https://doi.org/10.1017/jfm.2022.604 Published online by Cambridge University Press

J. Fluid Mech. (2022), vol. 951, A32, doi:10.1017/jfm.2022.604

F liad?

7~y On u._ﬂ-':?,&
/9 . ':I" v

Experimental observations and modelling of
sub-Hinze bubble production by turbulent
bubble break-up

Daniel J. Ruth!, Aditya K. Aiyer!, Aliénor Riviére!-2, Stéphane Perrard!-?
and Luc Deike!»3¢
'Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540, USA

ZPhysique et Mécanique des Milieux Hétérogenes, CNRS, ESPCI Paris, University PSL, Paris 75005,
France

3High Meadows Environmental Institute, Princeton University

(Received 9 February 2022; revised 17 June 2022; accepted 28 June 2022)

We present experiments on large air cavities spanning a wide range of sizes relative
to the Hinze scale dp, the scale at which turbulent stresses are balanced by surface
tension, disintegrating in turbulence. For cavities with initial sizes dy much larger than
dy (probing up to do/dy = 8.3), the size distribution of bubbles smaller than dy follows
N(d) o< d=3/?, with d the bubble diameter. The capillary instability of ligaments involved
in the deformation of the large bubbles is shown visually to be responsible for the creation
of the small bubbles. Turning to dynamical, three-dimensional measurements of individual
break-up events, we describe the break-up child size distribution and the number of child
bubbles formed as a function of dy/dp. Then, to model the evolution of a population
of bubbles produced by turbulent bubble break-up, we propose a population balance
framework in which break-up involves two physical processes: an inertial deformation to
the parent bubble that sets the size of large child bubbles, and a capillary instability that
sets the size of small child bubbles. A Monte Carlo approach is used to construct the child
size distribution, with simulated stochastic break-ups constrained by our experimental
measurements and the understanding of the role of capillarity in small bubble production.
This approach reproduces the experimental time evolution of the bubble size distribution
during the disintegration of large air cavities in turbulence.
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1. Introduction
1.1. Broader context

Gas bubbles dispersed in liquids provide surface area through which mass can be
exchanged by diffusion. Ocean—atmosphere exchanges of CO;, for example, are enhanced
by bubble-mediated transfer in regions of the globe where high winds lead to high rates
of wave breaking, as entrained air cavities break apart into small bubbles in the turbulent
field under the breaking wave (Deike & Melville 2018; Reichl & Deike 2020; Deike 2022).
Further, many industrial processes involve facilitating gas transfer to a liquid through
bubble interfaces (Schludieter ef al. 2021). In both environmental and industrial scenarios,
the breakage of bubbles by the turbulence of the bulk flow increases the total surface area
through which transfers may occur and modulates the bubbles’ dynamics.

Despite the ubiquity of bubble break-up across disciplines, the physics of bubble
breaking in turbulence remains to be fully understood, as turbulent effects are often
accompanied by buoyant effects and shear in the mean structure of the flow (Risso & Fabre
1998). Further, the fast dynamics of bubble pinching have, until recently, been difficult to
measure experimentally, leaving open questions regarding the final portion of the break-up
process (Ruth et al. 2019). These various challenges have led to a wide variability in the
predictions of models for both the rate at which bubbles break and the sizes of bubbles
they break into.

1.2. Bubble break-up in turbulence

We consider the break-up of a bubble with an effective diameter dy, taken to be the
diameter of a sphere with the same volume. Before considering the turbulent nature of
the liquid around it, the bubble in a liquid is described by the density of the liquid and
gas phases, p and pg, their viscosities j and g, the acceleration due to gravity g and the
surface tension of the liquid—gas interface 0. When the carrier flow in which the bubbles
are dispersed (with velocity u) is turbulent, it is characterised by the dissipation rate of the
turbulence €, which is the rate at which kinetic energy in turbulent fluctuations is dissipated
to heat. The turbulence is composed of fluctuating motions existing over a range of length
scales, extending from larger motions near the integral length scale L;,; (beyond which the
velocity field becomes uncorrelated) down to the Kolmogorov scale 7, at which turbulent
motions are dissipated by the viscosity of the fluid (Pope 2000).

With nine independent physical parameters which span three physical dimensions,
we require six dimensionless parameters to describe the problem of bubble break-up in
turbulence, for which we choose
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where the subscript ‘0’ indicates a quantity refers to an initial condition. The size of
the parent bubble relative to the capillary length scale /.., = /o /(pg) describes the
relative importance of gravity and surface tension effects for the parent bubble. The
large-scale turbulence Reynolds number Re; represents the separation of length scales
in the turbulence. The bubble size relative to the integral length scale dy/L;,;, along
with Re;, describes the spatial separation between the bubble and the turbulence scales.
With Re; > 1 and p/pgqs and 1/ tgqs both fixed constants >> 1 for common liquid—gas
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configurations, we neglect their effect in the rest of the experimental study. The Weber
number of the parent bubble Wegy, which parameterises the balance between turbulent
stresses and surface tension, will be the main parameter of focus.

For a bubble in the inertial subrange of the turbulence (n < d < L), the ratio of
the inertial stresses arising from velocity gradients in the turbulence and surface tension
stresses defines the Weber number, We(d) = Cppe?/3d°/3 /o, with C; = 2, and is central
in the analysis of bubble break-up (Risso & Fabre 1998; Perrard et al. 2021; Riviere et al.
2021). The definition of a critical Weber number for break-up We, yields the Hinze scale

(Hinze 1955),
We.\ 3/ 3/5
dH:< ec) (3) €2/, (1.2)
2 P

and we typically use the ratio d/dy = (We/We.)*/> in place of We. Estimations of We,
vary, and generally involve either considerations of how likely a bubble is to break
apart over some physically relevant time or within some spatial observation window
(Hinze 1955; Risso & Fabre 1998; Martinez-Bazan, Montafnes & Lasheras 1999b; Riviere
et al. 2021), or considerations of the shape of the bubble size distribution resulting from
break-ups (Deane & Stokes 2002). As We,. is influenced by factors such as the buoyancy
and specificity of the turbulent flow, and because the turbulent stresses on a bubble are
stochastic in nature, the Hinze scale as defined in (1.2) represents a soft limit for break-up.
Different experimental and computational set-ups lead to a range of reported or inferred
critical Weber numbers, which typically vary from 1 to 5 (Hinze 1955; Risso & Fabre
1998; Martinez-Bazan et al. 1999b; Vejrazka, Zednikova & Stanovsky 2018; Riviere et al.
2021). In this paper, we use We. = 1, consistent with our results and similar experiments
in a turbulent flow forced by underwater pumps (Vejrazka et al. 2018). We note that
the inertial stresses on a bubble that arise from the velocity slip between the bubble
and the surrounding liquid can induce stresses comparable to those associated with the
turbulence’s inherent velocity gradients at the bubble scale (Masuk, Salibindla & Ni
2021), that eddies smaller than the bubble can also contribute to deformation and break-up
(Luo & Svendsen 1996; Qi et al. 2022) and that the turbulent flow can trigger bubble
shape oscillations (Risso & Fabre 1998; Ravelet, Colin & Risso 2011). These factors will
contribute to bubble deformation and break-up in ways that are not directly parameterised
in the definition of dy.

