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Abstract

In this paper, a computational algorithm for solving a class of optimal control
problems involving discrete time-delayed arguments is presented. By way
of example, a simple model of a production firm is devised for which the
algorithm is used to solve a decision-making problem.

1. Introduction

Recently, computational algorithms for solving optimal control problems of
ordinary dynamical systems using strong variations in control have been reported
in [6]. In their investigation, a control u which maximizes a Hamiltonian function
is calculated and the new control is formed according to the formula

p(0 forallfe/att,
\u(t) otherwise,

where /„„ is a subset of the time interval, having a total length a. Different methods
have been suggested in [8] for constructing the set Iau so that the corresponding
control ua will improve the objective functional.

In this paper, results leading up to a computational algorithm for solving
optimal control problems that include time delays are devised. However, no
attempt is made to prove the convergence of this algorithm, as is done in [6] for
the ordinary dynamical system. Note that the delays, which are taken to be
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316 J. M. Murray and K. L. Teo [2]

discrete, are allowed to occur in both the state and control variables. The initial
function <f> is presumed given and absolutely continuous.

In Section 4, two theorems are presented which motivate the algorithm to be
given in Section 5. The first of these, Theorem 4.4, demonstrates that if u is not an
extremal control then a new control ua can be constructed so that the corresponding
objective functional will be improved. However, the main disadvantage of this
theorem is that it requires exact maximization of the Hamiltonian for all t e [0, T].
In order to achieve some sort of practicality in the algorithm, this stringent require-
ment has to be relaxed. Theorem 4.5, an extension of Theorem 4.4, which maintains
much the same hypotheses, requires only approximate maximization of the
Hamiltonian at one point in [0, T]. On the basis of this theorem, a computational
algorithm is formulated in Section 5. It should be noted that this paper was
motivated by the results given in [2], [6] and [8].

For illustration, this algorithm is used to solve a production-inventory model.
In this model, the objective is to derive the best possible production and advertising
policies with respect to a desired profit functional, where the controls for both
production and advertising incorporate delays.

2. Statement of the problem, basic definitions and assumptions

Consider the following delay-diiferential equation on the fixed time interval (0, T]

x(t) = ifKt-hj.xCt-hj), uit-h,)), (1)

where x&[xlt ...,xn]
TeRn, u^[u1,...,ur]

TeR' are, respectively, the state and
control vectors,pA[f{,...,/>JTeRn (J = 0,...,s), and the superscript T denotes
the transpose. The hk are the time-delays, ordered so that

0 = ho<h1<...<hs<T; s<oo.

The initial function for equation (1) is

te[-hs,0], (2)

where <f>^ [<h, •••, <f>n]
T is a given, absolutely continuous function on [—hs,0] with

values in Rn.
Let D be the class of all admissible controls defined by

D A{W : w is a function from [— hs,T] into U, piecewise continuous on [0, T]
and with u(t) = /?(f) on [—hs,O)} where /? is a given piecewise continuous
function on [—hs,0) with values in U, and U is a compact and convex
subset of R*.
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[3] A computational algorithm for control 317

For each ueD, let x(u) denote the corresponding solution of the system (l)-(2)-
We may now state our problem, denoted by P, as: subject to the dynamic constraint
(1) with the initial condition (2), find a control ueD that will minimize the cost
functional J defined by

/(«)= XMt-h^xiuKt-hiluCt-htfdt (3)
Jo i=o

where for eachje{0,\,...,s},f{ is a real-valued function.
Now let us introduce some useful notation. For any zeRn let

For any function g: Rn-*Rn, let

Throughout this paper, we need the following assumptions which will be referred
to collectively as (A)

(i) p:R1xRnxRr-*Rn (J = 0,...,s),

(ii) f{ and dfydxk(J = 0, ...,s; i = 0, l,...,n; k = 1,...,«) are piecewise con-
tinuous on [0, T] for all (JC, u)eRnxU and continuous on Rn x U for each / e [0, T].

(iii) For any given compact set Q c:R\ there exists a positive constant m so that

\\fKt,x,v)\\<m(l+\\x\\)
and

\\P0(t,x,v)\\<m(l+\\x\\)

for ally = 0 s and for all (t,x,v)e[0,T]xClxU.
In the results to follow, we need

DEFINITION 2.1. For each ueD, the absolutely continuous function

# 0 * : M,(K)^I(«)> - ^ n ( « ) F : [0,T]

is the solution of

(4)
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with the final condition

and (5)
= 0 foralW>r. J

DEFINITION 2.2. Using the abbreviation W(t) for ifi(t+ho),i/j(t + hi),...,ili(t+hs)
we define the Hamiltonian H: [0,T]xRnx UxRin+ms+u_^RI t o be

J i (6)

THEOREM 2.3. For each control ueD, there exists a unique absolutely continuous
vector-valued function x which satisfies the system (l)-(2).

PROOF. If we subdivide the interval [0, T] into [0, hx], [vhlt (v+l)h1](v= l,...,k),
[(k+ l)hl3T], then finding the unique solution of the system (l)-(2) is the same
as finding unique solutions of the system (1) on each of these subintervals suc-
cessively with the appropriate boundary conditions. Thus, the proof follows from
repeated applications of Theorem 1 of [4].

