO(Rn) = 1; then we have

−∫
A
∣ f − fQ ∣ ≲ 1 + log ∣Q∣∣A∣ .(7)
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Proof From the John–Nirenberg inequality [7], there is a dimensional constant
c > 0 such that

−∫
A

ec∣ f− fQ ∣ ≤ ∣Q∣
∣A∣

−∫
Q

ec∣ f− fQ ∣ ≲ ∣Q∣
∣A∣ .

Now, Jensen’s inequality gives us (7), as follows:

−∫
A
∣ f − fQ ∣ =

1
c
−∫

A
log ec∣ f− fQ ∣ ≤ 1

c
log −∫

A
ec∣ f− fQ ∣ ≲ 1 + log ∣Q∣∣A∣ . ∎

Remark 3.3 In the above lemma, let A be a rectangle and take Q to be the smallest
cube which contains it. Then

O( f , A) ≲ 1 + log e(A),

where e(A) is the eccentricity of A, or the ratio of the largest side to the smallest one.

We now turn to the proof of Theorem 3.1.

Proof of Theorem 3.1 Let f be as in the theorem, then we have to show that
lim
δ→0

ω(M f , δ) = 0. Now, for every cube Q, we have O(∣ f ∣, Q) ≤ 2O( f , Q), which
means that ∣ f ∣ ∈ V MO(Rn) too. From this together with M(∣ f ∣) = M f , it is enough
to prove the theorem for nonnegative functions. Also, from the homogeneity of M,
we may assume ∥ f ∥BMO(Rn) = 1.

Let Q0 be a cube and c a constant with c > e. We decompose M into the local part,
M1, and the nonlocal part, M2, as follows:

M1 f (x) ∶= sup
x∈Q

fQ

l(Q)≤c l(Q0)

, M2 f (x) ∶= sup
x∈Q

fQ

l(Q)≥c l(Q0)

.

We have M f (x) = max{M1 f (x), M2 f (x)} and so

O(M f , Q0) ≲ O(M1 f , Q0) + O(M2 f , Q0).(8)

To estimate the first term in the right-hand side of (8), let Q∗0 be the concentric dilation
of Q0 with l(Q∗0 ) = 2cl(Q0). Then, for the local part, we have

O(M1 f , Q0) ≤ 2 −∫
Q0
∣M1 f − fQ∗0 ∣ ≤ 2 −∫

Q0
M1 ∣ f − fQ∗0 ∣

≤ 2( −∫
Q0
(M1 ∣ f − fQ∗0 ∣)

2)
1
2
≤ 2( 1

∣Q0∣ ∫
(M ∣ f − fQ∗0 ∣ χQ∗0 )

2)
1
2

.

By using the boundedness of M on L2(Rn), we get

O(M1 f , Q0) ≲ c
n
2 ( −∫

Q∗0
∣ f − fQ∗0 ∣

2)
1
2

,

and an application of the John–Nirenberg inequality gives us

O(M1 f , Q0) ≲ c
n
2 ∥ f ∥BMO(Q∗0 ) .(9)
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To estimate the mean oscillation of the nonlocal part, suppose x , y ∈ Q0, M2 f (x) >
M2 f (y) and let Q be a cube with l(Q) ≥ cl(Q0), which contains x and such that
M2 f (y) < fQ . Now, let Q′ be a cube such that Q0 ∪ Q ⊂ Q′, l(Q′) = l(Q) + l(Q0),
and let A = Q′/Q. Then M2 f (y) ≥ fQ′ and we have

fQ − M2 f (y) ≤ fQ − fQ′ = fQ − ( ∣A∣∣Q′∣ fA +
∣Q∣
∣Q′∣ fQ) =

∣A∣
∣Q′∣ ( fQ − fA)

≤ ∣A∣
∣Q′∣ (∣ fQ − fQ′ ∣ + ∣ fQ′ − fA∣) ≲

∣A∣
∣Q∣O( f , Q′) + ∣A∣

∣Q′∣
−∫

A
∣ f − fQ′ ∣.