The bubble size distribution N(d) gives the number density of bubbles with diameter
d, and given the nature of experiments reported in this paper, we define it such that
N(d)dd gives the total number of bubbles with diameters € (d, d + dd). Garrett, Li
& Farmer (2000) proposed that, for bubbles larger than the Hinze scale, a power-law
scaling N(d) o« d~19/° describes the steady-state bubble size distribution, assuming that
the break-up rate scales with the turbulent frequency at the bubble size. This regime
has since been reported in several experiments (Deane & Stokes 2002; Rojas & Loewen
2007; Blenkinsopp & Chaplin 2010) and simulations (Deike, Melville & Popinet 2016;
Wang, Yang & Stern 2016; Soligo, Roccon & Soldati 2019; Chan et al. 2021; Gao,
Deane & Shen 2021; Riviere et al. 2021; Mostert, Popinet & Deike 2022). For smaller
bubbles, the size distribution typically exhibits a shallower slope (Deane & Stokes 2002;
Blenkinsopp & Chaplin 2010), with fewer studies resolving this range of scales and some
variation in the values that have been reported. The N(d) d—3/2 distribution for d < dy
has been observed experimentally (Deane & Stokes 2002) and numerically (Wang et al.
2016; Mostert et al. 2022) for bubbles under breaking waves, though the identification
of a sub-Hinze power-law slope is additionally complicated by the transient nature of
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bubble disintegration (Riviere et al. 2021) and breaking wave (Mostert et al. 2022) events.
Recent work has identified the capillary pinching of gas ligaments created by turbulent
deformations as an origin of sub-Hinze bubbles, with theoretical arguments relating to
the timescale over which such pinching occurs supporting the N(d) oc d—3/% sub-Hinze
scaling (Riviere et al. 2022). Relating measured size distributions to theoretical scalings
derived from break-up physics is complicated by the fact that bubbles’ motions, and hence
their residence time in some experimental domain, are dependent on their size and the
characteristics of the turbulence they encounter (Garrett et al. 2000). Smaller bubbles
or bubbles in regions of more intense turbulence will rise slower than others (see, for
example, Ruth er al. 2021); accounting for these effects requires detailed knowledge of the
size dependencies of the bubbles’ motions.

1.3. Child size distribution and break-up time scales

In this work, we employ experimental observations to describe bubble break-up over a
range of spatial scales: we consider parent bubbles ranging in size from the Hinze scale to
do = 8.3dp, and investigate how they break up to produce child bubbles that may be orders
of magnitude smaller than the Hinze scale. As volume is conserved in any break-up, we

work with bubble volumes V = md?/6 when discussing bubble break-up, denoting parent
bubble volumes by V = A and child bubble volumes by V = §.

Expressions for a break-up kernel f(§; A), for which f(§; A) d§ gives the rate at which
a parent bubble of volume A will break into a child bubble with volume € (6, § + d§)
in some turbulent flow, are informed by experiments and simulations on break-up. Most
experimental studies have involved air bubbles in water under Earth’s gravitational
acceleration, with turbulence in the water generated by one or more jets (Martinez-Bazin
et al. 1999b; Vejrazka et al. 2018; Qi, Masuk & Ni 2020), rotating blades (Ravelet et al.
2011) or by turbulent flow through a reactor or channel (Andersson & Andersson 2006).
Risso & Fabre (1998) performed experiments on bubble break-up in microgravity to
remove the effects of buoyancy, which also contributes to bubble deformation and break-up
and, more recently, Riviere et al. (2021) performed direct numerical simulations (DNSs)
of bubble break-up without gravity, solving the full two-phase Navier—Stokes equations
for a bubble subjected to homogeneous, isotropic turbulence.

These studies have confirmed that the time over which a break-up occurs is controlled by
both the turbulent scales and the bubble’s oscillatory scales. Riviere et al. (2021) showed
that, as a bubble of size dy > dy is introduced to turbulence, it first breaks up after a time

comparable to the eddy turnover time at its scale, Ty, (dy) = eV 3d3/ 3, Experimental
studies have shown that the time over which deformation occurs prior to break-up scales
similarly (Risso & Fabre 1998; Qi et al. 2020). As the deformation of moderately sized
bubbles is also affected by the surface tension, capillary dynamics remain important, as a
bubble’s natural oscillation frequency remains apparent in its shape oscillations (Risso &
Fabre 1998; Ravelet et al. 2011; Perrard et al. 2021). Further, the turbulent turnover time
is typically comparable to the capillary oscillation time at the parent bubble scale for air
bubbles in water at moderate dp/dp, which can lead to a resonance which aids break-up
(Risso & Fabre 1998; Ravelet ef al. 2011).

The break-up frequency w is defined as the inverse of the typical time until a bubble
undergoes a break-up, and is distinct from the (necessarily shorter) typical duration
over which a break-up occurs. Ravelet ef al. (2011) showed that the distribution of
the times until a bubble breaks mirrors the distributions of the times between severe
shape deformations and the times between large instantaneous Weber numbers. The most
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energetic scales capable of deforming a bubble are those at the scale of the bubble, and
experiments from which @ was extracted suggested that the break-up frequency initially
increases with bubble size as the turbulence becomes more capable of counteracting
surface tension, and then decreases for even larger bubbles, as the time required for a
turbulent eddy to act across the bubble scale becomes longer (Martinez-Bazédn et al.
1999b), though this analysis may have missed break-ups in which one child bubble size
is close to the parent size (Lehr, Millies & Mewes 2002). Recent experiments from Qi
et al. (2022) showed that eddies smaller than dy can also cause break-up, and other
theoretical analyses have considered the action of a range of turbulent scales which may
cause break-up. In such models, the product of the rate at which eddies of a given size
interact with a bubble and each interaction’s likelihood of causing break-up are integrated
over a range of eddy sizes (Prince & Blanch 1990; Tsouris & Tavlarides 1994; Luo &
Svendsen 1996; Lehr et al. 2002; Aiyer et al. 2019; Yuan, Li & Carrica 2021), causing the
break-up frequency to increase with the bubble size as more turbulent scales contribute to
break-up.

Various models for the child size distributions p(§; A) have been proposed, most of
which assume that each break-up produces two bubbles. The child size distribution has
been described with a N-shaped dependence on §; that is, the most likely outcome is to
produce child bubbles that are comparable in size to the parent bubble (Martinez-Bazan,
Montaiies & Lasheras 1999a; Martinez-Bazan et al. 2010); or with a U- or W-shaped child
size distribution, in which small bubbles are more likely to be produced than moderately
sized bubbles (Tsouris & Tavlarides 1994; Luo & Svendsen 1996; Lehr er al. 2002;
Andersson & Andersson 2006; Vejrazka et al. 2018; Qi et al. 2020; Riviere et al. 2021,
Yuan et al. 2021). Experimental and numerical evidence suggests that break-ups often
produce just two child bubbles when dy/dy is close to 1 (Vejrazka et al. 2018; Riviere
et al. 2021). However, break-ups at larger dy/dy are more severe and often result in more
than two child bubbles being formed in a single coherent event (Hinze 1955; Vejrazka
et al. 2018; Riviere et al. 2021). Hill & Ng (1996) developed generalised expressions for
p(8; A) as products of power-law relations (each o §%) for @ > —1 and integer numbers
of child bubbles, which by design satisfy constraints relating to the sizes of the bubbles
formed. Their analysis was extended to break-ups with a non-integer average number of
child bubbles by Diemer & Olson (2002).

In the work discussed so far, the role of capillarity has been to counteract the turbulent
stresses and prevent severe deformation, while also providing a resonance mechanism at
moderate dy/dy. However, more recent work has shown that capillarity also plays an
important role late in the break-up process, even after a turbulent stress has decidedly
overcome it. Andersson & Andersson (2006) showed that asymmetries in a deformed
bubble shape can become more pronounced as a bubble breaks apart due to the variation
in capillary pressure associated with the deformation. More recently, Riviere ef al. (2022)
showed that very small bubbles originate not from turbulent motions at very small scales,
but rather from the capillary instabilities of ligaments arising from much larger-scale
deformations.