We shall now impose certain conditions (AH) on the Hamiltonian:
(i) for every ueD, the function

H: (t,v)^H(t,x(u)(t),v,Y(u)(t))

is piecewise continuous on [0,7"] for each veU and continuous on U for
each/£[0,r] ; and

(ii) for every ueD, there is a partition of [0,T] into intervals /*(») (ieQ(u)),
such that whenever / is in the interior of any P, H(t, x(u)(t),v,Y(u)(t)) is
continuous in (t,v) where veU, and has a unique maximum as a function
ofveU.

3. Certain preparatory results

In order to devise a computational algorithm for approximating problem P, we
need certain preparatory results, to be presented in this Section.

REMARK 3.1. For each ueD, the function

Vu:[0,T]-*U

is such that for any t in the interior of any of the P(u), Vu maximizes
H(t,x(u)(t), -.TCHXO) and for all other te[0,T], Vu(t) = u{i).
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Note that under the assumptions (AH), Vu has the property that if t is in the
interior of any of the /*(«) then

H(t,x(u)(t), VJit\W(u){t))^H(t,x(u)(t),v,Y(u)(t)) (7)

for all veU, and the equality holds if and only if v = Vjf). Thus, in particular

H(t, x(u) (t), Vjt),V(u) (0) > H(t, x(u) (t), u(t),Y(u) (/)) (8)

whenever u(t)^ Vu(t).

THEOREM 3.2. Suppose that the assumptions (A) and (AB) are satisfied. Then, for
each ueD, Vu is continuous in the interior of any of the intervals /*(«)> ieQ(u),
where I\u), ieQ(u), are as defined before. Further, Vjt)eU for all te[0,T].

PROOF. The second statement of the theorem follows as an immediate conse-
quence of the definition of Vu.

The proof of the first statement is given below.
Let usD and let '*eUi60(«)(/i(«))° where (I\u))0 denotes the interior of the

interval /*(«). Now suppose that Vu is not continuous at t *. Then, there exists an
e>0 and a sequence of points {tk}%=ic [0> T] such that

\h-t*\<\lk (9)
but

\VJtk)-Vu(t*)\>e (10)
for all integers k~&\.

However, {VJt/J}^ is a sequence in U and U is a compact subset of R?. Thus,
there exists a subsequence of { (̂f&)}£=! which is denoted by the original sequence,
such that

(11)
fc-»oo

Now let
V**Vu(t*). (12)

In view of (8), (10) and (12), we deduce that

H(tk,x(u)(tk),Fu(/fc)JT(M)(/fc))>^(/t)x(«)(y, V*,W(u)(tk)). (13)

By condition (ii) of assumptions (AH), we note that H(-,x(u)(-), - ,T(M)(-) ) is
continuous on any of the sets (I%uyfx U, ieQ(u). In particular, this function is
continuous at t = t * and v = V**.

Thus, by letting fc-*oo in the inequality (13) we obtain from (9) and (11) that

H(t*,x(u)(t*), V**,V(u)(t*))>H(t*,x(u)(t*), V*,Y(u)(t*)). (14)
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On the other hand, we deduce from (9) and (10) that for a sufficiently large
positive integer k

e<\Vu(tk)-V*\

(15)

Consequently,
0<4e<jF**-F*j . (16)

This, in turn, implies that

V*** V*. (17)

Therefore, it follows from (8) that

H(t*,x(u)(t*), V*,Y(u)(t*))>H(t*,x(u)(t*), V**,W(u)(t*)). (18)
This contradicts inequality (14). Thus, Vu must be continuous at t*. Since t * is

an arbitrary point in \Jie Q^QXU))0, the first statement of the theorem is established.
This completes the proof.

REMARK 3.3. Theorem 3.2 implies that if ueD then VueD. In the sequel, we
need

THEOREM 3.4. Consider the optimal control problem P. Suppose that the assumptions
(A) and (AH) are satisfied and that u*eD is an optimal control. Then

\T H{t,x(u*)(t),u*{t),V(u*)(t))dt
Jo

i rr \
= max ^(/,x(«*)(r),«(r),T(M*)(f))rf/: ueD). (19)

The proof of Theorem 3.4 will be postponed until after the proof of Theorem 4.4.
With reference to Theorem 3.4, we have

DEFINITION 3.5. A control u*eD is said to be an extremal control if it satisfies
condition (19) of Theorem 3.4.

REMARK 3.6. Let 0'(w) denote the points of discontinuity of the functions

/!(„(*)(•)„,(•)) and ^•*M(->.»(-»

(/ = 0,1,...,«; k = 1, ...,n;j = 0,1, ...,s).
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Now let 0(M) consist of all the 6'eQ'(u) and the points 0'+fy, ./ = 1 s, and
the endpoints of the intervals P(u), ieQ(u). In the proof of Theorem 4.4, the
control is perturbed on an interval [tc—el1}tc+el2] which must not include O'+fy,
7 = 0,1,...,5, for any 6'e&(u).

REMARK 3.7. For future convenience, the function Hmax is defined as

Hmax(t,x(u)(t),Y(u)(t)) = maxH(t,x(u)(t),v,W(u)(t)). (20)
U

REMARK 3.8. When a piecewise continuous function y, having discontinuities
at a and b, is considered on the interval [a, b], y(a) shall mean y(a+0) and y(b)
shall mean y(b—0).