Here, we note that ∣A∣ = ∣Q′∣ − ∣Q∣ ≈ l(Q0)l(Q)n−1, and l(Q′) ≈ l(Q). So, from the
above inequality and Lemma 3.2, we get

fQ − M2 f (y) ≲ l(Q0)
l(Q) (1 + log l(Q)

l(Q0)
) ≲ c−1 log c.

The reason for the last inequality is that l(Q0)
l(Q) ≤ c−1 and the function −t log t is

increasing when t < e−1. Finally, by taking the supremum over all such cubes Q, we
obtain

∣M2 f (x) − M2 f (y)∣ ≲ c−1 log c, x , y ∈ Q0 .

So, for the nonlocal part, we have

O(M2 f , Q0) ≤ −∫
Q0

−∫
Q0

∣M2 f (x) − M2 f (y)∣ dxd y ≲ c−1 log c.(10)

By putting (8)–(10) together, we get

O(M f , Q0) ≲ c
n
2 ∥ f ∥BMO(Q∗0 ) + c−1 log c,

and taking the supremum over all cubes Q0 with l(Q0) ≤ δ gives us

ω(M f , δ) ≲ c
n
2 ω( f , 2cδ) + c−1 log c.

To finish the proof, it is enough to take the limit superior as δ → 0 first, and then
let c →∞. ∎

Remark 3.4 The above argument shows that for all functions in BMO(Rn), if one
chooses a sufficiently large localization of M, (10) holds, meaning that the mean
oscillation of the nonlocal part is small. This also shows itself in the dyadic setting:
if one considers the dyadic maximal operator Md and dyadic BMO, denoted by
BMOd(Rn), then for a dyadic cube Q0,

Md
2 f (x) = sup

x∈Q
fQ

l(Q)≥l(Q0)

= sup
Q0⊂Q

fQ , x ∈ Q0 .

Hence, O(Md
2 f , Q0) = 0, and therefore no dilation is needed (c = 1).

https://doi.org/10.4153/S000843952300053X Published online by Cambridge University Press

https://doi.org/10.4153/S000843952300053X


102 S. Shaabani

4 Slices of BMO functions and unboundedness of directional and
strong maximal operators

In this final section, we discuss properties of slices of functions in BMO(Rn), and
for simplicity, we restrict ourselves to BMO(R2). We begin by asking the following
question.

Question Suppose φ, ψ are two functions of one variable, when does f (x , y) =
φ(x)ψ(y) belong to BMO(R2)?

To answer this, we need the following lemma, which is an application of Fubini’s
theorem and its proof is found in [4].

Lemma 4.1 Let A, B ⊂ R be two measurable sets with finite positive measure, and let
f be a measurable function on R

2. Then

O( f , A× B) ≈ −∫
B

O( fy , A)d y + −∫
A

O( fx , B)dx .

Now, take two intervals I, J with l(I) = l(J). Then, an application of the above
lemma to f (x , y) = φ(x)ψ(y) gives us

O( f , I × J) ≈ O(ψ, J) −∫
I
∣φ∣ + O(φ, I) −∫

J
∣ψ∣.

Taking the supremum over all such I, J, we obtain

∥ f ∥BMO(R2) ≈ sup
δ>0

⎛
⎝

sup
l(I)=δ

−∫
I
∣φ∣. sup

l(J)=δ
O(ψ, J) + sup

l(I)=δ
O(φ, I). sup

l(J)=δ
−∫

J
∣ψ∣
⎞
⎠

.(11)

When f ∈ BMO(R2) is nonzero on a set of positive measure, the above condition
implies that φ, ψ ∈ BMO(R). To see this, note that if φ is nonzero on a set of positive
measure, for some Lebesgue point of φ like x, φ(x) ≠ 0. Then, from the Lebesgue
differentiation theorem, for sufficiently small δ, we must have supl(I)=δ −∫I ∣φ∣ ≳
∣φ(x)∣ > 0. So ψ has bounded mean oscillation on intervals with length less than δ.
For intervals J with l(J) ≥ δ, ∣ψ∣ has bounded averages because otherwise there is
a sequence of intervals Jn with l(Jn) ≥ δ and lim −∫Jn

∣ψ∣ = ∞. Then, by dividing
each of these intervals into sufficiently small pieces of length between δ

2 and δ, we
conclude that ∣ψ∣ has large averages over such intervals, so supl(J)=δ −∫J ∣ψ∣ = ∞. But
then, supl(I)=δ O(φ, I) = 0, which means that φ is constant. We summarize the above
discussion in the following proposition.