1.4. Outline of the paper

In this work we address the problem of bubbles breaking up in forced turbulence,
which is applicable to break-up under breaking waves and in industrial reactors. We
probe a wide range of scales, with bubbles ranging in size from the Hinze scale to
d = 8.30dy (corresponding to Weg = 34.0). Further, we resolve the size distribution down
to approximately an order of magnitude smaller than dy, enabling us to identify the way
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in which the sub-Hinze size distribution scales when there is a large separation between
the Hinze scale and the bubbles which break.

The experiment set-up, including the turbulence generation, is detailed in §2. The
results on the disintegration of large air cavities are given in § 3, spanning a wide range
of do/dy. We demonstrate experimentally that a N(d) oc d—3/? distribution below the
Hinze scale is observed when the initial cavity size is much larger than the Hinze scale,
supporting the notion that the capillary pinching dynamics proposed by Riviere et al.
(2022) are effective at producing sub-Hinze bubbles. The dynamically tracked individual
bubble break-ups with moderate dy/dy and resulting child size distributions are discussed
in §4. In § 5 we develop a model for turbulent bubble break-up that unifies the turbulent
inertial dynamics with the faster, capillary pinching dynamics responsible for sub-Hinze
bubble production, ascribing these physical mechanisms to various components of a
modelled child size distribution. The model is informed by both experimental observations
of the disintegrations of air cavities of various sizes and by experimental and numerical
observations of individual break-up events. Concluding remarks are given in § 6.

2. Experimental set-up

This paper presents the results of two separate, complementary experiments, both
involving air bubbles breaking apart in forced water turbulence. In the first, we generate
large cavities of air with sizes much larger than the Hinze scale (with dy/dy between
2.12 and 8.30) and measure the transient evolution of the bubble size distribution as
the cavity disintegrates in successive break-ups. In the second experiment, we introduce
moderately sized bubbles (with dy/dy between 0.4 and 3.7) into the turbulence, and track
the outcomes of their individual break-ups. The turbulence generation is identical in both
set-ups.

2.1. Turbulence generation and characterisation

Turbulence in a 0.37 m> water tank is generated by the convergence of eight turbulent
jets created by four submerged water pumps, as sketched in figure 1(a) and described
in greater detail in Ruth et al. (2021). The flow from each pump is split into two
parallel jets at a Y, with each outlet separated by 7.8 cm, with the centres of the Ys
forming the vertices of a 25cm square in the horizontal plane. Figure 1(b) presents
properties of the flow as characterised in the central plane (y = 0) of the experiment with
two-dimensional, two-component particle image velocimetry (PIV). The background gives

the local fluctuation velocity u’ = ,/(u}z + uéz) /2, where u; = \/ (u; — 1;)*> and overbars

denote averaging in time. Here ’ tends to be largest in the plane of the jets (z ~ 0.01 cm)
and in the region below their convergence zone (x ~ y ~ (). PIV is performed in nine
parallel planes, enabling the three-dimensional interpolation of turbulence quantities at
any location within the measurement domain.

As described in Ruth er al. (2021), we compute the integral length scale L;,; locally
at each point in the flow by integrating the spatial autocorrelation function. It changes
throughout the experiment, being the shortest where the turbulence is the strongest. The
cyan lines in figure 1(b) denote the value of L;, at various locations in the central plane
of the experiment: L;,, is shortest near the convergence of the jets, and grows at lower and
higher depths. With «’ and L;;, calculated from the PIV data, we can then compute the local
turbulence dissipation rate under the assumption of isotropy with € = Ceu’>/Lj,;, with
C. = 0.7 (Sreenivasan 1998), and the Kolmogorov microscale with n = ((M/p)3/6)1/4
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Figure 1. Turbulence generation and characterisation. (a) A sketch of the experiment (not to scale), consisting

of a0.37 m? tank of water in which four pumps, each split to two outlets, are arranged at the corners of a square
in the horizontal plane. The turbulence is characterised with PIV performed separately in nine parallel planes,
with illumination provided by a laser sheet (shown in green). (b) Properties of the turbulent flow field in the
central plane of the experiment. The background shows the local value of #’, denoted by the colour given in the
colourbar. The green dashed rectangle shows the field of view employed in the large air cavity disintegration
experiments. The diameter of the black circles denotes the Hinze scale dy at various x and z. The length of the
cyan rectangles denotes the integral length scale L;,; at those locations.

(Pope 2000). The Hinze scale dy, calculated using (1.2), is denoted at various locations
by the diameter of the black circles drawn in figure 1(b). The Hinze scale is smaller where
the turbulence is more intense, meaning that more bubbles will be larger than the Hinze
scale and susceptible to break-up at these locations. We refer to Ruth et al. (2021) for more
details on the structure of the turbulence field and for maps of turbulent quantities outside
of the central plane.

2.2. Large cavity disintegration experiment

For the experiment on large cavity break-ups, air cavities were produced following
Landel, Cossu & Caulfield (2008) by placing a hollow hemispherical cup with R = 5cm
underwater, sketched in figure 2(a), and bubbling a known volume of air Vy = ndg /6 into
it. Once bubbles in this cup have coalesced into a single air cavity, the cup is inverted
by rotating it rapidly half a revolution, such that the air inside is suddenly no longer
constrained by the curved cup surface. The top surface of the initial volume of air roughly
conforms to the curved inner surface of the cup. The large air cavity, having been suddenly
exposed to stresses from the surrounding turbulence and its buoyant rise through the water,
deforms and starts a complex sequence of break-ups, leading to its disintegration. The
surface of the cup rotates with a speed around 0.4-0.9 ms™!, and we have checked that
this speed does not systematically affect the early stages of the bubble size distribution.
Further, similar experiments run without turbulence yield very little break-up, as evidenced
in Appendix B.

The turbulent flow in the region of the tank imaged in this experiment is denoted by the
green rectangle in figure 1(b). The turbulence varies spatially, so to simplify the analysis,
we take ' ~ 0.2ms !, Li; ~ 1.5c¢cm and n ~ 37 um as characteristic values, which set
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Figure 2. Experiment on large cavity disintegration. (a) Schematic of the experiment. Air is bubbled into an
inverted hemispherical cup located just under the convergence of the turbulent jets, and the cup is rapidly
rotated to expose the air to the turbulence. The experiment is lit from behind (not shown) and filmed with a
high-speed camera. (b) One representative image of a cavity breaking apart, with the cup still slightly visible
at the bottom of the image. (c) The characteristic length scales 1, dy, Leqy and Liy, taken in analysing the data,
the pixel size Ax and the minimum bubble size considered d,,;,, and the diameters of the air cavities studied
(circles). Distributions of the turbulence quantities in the field of view in the centre of the tank (within the
green rectangle in figure 1) are also given in grey.