4. Motivation for the algorithm

In this Section we present two theorems which motivate the algorithm in
Section 5. The algorithm presented there is an implementable algorithm, as defined
in [7], and is based on the results of Theorem 4.5. If a conceptual algorithm were
desired it would be modelled on the results of Theorem 4.4.

Theorem 4.4 will prove that if we are given a control uxeD that is not an
extremal control, then a new control u2eD can be constructed so that the corre-
sponding objective functional will be improved.

Let us introduce a new variable by defining

= P 2
Joj=o

Then, we have
>

8
0 i=o ° *' j ' (21)

x0(u)(t) = O, te[-he,O].

If, in the following Remark, we divide the interval [0,T] into intervals of
length, at most, hlt then the differential equations

can be treated as differential equations without delays since all the delayed terms
will occur in previous intervals and therefore will have already been calculated,

n
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REMARK 4.1. In this Remark we derive the variational equations for the state,
when the control is perturbed.

For uleD, let e>0 be such that no deQiu1) is contained in the interval
[tc — el1,tc+elz] and such that no [fc-£/1+/jy,*c+e/2+/jy] (J' = 0,1, ...,s) overlap,
where tce[0,T] is chosen such that Vu\(Q^u1(Q. Consider the following pertur-
bation of the control u1: let

ne = [tc~el1,
and

u)(t) = \ (22)
[u\t) otherwise,

where lx = 0 if tc = 0 or if tc e ©(M1) and /2 > 0, and lx is a positive constant elsewhere;
and /2 = 0 if tc = T or if tc e ©(M1) and /x > 0, and /2 is a positive constant elsewhere.
Here ©(w1) is as defined in Remark 3.6.

Combining equations (21) and (1) we have for t e(0, T]

hj,x(u)(t-hj),u(t-hi)), i = 0,l,...,n, (23)

with the initial conditions for t e [—hs,0]

Consider system (23) on [tc-ellt tc+el2]. By its construction, this interval does
not contain any 6 e ©(H1) and hence the right-hand side of (23) is continuous for
u = u1. By Theorem 3.2, it is also continuous in this interval when u = u]. Therefore
it can be easily shown that

e), (24)
where

* = 0,l n, (25)

and o(e) is such that limej0||o(e)||/e = 0.
By the definition of u\ given in (22) we observe that u](t) = u\t) for

te[tc+el^t,.—elx + h{[. Therefore the difference between the trajectories ^(u1)^)
and x(u\) (t) on this interval will result only from the differing initial conditions
for the differential equation (23). The perturbation of the initial conditions is given
in equation (24). Thus, we may use [1, Lemma 4.3 with r= 1, 8to= 8^ = 0,
8F(t,y) = 0 and g(t,y, a, e) = 0, pp. 258-259] to obtain

*(«!) (0 = x&V (0 + eteii"1) (0 + o(e) (26)
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for t e [tc+e/2, tc - dx+/zj, where

&W(0 = i i W-^^y-^^-^fa^ft-^) (27)

for te(tc+e!2,tc—e^+hj], with the initial conditions

(28)
,-«y. J

This procedure is repeated for intervals of length hlt for example

or until one of the points te—el1+hj(J = 2,...,s), is reached, for example
[tc~eh+h1,tc—e!1+hi], or until the final time 7"is reached. The choice is made
so that the interval is smallest. The interval [tc—ellt T] is broken up in this manner
so that, as explained before, we can treat the delay differential equation as an
ordinary differential equation on each of these subintervals. When we reach any
of the tc— elr+hj (j = 2,...,s) before proceeding a length hlt then we derive new
versions of equations (24) and (25). This is necessary because in each of the intervals
[tc~

sh+hj,tc+el2+hj] (j = !,.. . ,*), the time delays in the state equations have
the effect of perturbing the system. These new equations, replacing (24) and (25),
are

xM)(tc+el2+h}) = XiWitc+elz+hJ + egiWitc+elz+hJ+oCe), (29)
where

+ 4) U{<Sc+e's, *("') Cc+e4)> Vui(tc+elj)

i = 0,l,...,n; j = O,l,...,s. (30)

Using this, and piecing together the Sxf we arrive at the following formulae

e), (31)

£ i ^-^^y-^'^-^.to^q-^ (32)

for all te[0,T] except /e(/c-£/1+AJ-,/(.+e/2+Ai]) _/ = 0,1,...,J, where (32) is
updated by the "initial" conditions

te(te-dute+elj, (33)
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wherey = 0,1 s and

8xi(u
1)(t)=0 for re[0 , r e -ey , i = 0,l,...,ii. (34)

REMARK 4.2. The solution Sxt(t) of the variational system (32)-(34) is continuous
and differentiable everywhere on [0,T] except possibly at de ©(it1) and on the
intervals (tc-elx+fij,tc+el2+hj], j = 0,1,...,s.

Let iftiu1) be the solution of the adjoint system (4)-(5) due to the control u1 and
define

Z(ul) (0 = £ &(«*) (t). 8Xi(ui) (t). (35)
i=0

Then, it is clear that Ziu1) is continuous and also differentiable on [0, T] except
possibly on (fc—e/^+fy, fc+«/2+Aj],./ = 0,1,...,s, and at 0e0(w1).

The following Lemma is an extension of assertion (2.21) found in [2].