Proposition 4.2 Let f (x , y) = φ(x)ψ(y), f ∈ BMO(R2) if and only if (11) holds and
if f ≠ 0, then φ, ψ ∈ BMO(R).

Remark 4.3 When φ and ψ are not constants, the above argument shows that they
belong to bmo(R), the nonhomogeneous BMO space, which is a proper subspace of
BMO(R). See [6] for more on bmo(R).
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Corollary 4.4 Let log− ∣x∣ = max{0,− log ∣x∣} be the negative part of the logarithm
and p, q > 0 with p + q ≤ 1. Then the function f (x , y) = (log− ∣x∣)p (log− ∣y∣)q is in
BMO(R2).

Proof A direct calculation shows that

sup
l(I)=δ

−∫
I
(log− ∣x∣)p dx ≈

⎧⎪⎪⎨⎪⎪⎩

δ−1 , δ ≥ 1
2 ,

(− log δ)p , δ < 1
2 ,

sup
l(J)=δ

O (log− ∣ ⋅ ∣, J)q ≈
⎧⎪⎪⎨⎪⎪⎩

δ−1 , δ ≥ 1
2 ,

(− log δ)q−1 , δ < 1
2 ,

and the claim follows from Proposition 4.2. ∎

Remark 4.5 The above function f does not have bounded mean oscillation on
rectangles, simply because the BMO-norm of the slices becomes larger and larger
as we get closer to the origin. See [9, Example 2.32] for another example.

Now, we answer the third question of this paper.

Theorem 4.6 There exists a sequence of bounded functions {GN}, N ≥ 1 such that it
is bounded in BMO(R2) but

lim
N→∞

∥Me1(GN)∥BMO(R2) = ∞, lim
N→∞

∥Ms(GN)∥BMO(R2) = ∞.

To prove this, we need the following simple lemma.

Lemma 4.7 Let Q0 = [−1, 1]n , let f ∈ BMO(Rn) with support in Q0, and let xk
be a sequence in R

n with ∣xk − xm ∣ ≥ 3
√

n for k ≠ m. Then g(x) = ∑ f (x − xk) is in
BMO(Rn) and ∥g∥BMO(Rn) ≲ ∥ f ∥BMO(Rn).

Proof First, by comparing the average of ∣ f ∣ on Q0 with Q0 + 2e1, we have

∫
Q0
∣ f ∣ = 2n ( −∫

Q0
∣ f ∣ − −∫

Q0+2e1
∣ f ∣) ≲ O (∣ f ∣, [−1, 3]n) ≤ ∥∣ f ∣∥BMO(Rn) ≤ 2∥ f ∥BMO(Rn) .

Next, take a cube Q and suppose for some k, Q ∩ (xk + Q0) ≠ ∅. We note that the
distance of the support of functions f (⋅ − xk) from each other is at least

√
n, so if

l(Q) ≤ 1, then O(g , Q) = O( f (⋅ − xk), Q) ≤ ∥ f ∥BMO(Rn). Otherwise, we have

O(g , Q) ≤ 2 −∫
Q
∣g∣ ≤ 2

∣Q∣ ∑
Q∩(xk+Q0)≠∅

∫
xk+Q0

∣ f (y − xk)∣ d y

≲ #{k∣Q ∩ (xk + Q0) ≠ ∅}
∣Q∣ ∥ f ∥BMO(Rn).