Experiment dp (cm)  runs We( do/dy do/n do/Lins do/lcap

Cavity disintegration 0.68 20 35 2.12 184 0.46 2.51
0.91 15 5.7 2.84 247 0.61 3.36
1.34 15 10.7 4.15 361 0.89 4.91
1.85 15 18.5 5.76 500 1.24 6.80
2.25 10 25.6 7.00 608 1.50 8.28
2.67 11 34.0 8.30 721 1.78 9.81

Individual break-ups 0.54 £0.17 162 3.1+1.7 1.89£0.64 15650 0.41+0.14 1.99 +0.62

Table 1. Conditions of the experiments. Characteristic values are given for each of the cavity disintegration
cases. For the experiments on individual bubble break-up, the mean and standard deviation among the 162
recorded cases are given for each quantity.

dy = 3.2mm and Re; = 3400. These length scales are denoted in figure 2(c), which also
gives the distribution of the length scales present in the field of view in the middle of
the tank. The mean flow is downwards with W &~ —0.25ms™!, largely counteracting the
buoyant rise speed of larger bubbles. This enables the bubble population to linger in the
measurement region for a sufficient period of time to image it over multiple large-scale
eddy turnover times T,y = Ly /u’ ~ 0.075s.

The cavities range in size between dy/dy = 2.12 and 8.30. Data for each condition, as
well as the number of runs recorded at each, are given in table 1; to build statistical data,
more runs are carried out at smaller dy/dy, because fewer bubbles are formed in those
break-ups.
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One image is shown in figure 2(b). The cup is visible in the bottom of the image as it
has not yet fully rotated out of the field of view. The measurement region, which spans
15.8 cm in the x direction and 8.9 cm in the z direction, is illuminated from the back,
and the disintegration of the cavity is filmed with a high-speed camera at 500 Hz with a
spatial resolution of 38 jum pixel ~!. The field of view is much larger than all the bubbles
considered, so it does not introduce a significant bias related to bubbles whose images
extend partially outside the field of view. Bubbles are detected with an image processing
method described in Appendix A.l, and their effective diameters d are determined as
the equivalent diameter of a circle with the same area as the projected bubble image.
In analysing the data, we consider only bubbles for which d > 400 wm, for which the
detection is less sensitive to the chosen image intensity threshold. Given the typical severe
deformation and overlapping images of larger bubbles (d 2 6 mm), we note that their sizes
will tend to be over-estimated by this method. The air void fraction in the vicinity of the
cavity is high enough that we are unable to track the dynamics of individual break-ups, so
we restrict our analysis to the resulting bubble size distribution.

To account for the limited field of view in our experiments, we adjust the measured
size distributions by keeping a record of bubbles which have left and entered the field of
view. Those which leave are ‘locked’ into the bubble record used in computing the size
distributions, whereas those that enter the field of view are excluded from the calculation
of the size distribution. This process is explained in Appendix A.2 and only has a limited
effect on the results reported in this paper, as we do not consider the size distribution at
late times.

2.3. Individual break-up tracking experiment

In the second set of experiments on bubble break-up, we dynamically track the individual
break-ups of bubbles in the turbulent region. As sketched in figure 3(a), bubbles are
introduced to the bottom of the tank through a needle and rise to the turbulent region.
Two cameras, which are synchronised with a function generator, film at 1000 f.p.s.. They
are oriented 90° from each other and their fields of view overlap in a measurement volume
of approximately 200 cm>. The cameras are calibrated by mapping their pixels to the paths
of the light rays reaching the pixels, following the method presented by Machicoane et al.
(2019). Then, following a method similar to that used in Ruth et al. (2021), we identify
the three-dimensional location of the bubbles which are simultaneously captured by each
camera. The spatial resolution of each camera varies with the position of the bubble, but
the typical value of the two cameras are 28.9 and 57.1 wm pixel~'. An approximate lower
bound for the size of the smallest resolved bubble is then d,;;, ~ 200 pm.

The trajectories taken by the bubbles are then determined using the Python package
Trackpy (Allen et al. 2021), which implements the algorithm from Crocker & Grier
(1996). Such trajectories are shown in figure 3(b). Using the three-dimensional map of
the turbulence statistics obtained from PIV, we compute the bubble’s size relative to the
local Hinze scale d/dy (computed with the local value of €) at each bubble location, which
is encoded in the colour in the figure. The mean dissipation rate at the break-up locations is

€ = 0.52m? s3, with a standard deviation of 0.21 m? s—3. The mean values and standard
deviations of quantities describing the initial conditions for the break-ups studied in this
experiment are given in table 1.

From the bubble trajectories, we identify each time a bubble breaks apart, which occurs
when a new trajectory (or trajectories) appears in the vicinity of a previously existing
bubble. As the tracking algorithm will initially link the parent bubble to only one of the
child bubbles, the parent bubble trajectory is then split at this time, and both child bubbles
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Figure 3. Experiment to obtain dynamic reconstructions of individual break-up events. (a) Schematic of the
experiment. Air bubbles are introduced through a needle at the bottom of the tank and rise into the turbulence
created by the jets. The bubbles are filmed with two high-speed cameras, enabling the determination of the
three-dimensional bubble trajectories. (b) The trajectories of parent and child bubbles involved in one break-up
event, and their projections onto the horizontal (x—y) plane. The colour corresponds to the bubble’s size relative
to the local Hinze scale, which varies spatially with € as the bubble size is fixed. The green dot denotes the first
detected position of the parent bubble; the red dots denote the final detected position of the child bubbles.

are treated equally. These events are denoted by the grey lines connecting the ‘end’ of
one bubble to the ‘beginning’ of another in figure 3(b). Given the complex deformations
involved in some break-ups, the method does not always resolve the fast splitting dynamics
accurately; the break-up child size distributions we report, however, are not sensitive to the
order of events occurring within one break-up event.

3. Size distribution evolution during the disintegration of a large air cavity

Here, we present experimental results on the disintegration of air cavities of various sizes
from the experiment described in § 2.2. First, we qualitatively discuss the break-up of
cavities in two illustrative cases, one close to the critical size for break-up, and one with
a large separation of scales between the cavity and the Hinze scale. Then, we analyse the
transient evolution of the bubble size distributions.

3.1. Disintegration of cavities of increasing sizes

The break-ups of two air cavities, one with dg = 0.68 cm and one with dyp = 2.25 cm,
are shown in figures 4 and 5, respectively. These correspond to non-dimensional sizes
of dy/dy = 2.12 and 7.00, do/Lin; = 0.46 and 1.50 and do/lcqp = 2.51 and 8.28. As a
reference, the constant values taken for L;,; and dy and the initial size of the cavity dj
are denoted in the top-left corner of the first image. In both cases, the hemispherical cup
which had constrained the bubble is visible at early times as it is rotated away.

In the disintegration of the smaller cavity, with dy/dy = 2.12 (shown in figure 4),
the bubble emerges from the cup with a moderate deformation caused by buoyancy and
the surrounding turbulence. Eventually, within approximately one integral-scale turnover
time, the bubble becomes more elongated and breaks into two bubbles. One is near the
parent bubble in size, and other is slightly smaller than the Hinze scale. These two bubbles
persist without breaking for at least ~2 more integral-scale turnover times, at which point
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Figure 4. Disintegration of an air cavity with do/dg = 2.12, involving just one break-up during the interval
shown.

the smaller of the two bubbles is advected out of the field of view by the downwards mean
flow.

The deformation to the larger cavity shown in figure 5 is more severe, leading to a more
complex sequence of events during its disintegration. Upon emerging from the rotating
cup, the cavity is flattened due to buoyancy (as doy/lcqp = 8.28 for this case), and turbulent
deformations to the cavity shape on the order of the cavity size itself quickly develop. By
t/ Ty =~ 0.4, the cavity consists of two lobes (each of which is significantly deformed),
separated by a shrinking neck of air. By the time the neck has pinched apart (¢/7;,; =~
0.7), the two larger child bubbles stemming from the two lobes are accompanied by much
smaller child bubbles (some with d <« dy and d < dp) which were formed during the
collapse of the air neck. The larger child bubbles themselves go on to further break apart
in a chain of break-ups, some of which similarly involve small bubble production via the
collapse of elongated air necks. Many small bubbles which are more than an order of
magnitude smaller than the initial one are eventually visible. At much later times, the
largest bubbles have risen out of the field of view, and the total air volume imaged is
decreased significantly.