LEMMA 4.3.

)

3=1 i=0

X \fflc + e/2. X(»X) Qc + «W. ^ ( ' e + e/2))
-/K'c+d» xfr1) (te+eQ, tHtc+eQ)] + o(l), (36)

where o(l) is such that hme|0||o(l)|| = 0.

PROOF. We have

(''-^dZ dt _Z{ _
Jlc+el, at

JU+dt+h. at

and

^ ( K 1 ) (o = £ u*) (o • ŝ C"1) ( o + £ &(«x) (o • s^"1) (o (38)
at i=o i=o

exists everywhere in [tc+el2,T] except possibly on (fc—e^+A^fg+e/g+fy],
j = 0,1, . . . , J , and at fleOfa1).

If we take s = 2, no generality will be lost and the proof will be clearer for the
lack of repetition.
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To simplify matters we now define

Equation (37) now becomes

a=0i=0

- £ £ f°~
a=0 i=0

+ 2 2 |° ^ tiWiOlMUiO+MtJt-hJ + MlJit-h^dt
a=o t=0 J U+ek+hi

- S 2 [̂ (̂ (OM?
a=Oi=oJt,-

£ £
a=Oi=O

- £ £ f
a=O i=O J t

W (te+d,+hd-

u>) (te+ El2+hd-Z(u*) h-ek+hj. (39)

Since 8xi(u
1)(t) = 0 for te[0,tc+el2) and ^i(«

1)(r) = 0 for r>7; it follows,
after changing the variable in some of the integrals to t' = t—h^j = 1,2, and then
dropping the prime, that

(M1) (T)-Z(U1) (tc+elj -ZCu1) (tc + e/2 + A^ +Z(M1) (rc - 1

—Ziu1) (tc+sl2+h^)+ Z(ux) (tc—elx+A2)

n n /"ie—eli+Aj—Ai

+ S 2
a=0 i=O J /e+
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-22 [-AiC"1) if+hj MUt)+&(«*) (r+hj Ml(t)] dt
ot=0 i=O J (e+eia+M

ot=O i=O

+ 2 2
a=O i=O

- 2 2
a=O i=O

-22
a=O i=O

= - 2 2 + + U ^

+ 2 2 + \U^

- 2 2 + +
u=Oi=OlJU+ek Jlc+eh+hi Jtc+eh+

a=O i=O

Now these terms cancel each other except for various intervals of length e(/i+/2).
But since ^(w1) (0 is an absolutely continuous function and the partial derivatives

along with the Sxju1)^), a = 0,1,...,«, are piecewise continuous, it follows that
the integrals cancel to within o(l). This leaves us with

Zfy?) (T)-Z(it) (

+Z(ui) (tc+e/2+hj -Z(Ui) (tc - EIX+h2) + o(l). (40)

Using the definition of Z(M1)(0 and equation (33), we obtain

2
i=0

-We+e4. (̂«x) C
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i=0 i=0

[Sxiiu1) (tc - elx + hz) + (lx + IJ {f*(tc + el2, XW) (tc+el^, Vjtc+elj)

& 1 ) (re - e/i+A,). a^Cu1) (rc - e/x+hj + o(l). (41)
i==0

But, as was noted before, ^(M1)^) is an absolutely continuous function, so we
can replace ^(u^Oc-e^+hj) by ^(H1)(?c+e/2+/i3-) and the difference will be
absorbed in the o(l) terms. Therefore

Z(ul)(T) = Z(«i)(rc+£/2) + (/1 + /2)S i
3=1 i=0

which is (36) with J = 2. The Lemma is now proved.

THEOREM 4.4. Consider the problem P. Suppose that the assumptions (A) and
(AH) are satisfied and that u1 e D is not an extremal control. Let tc e [0, T] be such
that Vui(tc)?u\tc), let

and
jVjf) if te Qe,

«K0 =
(u^t) elsewhere,

where lt = 0 iftc = 0 or iftc e 0(«x) and /2 > 0, and l^ is a positive constant elsewhere;
and l2 = 0iftc = T or if tc e ©(M1) and /x > 0, and l2 is a positive constant elsewhere.
®{ux) is as defined in Remark 3.6.

Then

- H(t, x(u*) (/), u\t), T(«i) (0)} dt+o(e), (42)

where Hmax is as defined in Remark 3.7 and o(e) is such that lime|0||o(e)||/e = 0.
Further, there exists an s0 > 0 such that

) (43)

whenever 0<e<en.
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PROOF. We have

Thus, it follows from equation (31) that

A"1) -/(«J) = xo(u*) (T) - xo(u]) (T)

= -e8x0(T) + o(e). (44)

However, ^ ( ^ ( T ) = 0, i = 1, ...,n. Therefore,

/(M1) -J(U\) = e [ - 3xo(Ui) (J) +^Sxi(«1) (T). M"1) (T)] + o(«)

= eZ(«1)(r)+o(£). (45)

By virtue of relation (36), (45) reduces to

, xiu1) (te

-H(te+el» x(u*) (

c+e/2, ^C"

+ [H{t, x(u*) (t), Vul(t),W(ui) (0) - H{t, x(fP) (0, aKO. ^C^) (0)1

+ [//(/,^(U
1)(0,w1(0T(«1)«)