Now, to finish the proof, note that #{k∣Q ∩ (xk + Q0) ≠ ∅} ≲ ∣Q∣, which implies
O(g , Q) ≲ ∥ f ∥BMO(Rn). ∎
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Proof of Theorem 4.6 We may assume n = 2, since by a lifting argument similar to
(6), we can conclude the theorem for higher dimensions. Let f be as in Corollary 4.4,
let N be a positive integer, and consider the following function:

gN(x , y) =
N
∑
k=0

2k+1−1
∑

m=2k
f (x − 3

√
2m, y − k

N
) .

gN has the following properties:

(i) ∥gN∥BMO(R2) ≲ 1 (here our bounds only depend on p, q but not N).

This follows from Corollary 4.4 and Lemma 4.7 applied to f with xm ,k =
(3
√

2m, k
N ).

(ii) Ms(gN)(x , y) ≥ Me1(gN)(x , y) ≳ (log N)q for 0 ≤ x , y ≤ 1 and N ≥ 2.

To see this, let 0 ≤ x ≤ 1 and l
N ≤ y < l+1

N for some l < N . Then consider the average
of (gN)y on I = [0, 3 ⋅ 2l+1√2], which is bounded from below by

−∫
I
(gN)y ≥

1
3 ⋅ 2l+1

√
2

2 l+1−1
∑

m=2 l
∫

I
f (t − 3

√
2m, y − l

N
) dt

Now, note that for 2l ≤ m ≤ 2l+1 − 1, I contains the support of f (⋅ − 3
√

2m, y − l
N ),

and since 0 ≤ y − l
N ≤ 1

N , we have

f (t − 3
√

2m, y − l
N
) ≥ (log N)q (log− (t − 3

√
2m))

p
.

From this, we get

Me1(gN)(x , y) ≥ −∫
I
(gN)y ≥

1
3 ⋅ 2l+1

√
2

2 l+1−1
∑

m=2 l
∫

I
f (t − 3

√
2m, y − l

N
) dt

≥ 1
6
√

2
(log N)q

∫
1

−1
(log− ∣t∣)p dt.

At the end, we note that for every function g, Me1(g) ≤ Ms(g) holds almost
everywhere, and this proves the claim.

(iii) Me1(gN)(x , y) = 0 for y < −1.

This holds simply because gN is supported in [3
√

2 − 1,∞) × [−1, 2].

(iv) Ms(gN)(x , y) ≲ 1 for 0 ≤ x ≤ 1, y ≤ −2.

To prove this final property of gN , suppose R = I × J is a rectangle with (x , y) ∈ R.
Then, if R ∩ supp(gN) ≠ ∅, we have l(I), l(J) ≥ 1, and we note that

#{(m, k)∣R ∩ supp( f (⋅ − 3
√

2m, ⋅ − k
N
)) ≠ ∅} ≲ l(I),
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which implies

−∫
R

gN ≤ l(I)−1#{(m, k)∣R ∩ supp( f (⋅ − 3
√

2m, ⋅ − k
N
)) ≠ ∅}∫

R2
f ≲ 1.

Now, taking the supremum over all rectangles R proves the last property of gN .
Next, we measure the mean oscillation of Me1(gN) on the square [−3, 3]2 by

O (Me1(gN), [−3, 3]2) ≳ −∫
[0,1]2

Me1(gN) − −∫
[0,1]×[−3,−2]

Me1(gN).

Then, from the second and third properties of gN , we obtain

O (Me1(gN), [−3, 3]2) ≳ (log N)q ,(12)

and the same is true for Ms by the third and fourth properties of gN .
At this point, we note that the constructed sequence of functions {gN} has all the

desired properties claimed in the theorem except that they are not bounded functions.
However, this can be fixed by using a truncation argument as follows. For each N , M ≥
1, let gN ,M be the truncation of gN at height M, i.e.,

gN ,M ∶= max{M , min{gN ,−M}} .