3.2. Transient evolution of the bubble size distributions

The experiment was carried out with six values of dy/dy between 2.12 and 8.30, with
10-20 runs taken at each condition, as given in table 1. Note that the largest cavities exceed
the integral length scale in size, so the typical turbulent stress at their spatial scale will be
saturated relative to that predicted by the Kolmogorov scaling employed in the definition
of the Hinze scale. Figure 6 shows the transient evolution of N'(d/dy) = N(d)dy for
each condition (ensemble-averaging the 10-20 runs). Each curve is the dimensionless
size distribution, with the adjustment to account for bubble advection explained in
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Figure 5. Disintegration of an air cavity with do/dy = 7.00.

Appendix A.2, averaged over times within £0.17;,; of the stated time. The number of
bins employed in discretising d is chosen as a function of the number of bubbles present;
a finer resolution is used when the distribution is based on more bubbles. Further, we
show with the dashed red lines a representative noise threshold. This is defined, somewhat
arbitrarily, as the distribution resulting from a total of five bubbles within each d bin (at the
coarsest discretisation) being imaged, each during the entirety of the averaging window,
over the course of the 10-20 experimental runs at each condition. (Therefore, the noise
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Figure 6. Bubble size distributions during the disintegration of cavities with dy/dy between 2.12 and 8.30 and
times up to 477, after the cavity is released into the turbulence. The size of the parent bubble is denoted by the
dashed vertical line. Each distribution integrates to the average number of bubble observed at that condition at
that time. The sub-Hinze power-law scaling exponent becomes approximately —3/2 once a significant number
of break-ups have occurred. The dotted red line denotes a noise threshold discussed in the text.

limit can be reached for a given d by the observation of five bubbles of size d in one run,
or by the observation of one bubble of size d in five separate runs.)

At early times, the distributions for all dy/dy exhibit a peak at dy/dy, denoted by the
vertical dotted lines. For the two smallest cavities (given in figure 6a,b), for which no
break-up was observed during many runs, only a small number of bubbles are formed over
time, and the size distribution near the injection scale does not decrease appreciably with
time.

Over time, as the larger cavities (given in figure 6¢—f) begin to disintegrate, the size
distribution for d < dy begins to be built up. Even among these larger cavities which
produce a considerable number of sub-Hinze bubbles, the increase in the number of
sub-Hinze bubbles is much more pronounced for the cavities that are initially larger
(evidenced by comparing curves for do/dy = 4.15 and dy/dy = 8.30, for example). This
suggests that there is a large separation of scales between the sub-Hinze bubbles and the
parent bubbles responsible for their creation; more simply, large bubbles are needed for the
production of small bubbles. For the largest cavities, the size distribution for sub-Hinze
bubbles eventually follows an N'(d/dy) o (d/dy)® scaling, with oy = —3/2, sketched
on all plots as the dashed line for reference. The final curves shown (for #/T;,; = 4) might
constitute an under-estimation for the bubble size distribution for smaller bubbles, because
some of the bubbles which may break have risen out of the field of view by this time.
Although we expect the size distribution at d ~ dy to decrease with time for these large
cavities, this observation is not clear due to the difficulty in sizing the largest bubbles, due
to their severe deformations.

Now, we consider the size distributions averaged between 27;,; and 47j,. By these
times, a significant number of break-ups have occurred (for larger dy/dg), but a significant
portion of the bubbles have not yet left the field of view, and the bubble size distribution
approaches a constant shape. Figure 7(a) compares the size distributions over these times
for each value of dy/dy. For larger air cavities, the magnitude of N'(d/dy) is increased,
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Figure 7. Time-averaged bubble size distributions. (a) The dimensionless bubble size distribution averaged
between ¢/Tj; = 2 and t/T;,; = 4 for cases with varying dy/dy, denoted by the position of the coloured
notches along the bottom axis. The dotted red line denotes a noise threshold, as in figure 6. (b) The bubble
size distributions based on the diameter normalised by the initial cavity diameter dy. (¢) The exponent
oy of a power-law fit to the sub-Hinze portion of the distributions which are above the noise threshold,
N (d/dy) o (d/dy)* for d/dy < 1, indicating that a N'(d/dy) o (d/dy)~>/? scaling is realised for large
values of dy/dpy.

and the sub-Hinze power-law distribution steepens. The same data are shown in (b),
normalised by the cavity diameter dp instead of the Hinze scale. Larger cavity sizes yield
a ocd 3/ scaling for all bubble sizes.

Figure 7(c) shows the power-law exponent fit to the sub-Hinze portion of the
distributions in (a), N (d/dy) o (d/dy)% for d/dy < 1, for cases with size distributions
above the noise threshold (which is the case for dy/dy > 3). An oy ~ —3/2 scaling,
indicated by the dashed black line, is realised for all these cases. The power-law behaviour
of the size distribution is affected not only by the break-up physics, but is also steepened by
the rising dynamics of the bubbles: as small bubbles rise more slowly than larger bubbles,
they tend to linger in the field of view for longer, increasing their concentrations (Garrett
et al. 2000).

Integrating the transient size distributions over the bubble diameter, the temporal
evolution of the number of resolved bubbles »n (with the minimum resolvable size d,;;, =
0.12dp) is shown in figure 8(a). The grey shaded region denotes the times over which the
bubble size distributions are averaged in figures 7 and 8(b).

Figure 8(b) shows the number of resolved sub-Hinze, super-Hinze and total bubbles,
averaged over the time period considered in figure 7. Again, we see an increase in the
number of bubbles formed with the initial size of the cavity. Further, the number of
sub-Hinze bubbles increases with the parent bubble size more rapidly than the number
of super-Hinze bubbles does, making sub-Hinze bubbles constitute a larger portion of the
bubble size spectrum for larger do/dy. This is remarkable, because as dp/dp is increased,
the span of bubble sizes constituting resolvable sub-Hinze bubbles (di, < d < dy)
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Figure 8. Evolution of the number of resolved bubbles (limited to d/dy > 0.12) with time and the initial cavity
size. (a) Temporal evolution of the average number of all bubbles measured experimentally for different initial
cavity sizes dy/dy. Circles give the values employed in § 5.3.1. (b) The total number of bubbles (black), number
of sub-Hinze bubbles (orange) and number of super-Hinze bubbles (purple) averaged between 275, < t < 4T,
(the region shaded in grey in (a)) as a function of the initial cavity size.

remains fixed, whereas the span of potential super-Hinze bubble sizes (dy < d < dp)
increases.

Taken together, figures 7 and 8 are congruent with the capillary pinching mechanism
for sub-Hinze bubble production proposed by Riviere et al. (2022). Our figures suggest
that their formation relies on the break-up of cavities that are significantly larger than the
Hinze scale: larger values of dy/dy yield the N'(d/dy) o (d/dy)~3/* power-law scaling
in the sub-Hinze bubble size distribution, and the dependence on dy of the number of
sub-Hinze bubbles produced (shown in figure 8b) is steeper than that of the number
of super-Hinze bubbles produced. We propose in the next section an explanation of the
mechanisms leading to this dependence.