-H(tc+el2, xiu1) (te+dj, u^+elJWu1) (tc
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- H(t, x(u*) (/), f W O W ) (0)] dt

Pe+d*
+ [H(t, x(u*) (t), Ful(0,T(Wi) (0)

Jtc-di

- H(t, x(u*) (t), u\t), Y(«i) (0)] dt

+ [^(/,*(«i)(r),«1(0,T(«i)(0)
Jtc-di

-H(tc+el2, xiu1) (tc+ e/a), u\tc + el^^u1) (tc+elj)] dt + o(e).
(46)Since

and

are continuous on (^-e/i.^+e/a), it follows from the mean value theorem for
integrals that

- P°+C\H\t)-H*(tc+ el^] dt
Jtc-di

where T{ G (/C—elx, tc+e/^, / = 1,2.
Since £ -> 0 implies rf -»/c and /c+elz -+ tc it follows that (tfVi) - /T1(/c+e4)) -* 0

and ( # 2 ( T 2 ) - # 2 ( / C + £ 4 ) ) - > - 0 as e-*0. Thus

, x(u*) (t), F11,(/),T(Mi) (0)

- ^( / , *(«i) (r), i|i(0, Y^1) (/))] A+o(e). (47)

This proves the first part of the theorem.
Now it remains to show that the second statement is true. For this, we note that

H(tc, xW) (Q, VJiQ, T(Mi) (O) > H(tc, xffP) (tc), u\tc), Y(u^) (tc))

and that the functions

//(•,x(«i)(-),«1(-).x*V)(-)) and iy(-,*(«1)(-),^(-),1Ir(«1)(-)

are continuous on (tc—elvte+eQ.
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Thus, by an appropriate choice of eo>O, relation (47) implies that

(48)

for all 0 < e < e0.
This completes the proof.

With the help of Theorem 4.4, the well-known necessary conditions for optimality
given in Theorem 3.4, can be easily derived.

PROOF OF THEOREM 3.4. Suppose w1 is non-extremal. Then by the first statement
of Theorem 4.4, we can find a u\, as defined in (41), such that

= r
J

- H(t, x(«i) (0, u\t),Y(u*) (0)} dt+o{e). (49)

If we now suppose that, given an optimal control «*, we can find a control
Vu., which maximizes H(t, x(u}) it), v, ^(u1) (t)) on an Qe but which, of course,
cannot improve the cost functional / , then equation (49) will still hold and this
will give

0>/(«*)-/(«*)= f {jy(/,x(«m7«.(0,W)(0)

- H{t, x(u*) (0, u*(t),Y(u*) (*))} dt+o(e).

By precisely the same argument as that used to obtain (48), we have

f H(t,x(u*)(t),u*(t),Y(u*)(t))dt< f //(/,x(«*)(0,Ku.(0,T(«*)(0)^

for e>0 sufiiciently small. This is a contradiction and hence the proof is complete.

The main objection to Theorem 4.4 in using it in a computational algorithm is
that it requires exact maximization of the Hamiltonian at an infinite number of
points. For this reason, the following theorem obtains similar results to Theorem
4.4, but needs only approximate maximization of the Hamiltonian at a single point.
It incorporates nominally a sub-procedure S, iterated on an integer />, that obtains
an approximate maximizing control. This control, wp e D, is chosen such that

(t, x(u) (t),Y(u) it))-Hit, xiu) it), wp(u) (t),Y(u) (0) | ̂  HV < e (50)

for a given u e D and fixed k and F with F < 1.

https://doi.org/10.1017/S0334270000001697 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001697


[17] A computational algorithm for control 331

THEOREM 4.5. Consider the problem P and suppose that the assumptions {A) and
(AH) are satisfied and that uxeD is not an extremal control. Let tc e [0, T] be such
that VM*uL(Q. Define

and

, » . f ' H W lf>Sa- (5.)
(u1^) elsewhere,

where lx = 0 iftc = 0 or //"fc60(w1) andl2>0, andlx is a positive constant elsewhere;
and l2 = 0 if tc = T or if tc e ©(w1) and lx > 0, and l2 is a positive constant elsewhere-
Further let wfa1) (tc) be calculated in the sub-procedure S, previously mentioned, and
satisfy relation (50) and let Qfu1) be as defined in Remark 3.6. Then,

W)-J(ul)= f {H(t,x(^Kt),wp(u^)(tc),W(u^(t))

-H{t, *(«*) (0, «K0, W ) (0)} dt+o(e). (52)

Further, there exists an e0 > 0 such that

J(ft)>J(u]) (53)

for all integers p such that fcTe < e where e is such that 0 < e < e0.