Next, we note that by the first property of {gN}, this sequence is bounded in
BMO(R2), and since ∥gN ,M∥BMO(R2) ≤ 4∥gN∥BMO(R2), the double sequence {gN ,M}
is also bounded in BMO(R2). Now, for each N ≥ 1, gN is a compactly supported
function in L2(R2) and the sequence {gN ,M} converges to gN in L2(R2) as M goes
to infinity. Then, since the operators Me1 and Ms are continuous on this space, we
conclude that for each N ≥ 1, {Me1(gN ,M)} and {Ms(gN ,M)} converge in L2(R2) to
Me1(gN) and Ms(gN), respectively. Therefore, for N ′ large enough (depending on N),
we have

O (Me1(gN ,N ′), [−3, 3]2) ≥ 1
2

O (Me1(gN), [−3, 3]2) ≳ (log N)q

and

O (Ms(gN ,N ′), [−3, 3]2) ≥ 1
2

O (Ms(gN), [−3, 3]2) ≳ (log N)q .

To finish the proof, let GN ∶= gN ,N ′ and note that {GN} is a sequence of bounded
functions such that it is bounded in BMO(R2) but

lim
N→∞

∥Me1(GN)∥BMO(R2) = ∞, lim
N→∞

∥Ms(GN)∥BMO(R2) = ∞. ∎

By modifying the above function, one can construct a function in BMO(R2) such
that none of its horizontal slices are in BMO(R), which provides a negative answer
to the forth question of this paper.

Example Let {rm} be an enumeration of the rational numbers, and consider the
following function:

h(x , y) = ∑
m≥1

f (x − 3
√

2m, y − rm) .
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Then we have

O (hy , [3
√

2m − 1, 3
√

2m + 1]) = O ((log− (⋅))p , [−1, 1]) (log− (y − rm))
q .

So, by density of the rational numbers, for all values of y, we get supl(I)=2 O(hy , I) =
∞, even though h ∈ BMO(R2).

The above example shows that one cannot control the maximum mean oscillation
of the slices, when we look at intervals with a fixed length. However, in the following
theorem, we show that there is a loose control when the length of intervals increases.

Theorem 4.8 Let f ∈ BMO(R2) with ∥ f ∥BMO(R2) = 1. Then there exist constants
λ, c > 0, independent of f, such that for any sequence of intervals Ik(k ≥ 1) with l(Ik) =
2k , and any interval J with l(J) = 1, we have

∫
J

eλ supk≥1
O( f y ,Ik)

k d y ≤ c.

Proof Let Et = {y ∈ J∣ sup
k≥1

O( f y ,Ik)
k > t}; then,

Et = ⋃
k≥1

Et ,k , Et ,k =
⎧⎪⎪⎨⎪⎪⎩

y ∈ J∣
O ( fy , Ik)

k
> t
⎫⎪⎪⎬⎪⎪⎭

.(13)

Now, taking the average over Et ,k and applying Lemma 4.1 give us

t < 1
k
−∫

E t ,k
O ( fy , Ik)d y ≲ 1

k
O ( f , Ik × Et ,k) .

Next, let Jk be the interval with the same center as J and with l(Jk) = 2k , and note that
Et ,k ⊂ J ⊂ Jk , so Ik × Et ,k ⊂ Ik × Jk . Then an application of Lemma 3.2 shows that

t ≲ 1
k

O ( f , Ik × Et ,k) ≲
1
k
(1 + log ∣Ik × Jk ∣

∣Ik × Et ,k ∣
) ≲ 1 − 1

k
log ∣Et ,k ∣.

So, for an appropriate constant a > 0, which is independent of f, we have ∣Et ,k ∣ ≲ e−atk

for t > 0. From this and (13), we get the estimate

∣Et ∣ ≤ ∑
k≥1

∣Et ,k ∣ ≲ e−at , t > 0.

Now, an application of Cavalieri’s principle gives us

∫
J

e
a
2 supk≥1

O( f y ,Ik)
k d y = a

2 ∫
∞

0
e

a
2 t ∣Et ∣dt ≲ 1.

Hence, (4.8) holds with λ = a
2 , and this finishes the proof. ∎
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