3.3. Capillary splitting of ligaments prepared by the turbulence produces small bubbles

Visual observations of the large air cavities disintegrating provide clues into the
mechanism responsible for the production of sub-Hinze bubbles: child bubbles much
smaller than the Hinze scale are seen to originate from a Rayleigh—Plateau-like instability
that occurs during the pinching apart of elongated fluid ligaments prepared by the
turbulence. However, the turbulence is only able to deform bubbles that are large enough
with respect to the Hinze scale that such ligaments might be created, because surface
tension is effective at limiting the severity of deformations to smaller bubbles. These
experimental observations parallel a recent interpretation of DNSs of bubble break-up
(Riviere et al. 2022).

Illustrative examples of bubble break-up are given in figure 9, which shows the typical
break-ups of bubbles of two sizes: one is near the Hinze scale in size (figure 9a), and
another is seven times larger than the Hinze scale (figure 9b). The smaller bubble,
with do/dg = 2.12, is initially deformed into two comparably sized lobes, and the neck
separating the two splits at a single point to form two child bubbles, each of a similar
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Figure 9. Break-up of a bubble initially close to the Hinze scale in size (a, with dy/dy = 2.12) and initially
much bigger than the Hinze scale (b, with dy/dy = 7.00). The deformation to the smaller bubble produces two
comparably sized lobes, which split apart to form two comparably sized child bubbles. The deformation to the
larger bubble also produces two comparably sized lobes, but these are separated by a much more elongated
filament of air. The unstable collapse of this filament produces the small ‘capillary’ child bubble between the
two larger bubbles. The small bubbles in the lower left of the image were produced in previous break-ups.

scale as the parent. Here, the parent bubble is small enough that surface tension is able to
prevent significant deformation during the break-up.

The larger bubble, with dy/dy = 7.00, is similarly deformed by the turbulence into two
comparably sized lobes prior to pinch-off. However, the filament of air separating the
two just prior to pinch-off has become significantly more elongated than the neck in the
break-up of the smaller bubble. This elongation opens the door to capillary instabilities
along the filament during its collapse: in the instance shown in figure 9(b), the filament
pinches apart at two separate points, leaving a small child bubble (with d < dy) between
the two lobes.

The two examples of break-up discussed illustrate two mechanisms present in the
break-up of bubbles by turbulence. The first is the deformation of the parent bubble by
a turbulent structure, likely on the spatial scale of the parent bubble itself. This brings
the bubble to an unstable state consisting of two lobes (which will become what we
call the ‘inertial’ child bubbles) separated by a neck of air, which begins to pinch apart
under capillarity. When the deformation to the bubble is severe enough, this ligament
can take on an elongated, deformed shape. Its pinching can become unstable under a
Rayleigh—Plateau-like mechanism, leading to the formation of small ‘capillary’ bubbles.

Figure 10 shows an additional five instances of deformed ligaments undergoing a
capillary instability to produce sub-Hinze bubbles. Prior to break-up, the parent bubbles
shown are highly deformed, reaching (from the case in the top row to the case in the bottom
row) 10.0dy, 8.7dy, 8.2dy, 7.4dy and 8.0dy in their longest axis in the images. The
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Figure 10. Five cases of sub-Hinze bubble production by the unstable collapse of a deformed ligament. Each
row shows four snapshots in time, spaced 10, 4, 2 and 0 ms before the time at which the sub-Hinze bubbles are
first visible. The field of view in the final two columns is given by the blue square in the second column. Prior
to break-up, the parent bubbles shown are highly deformed, reaching (from the case in the top row to the case
in the bottom row) 10.0dy, 8.7dy, 8.2dy, 7.4dy and 8.0dy in their longest axis in the images.
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aspect ratios of ellipses fit to their images prior to break-up range from 2.9 to 3.8. Many
cases do not solely involve one ligament separated by two well-defined lobes; turbulent
deformations make the bubble shapes more irregular. However, in all instances, very small
bubbles (some more than an order of magnitude smaller than dy) are produced as an air
ligament involved in the turbulent deformation collapses unstably.

This description is clearly a simplified understanding of the bubble break-up process,
as it does not capture the redistribution of air due to a capillary pressure difference
between lobes that may be responsible for the formation of small bubbles (Andersson
& Andersson 2006), nor does it describe the ‘tearing off’ of very small bubbles
that we observe occurring to large parent bubbles more frequently than 1/7,,(dp).
However, the framework serves as a bridge between the inertial deformations to a bubble
by the turbulence and the later-time collapse dynamics instigated by capillarity. This
understanding mirrors the description of bubble pinch-off in turbulence given in Ruth
et al. (2019), in which we showed that turbulence sets an ‘initial’ deformed bubble shape
before the collapse dynamics overtake the turbulent dynamics. Once the inertial collapse
of the neck becomes fast enough (equivalently, once the neck becomes small enough),
however, the turbulence effectively ‘freezes’ in place relative to the accelerating collapse
dynamics. The end result is that the final stage of the pinching process (in this case, the
production of small bubbles through the capillary instability of gas ligaments) is affected
by the turbulence only insofar as the turbulence sets the ‘initial condition’ on which the
remainder of the process evolves under capillary and, eventually, inertial dynamics.

4. Individual break-up event dynamics

So far, we have considered the transient size distributions N (d/dy) that result from air
cavities with dy > dpy disintegrating in turbulence. In this section, we focus on individual
break-up events that are tracked in three dimensions as described in § 2.3; these events are
the building blocks for the disintegration of larger cavities.

We characterise the break-up events over their typical time scale, which is given by

the eddy turnover time at the parent bubble’s scale, Ty, (do) = e/ 3d(2)/ 3, following
discussions from Risso & Fabre (1998), Martinez-Bazan et al. (1999b) and Riviere et al.
(2021).

4.1. Qualitative discussion of the break-up sequences

One break-up producing m = 2 child bubbles is shown in figure 11 and one producing
m = 4 bubbles is shown in figure 12. In each, images throughout the break-up sequence
are shown in panels (a)—(c), and the three-dimensional trajectories taken by the bubbles
involved are shown in panel (d). At each point, the bubble’s size is computed relative to
the local Hinze scale, and d/dp is encoded in the trajectory colour. The spatial scale is
given in terms of the integral length scale at the break-up location, L;,; o, showing that the
bubble trajectories are resolved over multiple integral length scales. Panel (e) shows the
dimensional diameters of the bubbles involved over time.

In the case of binary break-up, given in figure 11, the parent bubble enters the imaged
volume from the foreground, and quickly encounters a region of more intense turbulence,
where dy/dy increases. Eventually, having become deformed, the bubble pinches apart
into two child bubbles, each of which are comparable in size to the parent. Both child
bubbles persist in the field of view for at least a tenth of a second (approximately an
integral-scale turnover time) without breaking.
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Figure 11. One dynamically tracked bubble break-up involving the production of m = 2 child bubbles. (a—c)
Images recorded by one of the two high-speed cameras throughout the sequence. (d) The trajectories taken by
the bubbles involved, with their size relative to the Hinze scale encoded in the colour. The green circle marks
the first observation of the parent bubble and the red circles mark the final observation of the child bubbles.
The side length of the square shown is given in terms of the integral length scale at the break-up location. (e)
The ‘family tree’ for the single break-up, giving diameters of the bubbles present at each point in time. Fainter
lines give the instantaneously measured diameters and straight lines give the median for each bubble, which is
the quantity we consider in our analysis.