PROOF. In view of the hypotheses of Theorems 4.4 and 4.5, we note that their
only difference is in the definition of u]. More precisely, in the hypotheses of this
theorem, u\(t) = wp(u

x) (tc) on Qe instead of u](t) = Vui(t) on De as defined in the
hypotheses of Theorem 4.4. Thus, by using an argument similar to that for obtaining
relation (46), we get

/(M1) -J(U]) = eft + y {[H(tc+el2, x(u*) (

-H(J, x(ul) (0,

- H(tc+el2, xiu1) (te

+ o(e)
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[H(tc + d» xiu1) (te + elj, w
J le—ell

- Hit, x(i?) (t), wp(tt)

t, x(u*) (0, wp(tt) ( a W (0)

f'c+eh
[Hit, xiifi) (t), u\t),Y(ui) (0)

Jt.-eli

-H(tc+sl2,x(ul) (tc+elj,u\
. (54)

Since

and

are continuous on (tc—el1,tc+el^ it follows from the mean value theorem for
integrals that

- H\te

where r t e (tc—ellt tc+e/2), i = 1,2.
Since e -> 0 imph'es T{ -> ?c and tc + e/2 -> rc, it follows that (H\T^) — H\tc + elj) -*• 0

and {H\TJ - H\tc+el^) •* 0.
Thus,

-J(u\) = (°+eh[H(t, x(it) (t), *>„(*) 0c),T(Mi) (0)
J ' e ' i

- H(t, xitt) (t), uHf),V(u>) (/))] <// + o(e). (55)

This proves the first part of the theorem.
Now it remains to show that the second statement is true. For this, we note that

CI +eh

(w1) -J(u\) = [H(t, *(«i) (/), Vui(t), W ) (0)

[H(t, x(ul) (t), wp(u>) (g,T(«i) (0)

- jyft x(«i) (0, Vui(t), Y(«i) (0)] A+o(s).
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Note that for any e> 0, we can choose the integer p such that kTt> < e. Thus the
above equation reduces to

- H(t, *(«i) (0, u\t),V(il) (0)] dt+o(e) (56)

for all integers p such that kYf < s.
Now, we further note that

*(«*) (Q, U O . W (O) > H{tc, *(«*) (Q, uKtc),Y(

and the functions #(-,*(ii1)(-),*W-Vf>(«1)(-)) and tf^JtC^XO
are continuous on (^-e^.^+a/a). Thus, by an appropriate choice of eo>O,
relation (56) implies

for all 0 < e < e0 and /> such that kTP < e.
This completes the proof.

This last theorem paves the way for the algorithm in the next section. In effect,
it tells us that if we perturb a given control u, by replacing the original control
on some interval Cle by that control which approximately maximizes

at a point tc in Q£, then this new control, u\, will improve the cost functional.
This is the result that suggests a method that can be used to construct a sequence
of controls {u*} from any non-extremal control u°, so that

for all positive integers a.

5. The algorithm

In this section, Theorem 4.5 is used to outline the form that the algorithm should
take. After an initial control «° and an e>0 are chosen, the interval [0,T] is
divided up into [6it 6j+1] for all 0jt 6i+1 e 0(M°). This is done so as to satisfy the
assumptions of Theorems 4.4 and 4.5, that Q£, the interval where the control is
varied, cannot contain any of the 9 e 0(«°), as an interior point.

Using the control M°, the state x(tfi)(t) is found by integrating equation (1) with
the initial condition (2) forward in time and then ^(«°) (/) is found by integrating
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the costate equations (4) with the final condition (5) backwards in time, both
integrations being done within the sub-intervals mentioned above.

With the state and costate variables known, an approximate maximizing control
wp(u°) is calculated at each net point by the sub-procedure S. These net points are
constructed in steps 6-8. In view of step 6, we note that the construction of these
net points depends on the quantity e. The net point that induces the largest Ai/
(see step 10) is taken as the focal point around which the change of the control
M° to yvp(u°) is contracted, if at all, until an improvement in the cost is incurred.
If no improvement is found, then e reduces to \e and the procedure begins anew.
Although the control may be changed on more than one e-interval, eventually we
will be able only to change it at one and in this way the algorithm will in some
sense converge to the structure of the perturbed control in Theorem 4.5. At this
point, the theorem plays its role of ensuring that the cost functional will be
improved if e>0 is made sufficiently small and wp, constructed by the sub-
procedure S, is such that kTt> < e.

Algorithm

1. Select a piecewise constant function ifl from D and an e>0.
2. Set a = 0.
3. Break up the interval [0,T] into [6p 6j+1] for all 6p ^ + I e0(« a ) , where 0(M")

is as defined in Remark 3.6.
4. Calculate x(ua){-) by solving forward in time

c(u«) (t - hj), ua(t - ht), t - h}), t e [0, T],

te[-hs,O].

Note that the integration is done in each sub-interval [0;-, 6j+1], 6j,
8j+1 e @(ua) successively. Further, when the integration is done over the sub-
interval [dj, 03+1], the initial function is taken as x(wa)(7), te[dj—hs, 03],
which is obtained from the integration done over the previous sub-intervals.

5. Calculate >fi(iia)(-) by solving backwards in time

- . 2 i W . * » ; K O , * ( » ) ^ ) ( , + A J ) I f_, „,
ft=0 3=0 OX
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with the final condition

= O forattt^T, i= l , . . . , i i , and

= O foralU>r.

Similarly, the integration is done in each subinterval [9jt 9j+1], 03-, 9i+1 e Q(ua)
successively.

6. Calculate

+ i

for each 9y e Q(ua), where fa] means the greatest integer less than or equal to a.
Also find B = 2£l0j8y where y is the largest value that y takes.

7. Compute Ay by

A - gv+i~gy v = = 0 y'
7 ft » ' " > • • • > > ' •

8. Define

where y = 0 , l , . . . , / and ^(y) = 0,l,. . . ,j8y-l. Now assign £(1) = 5(0,0),
6(2) = -5(0,1),.... b(B) = 5(y', Py-l). These are denoted as b(m), m = \ B.

9. Compute the wp(u
a)(b(m)), m = 1, ...,B, by sub-procedure 5 (see equation

(50)), where p is such that &!> < e.
10. Find the m' such that

AH(b(m')) Z AH(b(m)) for all m = 1,..., B,
where

AHQbQnj) = ,

), u°(b(m)),W(u
11. Set )t = 0 and define

«a'°(0 = H'>a)(6(m)), te[b(m),b(m + l)), m = l,...,B.

Go to step 13.
12. (i) If (m' + [BI2k+*]) > B, then we set

(wp(u«)(b(m)), te [b(m),b(m +1)), for me{B- [B/2k], ...,B),

\ua(t) elsewhere,

(ii) If (w' - [BI2k+1]) < 0 then we set

(wp(u
a)(b(m)), te[b(m),b(m + l)), foTme{0,..., [B/2k]},

u«-\i) = •
[ua(t) elsewhere.
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(iii) Otherwise

(wp(u«){b(m)), te[b(m),b(m + \)),
"a'k(0 = for me{m'- [B/2k+1], ...,m' + [fi/2fc+1]},

\ua(t) elsewhere.

13. UJ(ua-k)<J(ua) (where J denotes the cost functional), set

ua+1 = ua'k,

and then a = a+1 and go to step 3. Otherwise go to step 14.
14. If [B/2k+1] = 0 set e = Je and go to step 6. Otherwise set k = k +1 and go to

step 12.

6. A production-inventory model

In this section, a simple model for a production-inventory system is devised and
used as an example for the computational algorithm previously proposed. In this
model, various features of several models [3,5,9] are incorporated to build up a
picture of a firm that suffers real delayed effects in several parts of the governing
processes. The first and most important delayed term arises in the difference
between the managerial decision of the desired production rate and the time when
it is actually implemented. The mathematical expression for this comes from
Mak, Bradshaw and Porter [5],

^(0 = A:[«10-r1)-JP(0], (57)

where P(t) is the actual production rate at time t, ux(t) is the desired production
rate at time ;, and TX is the time delay explained above.

To distribute its goods to the outlets, it is obviously necessary to supply shipment
of the products. Similarly to the first equation, the shipment rate S{i) is compared
to a desired shipment level, SD{t), which thereby determines the rate of change of
S(t). However, instead of taking the desired shipment rate SD(i) as a control
variable it is calculated by an averaged difference, between the sum of unfilled
orders up to time t, Us(t), and the sum of unfilled orders up to time t-r3,
Us(t - r3). Therefore we have

SHt) = «lSdO-S(t)], (58)
where

SD(t) = -[Us(t)-Us(t-r3)]. (59)

With the production and shipment rates now defined, the inventory level /
follows immediately, that is

t(t)=P(t)-S(t). (60)
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The derivative of Us(t) will give the level of unfilled orders at time t,

= U{t). (61)

In turn, the derivative of U{t) will be equal to the demand rate at time t, D(t),
minus the shipment rate at time t, that is,

= D(t)-S(t). (62)

The only factor left to be considered is the demand rate D(t). In this calculation,
the advertising rate A(t) is assumed to play a part. Its effect on the demand rate
contains a weighting factor so that the advertising done at the present will influence
the change in the demand rate more than that done in the past. This is taken into
account by the following equations from Connors and Teichrow [3]

D(t) = - XD(t) + y [' A(j) e-A«-T) dr.
J —CO

(63)

If we now label the last term in equation (63) as the advertising level, F(t), then
(63) can be written as two differential equations

(64)

(65)

If we consider how management are to decide on the advertising level, it becomes
clear that there will be a time difference between the management's decision on the
amount to be spent on advertising and the advertising thus generated. If an
amount t/2(0 is allocated for an advertising campaign then it will take some time
for the advertising agency to devise the campaign and then, finally, present it to
the public. This is represented in our model by

rJ. (66)

Equation (65) now changes to

r(/) = Mr(0 + y«20-r2). (67)

All the state equations can be listed in their final form as

l(t)=P(t)-S{t),

(68)

= «[(v/T3){Us(t)-U8(t-T3)}-S(t)],

Us(t) = U(t),

U(t) = D(t)-S(.t),
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where
on [-7i,0],

on[ - r 2 ,0 ] ,

Us(t)=g(t) on[-T3,0],

and 7(0) = Io, P(0) = Po, 5(0) = 50, U(0) = Uo, D(0) = Do, I\0) = To. Both ft and
j32 are given piecewise continuous functions on [—TX,0] and [—T2,0] respectively,
and g is a given absolutely continuous function on [—T3,0J.

Probably the most important aspect of any model is in deciding which factors
are required to be built into the objective functional so that a realistic evaluation is
presented of the give and take between cost and profit. The profit, if any, can be
deduced from the shipment rate, presuming that costs and prices do not change,
since the more goods the firm ships out, the more money it brings in. On the debit
side, the objective functional has to take account of the extra cost of increasing the
production rate from its lower limit. This lower limit signifies a production rate
that does not include any overtime. Further, the objective functional must also
include the cost of storing goods, the cost of advertising and, finally, the loss of
sales and perhaps "ill-will' from not being able to supply the demand, namely, a
shortage cost. All this brings about the following form of/which is to be maximized

= r
Jo

- CP[P(t) -Pl] - C7/(0 *{/(/)} (69)

-Cv[U{i)-I{t)]e{U(t)-I{t)}-CAult-r^-PlI{tfe{-I{t)}}dt,

where p, denotes the production rate with no overtime worked, e{-} is the unit
step function, and —pzl(t)

2e{-l(t)} is a penalty for having a negative inventory,
which would obviously lead to an infeasible solution.