In the more complex break-up shown in figure 12, the parent bubble similarly traverses
from a region of less-intense turbulence to more-intense turbulence, increasing the value
of dy/dy. Eventually, at t = 0.170s (figure 12a), the bubble becomes elongated in the
vertical direction, and in a sequence of two rapid splitting events produces the three child
bubbles that are visible at t = 0.192's (figure 12b). One is still larger than dp, one is of
the order of dy and the third, left between the two, is smaller than dy. The bubble of the
order of the Hinze scale is still significantly deformed, the capillary dynamics involved
with the break-up not yet having relaxed. A short time later, by r = 0.201 s (figure 12¢), an
additional bubble has split from it, leaving a total of four child bubbles.

4.2. Identification of break-up events

We identify bubble break-ups like those shown in figures 11 and 12 as being sequences

of bubble splitting events not exceeding the eddy turnover time at the parent bubble scale,

Tourp (do) = €~V 3d(2)/ 3. To enforce this temporal constraint, we first construct a ‘family

tree’ of all splitting events recorded in one run. Then, if any bubble is present at a time
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Figure 12. One dynamically tracked bubble break-up involving the production of m = 4 child bubbles. (a—c)
Images recorded by one of the two high-speed cameras throughout the sequence. (d) The trajectories taken by
the bubbles involved, with their size relative to the Hinze scale encoded in the colour. The green circle marks
the first observation of the parent bubble and the red circles mark the final observation of the child bubbles.
The side length of the square shown is given in terms of the integral length scale at the break-up location. (e)
The ‘family tree’ for the single break-up, giving diameters of the bubbles present at each point in time. Fainter
lines give the instantaneously measured diameters and straight lines give the median for each bubble, which is
the quantity we consider in our analysis.

T (dp) beyond the initial detected break-up of the first bubble (with diameter dy), we
truncate the family tree at that bubble and start a new family tree with the same bubble
(if it later breaks apart). After doing so, we store the sizes of the parent bubble and
child bubbles, as well as the turbulence characteristics spatially interpolated at the initial
break-up location. To remove spurious break-ups, we discard those for which the sum of
the calculated volumes of the m child bubbles is less than 50 % of, or more than 200 % of,
the calculated volume of the parent bubble.

In total, we captured 162 bubble break-ups with this dynamical tracking approach that
fit the volume conservation criteria. Figure 13(a) shows the distributions of the break-up
conditions (the Hinze scale at the break-up location and the parent bubble size) for the
aggregated dataset, which we later break down by the parent bubble’s size relative to the
Hinze scale. The parent bubble diameter dj is typically slightly larger than the Hinze scale,
as the distribution of dj (the green line) is located just to the right of that of dy (the dashed
red line). Thus, the break-ups we capture in this experiment have dy/dy ~ 0.4-3.7. The
black curve shows the distribution of the sizes of child bubbles formed during break-ups,
integrating to the average number of bubbles formed per break-up event.
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Figure 13. Results on individual bubble break-ups. (a) Distributions of the Hinze scale at the break-up location
(red), parent bubble sizes (green) and the child bubble sizes (black). (b) The Hinze scale at the bubble’s
break-up position (vertical axis) as a function of the Hinze scale at the bubble’s position one bubble-scale
turnover time prior to break-up (horizontal axis), for the 52 % of cases in which the bubble was in the volume
resolved with PIV at this time.

To gauge the effect of inhomogeneity in the generated turbulence, we consider how
the local turbulence intensity experienced by the bubble (in a Lagrangian sense) varies
over timescales relevant to the bubble’s break-up. Ideally, a bubble would not be advected
through statistically inhomogeneous turbulence during the course of its break-up. Denoting
the Hinze scale at the bubble’s location at time ¢ as dy(t), figure 13(b) shows the Hinze
scale at the break-up location dy(#p) as a function of the Hinze scale at the bubble’s
location one bubble-scale eddy turnover time prior, dgy(ty — Tyb(dp)) for the 52 % of
observed break-ups in which the bubble is inside the volume resolved by PIV (in which
we are able to compute dy) at this point in time. There is little difference between dg (t9)
and dy(tg — Tup(dp)), suggesting that the local turbulence characteristics experienced
by the bubble do not change appreciably during the break-up, and that the turbulence is
homogeneous over scales relevant to the break-up.

4.3. Child size distribution

Now, we compute the dimensionless bubble child size distributions conditioned on the
approximate dimensionless parent bubble size, P;(d/dn; do/dn). The data is averaged
over three ranges of dy/dy (the ranges between [0.3:1.55], [1.55:1.93] and [1.93:3.70]),
and results are shown in figure 14(a). As do/dpy is increased, the dependence of P, on
d/dy becomes steeper. The dashed line gives the Py (d/dy; do/dy) o (d/dy)~3/? scaling,
which is approached for large do/dy due to the production of small bubbles by capillary
instabilities (Riviere et al. 2022). Qualitatively, the child size distribution for smaller
parent bubbles is flatter near the Hinze scale, whereas that for larger parent bubbles
increases more rapidly with decreasing bubble size as a power-law relationship. Note that
the child size distribution is defined so that it integrates to the average number of child
bubbles formed.

This representation of the child size distribution masks the large number of bubbles
formed very close to the parent bubble size. To capture these small bubbles, we also
compute the volumetric child size distribution, normalised by the volume of the parent
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Figure 14. Dimensionless bubble break-up child size distributions for various approximate values of do/dg.
The value give for each curve (which is denoted by the notch on the horizontal axis) corresponds to the mean
value of dy/dy for that curve. (@) The distributions of child bubble diameter normalised by the Hinze scale.
(b) The volumetric child size distribution, with child bubble volumes normalised by the parent bubble volume,
which is approximated as the sum of the resolved child bubble volumes.

bubble Vj. As the determination of the volumes of larger bubbles is difficult given their
deformations, we approximate the parent bubble volume as the sum of the volumes
of the child bubbles, and consider (d/dp)* ~d°/ Y I, d> (Vejrazka et al. 2018). The
distribution of these dimensionless volumes is shown in figure 14(b), exhibiting a U shape
that is not strongly dependent on dp/dp (though we again see increased small bubble
production with larger do/dp). For smaller parent bubbles, which largely undergo binary
break-up, the distribution is nearly symmetric about (d/dp)> = 0.5. The large values of
these distributions near 1 suggest that in many break-up events, small bubbles are ‘torn
off’ of the parent bubble, without inertial deformation producing multiple child bubbles
of sizes comparable to that of the parent. We note that the resolution of our experiment (in
which the smallest bubble we can detect is approximately 200 jum in diameter) limits the
number of bubbles detected.