In order to comply with assumption A(ii), we must smooth out the step function
in the integrand of the objective functional (69). This is done by fitting a quadratic
function in the region — S < x < 0 and another quadratic function for 0 < x ^ 8, in
the following manner,

(0, x<-8,

e(x) = (70)

1, x>8,

where S is "small". Clearly e is then continuously differentiable with respect to
x on (—00,00).

Now the original optimal control problem is approximated by the one that
includes the system (68) but with the objective functional altered to comply with
assumption A, namely (69) with e{-} replaced by £{•}.

https://doi.org/10.1017/S0334270000001697 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001697


[25] A computational algorithm for control 339

Clearly, if 8 is small enough in (70), the solution to the above problem shall not
be very different from that of the original problem. This latter problem is the one
which we shall solve.

With reference to the system (68)-(69), the Hamiltonian and the costate equations
follow respectively from (6) and (4)-(5). Thus,

= 7(0 [Cn

+p(0 [U0 -

+14(0

- cP]+s(0 [R. - U0 - <*<£3(0 - UW

- Ut + Ta»] + U(t) [U0 ~ CV e{U(t) - 7(0}]

i-CA u2(t)e{T-r2-

The costate equations are as follows

- (71)

= ocv/r3(Ut + r3) -

hit) = i4i(f)-Ut),

where ^ ( 0 = 0 for t^T, i = 1, ...,7.
The numerical values given to the coefficients and parameters of the problem are

Rs = 20.0, CP = 10.0, Ct = 1.0, Cv = 3.0,

CA = 2.0, Pi=\.0, a = 2.5, k = 5.0,

v = 1.0, A = 0.05 y = 0.016, T1 = 1.0

T2 = 2.0, T3 = 1.0, fj. = 0.2, p7 = 1000.0.

The initial conditions for the state equations are

7(0) = 0.1, 7>(0) = 2.0, S(0) = 0.6, l/s(0) = 0.8,

C/(0) = 1.0, D(0) = 0.8, T(0) = 0.0,
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The controls are constrained to lie within the following limits

and the initial controls are

^(0 = 2.0, re[-1 ,0) ,

«2(0 = 1.0, re[-2 ,0) .

The time interval studied was from 0 to 25, that is, T = 25.
The most prominent feature in the graphs is the large build-up of inventory at

the beginning. This occurs because, as yet, the product is not well known to the
public as can be seen from the curves representing the demand rate, D, and the
level of unfilled orders, U. To overcome this, the management must spend as much
on advertising as possible, hence the control u2 moves to its maximum level.

At the beginning of the process, the control ux for the production rate drops to
its lower level and then remains there until around / = 15. The use of the lower
production rate, while the product is still building up a market for itself, should
obviously be the case, since the only thing we would achieve by using overtime
would be to increase the inventory even more and, in so doing, increase costs
through overtime wages and warehouse storage prices.

The deciding factor in all of these decisions is the demand rate D. At the
beginning, it is not high enough to warrant overtime production, but this lack of
demand does require the management to spend, as much as possible to get its
product well known. Once the demand rate has achieved a suitable level, then
the maximum amount of advertising can be dropped, and in its place goes the
lower advertising level with only infrequent large advertising campaigns to keep
the product in "demand". At the same time, the decrease in inventory following
the increased demand has brought the inventory down to its "optimal" level, and
therefore the production rate alters between its upper and lower levels to keep it
there.

The other two state variables worthy of mention, the shipment rate S and the
level of unfilled orders U, follow the curve of the demand rate fairly closely,
which is what one would expect.

The final stage appears when we near the end of the time interval. Here, it is
obviously of no advantage to the manufacturer to have any goods left in storage
or to promote its products. So both the production rate and advertising are
reduced to the lower limits at such times that the inventory falls to zero at the
final time.

In this way, the "best" profit of 435 is achieved. This does not mean to say that
this is the best possible figure for the profit functional. Slight improvement of the
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Fig. 1 (a)-(c)- Illustrating the results of the production-inventory model.
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profit functional is still possible. However, it will require a lot of additional
computation time. The results presented in the graphs are obtained by allowing
only one halving of the initial e, which was chosen to be 0.25, as regards to step 14
of the algorithm.

Note that the controls ux and «2 are only decisions made by the managers and
not actual production or advertising. The production and advertising that arise
from these controls occur after the decisions are made, the time differences being
taken into account by the delays TX and T2.

The results of the production-inventory model are illustrated in Figs. l(a)-(c).

7. Conclusions

This paper has presented a computational algorithm for solving a certain type of
time-delayed optimal control problem. The basis of the algorithm was given in
Theorem 4.5. This theorem suggested if u were any non-extremal control, then
we could always construct a new control from u such that the objective functional
would be improved. A simple production-inventory model has been used as an
example to demonstrate the effectiveness of the algorithm.
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