4.4. Small bubble production without significant inertial deformation

In many of the break-ups we observe in the large cavity disintegration and individual
break-up experiments, small bubbles were seen to be ‘torn off’ from a parent bubble,
without an appreciable large-scale deformation to the parent bubble. These events are
reminiscent of tip-streaming (Montanero & Gafdn-Calvo 2020). This phenomenon is
evidenced by the right-hand side of the U-shaped child size distributions shown in
figure 14(b), as a child bubble that is nearly the size of the parent is the signature of such
break-ups. To understand these events, we present in figure 15 a qualitative discussion
of the dynamics of individual splitting events. For each splitting event, we compare the
velocity of the parent bubble at break-up vpqrens (denoted by the grey arrow in figure 154)
with the displacement between the parent bubble’s final position Xpqens (the grey circle)
and the initial positions at which the child bubbles are detected x;;;s (the black circles).
The child bubble’s initial detected position ahead of or behind the parent bubble, x =
Vparent * (Xchild — Xparent)/ (U Lin:), normalised by turbulence quantities, is then computed
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Figure 15. Statistics of the positions of bubbles after splitting events. (a) A sketch of a splitting event involving
small bubble production, including the parent bubble velocity at break-up and the final and initial positions,
respectively, of the parent and child bubbles. (») The initial child bubble position relative to the parent bubble’s
motion, «, for each splitting event (circles), as well as the mean value conditioned on the normalised child
bubble size (black line). Here « < 0 denotes bubble production behind the parent bubble, whereas « > 0
denotes bubble production ahead of the parent bubble.

and is plotted against the child bubble’s size relative to the parent size in figure 15(b). The
colour of each marker denotes the size of the splitting event’s parent bubble relative to
the Hinze scale. The black line shows the expected value of « given the normalised child
bubble size. Smaller child bubbles (with dsiia/dparens < 0.6, below which the mean value
of ¥ becomes negative) tend to be left in the wake of the parent bubble (x < 0), whereas
larger child bubbles tend to be produced ahead of the parent bubble (x > 0).

Although the conceptual picture for break-up discussed in § 3.3 describes the role of
capillarity during break-ups involving large-scale deformations, it is likely that break-ups
solely involving small bubble production are also regulated by capillarity: in these cases,
a turbulent motion smaller than the parent bubble may succeed in producing a ligament
which extends off of one side of the parent, and this ligament may pinch apart into many
small bubbles in a capillary instability as it is retracted back into the bulk of the parent
bubble. Specifically, figure 15 suggests that the bulk of a bubble may often be swept
forward by a turbulent eddy, and the trailing ligament may become unstable as it ‘catches
up’ with the rest of the parent bubble. Similar to the framework presented in § 3.3, the
process is initiated by a turbulent deformation to the parent and ends with the capillary
instability of a ligament involved in the deformation.

5. A model for bubble break-up
5.1. Physical ideas

The experiments presented in §§ 3 and 4, taken together with the existing literature, point
to three important time scales that must be considered in developing a population balance
model: the inverse of the break-up frequency, the break-up duration and the capillary
pinching time.

The longest of these is the typical duration until a break-up occurs; that is, the inverse of
the break-up frequency, 1/w(dp). This time scale will control how many break-up events
will occur over a given time and will be a function of dy/dy. The second timescale is that
over which a break-up typically occurs, or the event duration (i.e. lasting from the start of
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the deformation until the child bubbles have all been formed), and will also be a function of
do/dpy. The break-ups taking the longest time will be those instigated by the largest eddies
capable of causing break-up, which are taken to be those at the parent bubble’s scale (Luo
& Svendsen 1996). Thus, an upper bound and typical scale of the break-up duration is

taken to be the eddy turnover time at the parent bubble’s scale, Ty, (dp) = eV 3d2/ 3 i
agreement with experimental and numerical observations of the time over which bubbles
are deformed prior to break-up (Risso & Fabre 1998; Martinez-Bazan et al. 1999b; Riviere
et al. 2021). The final timescale we consider is that of the capillary instabilities of gas
ligaments that produce a small child bubble of size d, which will occur over the capillary
timescale of that child bubble, Teq,(d) = (p/y)"/2d3/?/(24/3) (Riviere et al. 2022).

From these three relevant time scales, we define three types of events. At the shortest
time, we define the individual binary splitting events. For the production of bubbles with
d < dy, we have T.qp(d) < Tyyp(dp). At the eddy turnover time, we define a break-up
as being a sequence composed of all the splitting events occurring in a time bounded
by ATpreak-up = Trurb(dp), which permits the production of more than two bubbles in
a single event (similar to the definition used for drop break-ups by Solsvik, Maall &
Jakobsen 2016). Finally, following the nomenclature from Hinze (1955), a disintegration
is a longer-duration process involving an arbitrary number of break-ups.

These timescales are sketched in figure 16, which illustrates two break-up events that
stem from a bubble of diameter d4 encountering turbulence. The deformation to the
parent bubble that instigates the break-up is assumed to happen within a time 7y, (ds)
before the first bubble splits from the parent. Then, within an additional time bounded
by Tup(ds), subsequent splitting events occur due to capillary instabilities arising from
the deformation. One such instability produces a bubble with diameter d¢, and the time
over which this instability develops is set by the capillary timescale at the smaller child
bubble size, Teqp(dc). Later on, one of the child bubbles produced in the first break-up,
with diameter dp, itself breaks up.

Using these ideas, we propose a population balance model that integrates these physical
elements and models the evolution of a bubble size distribution with a Boltzmann transport
equation using the bubble size as an internal coordinate. The population balance model
considers a break-up rate kernel f, constructed from child size distributions computed
through a Monte Carlo approach (constrained by results from experiments and DNSs,
informing the number of children and the shape of the distribution) and a parent bubble
break-up frequency taken from the literature. With the kernel defined, we integrate
the model in time to simulate the evolution of the size distribution during a cavity
disintegration and compare to our experimental data.

5.2. Population balance modelling

In a confined region of homogeneous turbulence, the transient evolution of the
absolute dimensionless volumetric bubble size distribution /\/'V(f/) =Ny(V)Vyg =
N (d/dH)/(3(d/dH)2) where Ny (V) is the absolute dimensional volumetric size
distribution, V = V/Vy, and 7 = t/ T}, is described by

INV(V, n_ NV(V D)

o1 m) (V)

where the first term on the right-hand side gives the rate of consumption of bubbles
of volume V due to their break-ups and the second term on the right-hand side gives

/ F(: V)dS—i—/ Nv(A, DF(V; A)dA, (5.1)

the rate of production of bubbles of volume V due to the break-ups of larger bubbles
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Figure 16. Sketch of two bubble break-ups and the associated timescales, with Ty, (d) = e 13423 and
Teap(d) = (p/ y)'/ 2432 / (2x/§). The grey vertical lines denote the times associated with each of the two
break-ups. The shaded region to the left bounds the time over which the deformation to the parent bubble is
assumed to occur (the turbulent timescale at the parent bubble size) and the region to the right of the line bounds
the time over which the subsequent splitting events are assumed to occur (also taken to be the same turbulent
timescale). During the subsequent splitting events, the capillary timescale at the size of the smaller child bubble
sets the time over which the splitting event occurs (Riviere et al. 2022). The time between break-ups is set by
the inverse of the break-up frequency w of the bubble which is to break, which we address later in the paper.

(Martinez-Bazén et al. 2010). The break-up kernel f(5; A) = f(8; A)VyTi can be
decomposed into a parent break-up frequency and volumetric child size distribution with
f‘(g; A) = @(ﬂ)ﬁ(g; A), with the dimensionless break-up frequency & (A) = o(d)Tin
and dimensionless volumetric child size distribution 13(5 ; A~) = p(8; A)Vy. Thus, we can
move @(A) outside the integral in the first term on the right-hand side and invoke

fo 13(5' \7) ds = (m )(\7) with (m )(\7) the average number of bubbles formed in the

break-up of a bubble of volume V, to express the bubble consumption term as simply
—./\/V(V t)a)(V) Note that we define p(8 A) so that it integrates over § to the average
number of child bubbles formed by the break-up of a bubble of volume A.

5.3. Construction of the child size distributions

We develop a parameterisation of the break-up volumetric child size distribution p(5; A)
that accounts both for child bubbles produced by both the slower inertial mechanism
(occurring over the eddy turnover time) and the faster capillary pinching mechanism
(occurring over the capillary timescale of the small child bubbles) using a Monte Carlo
approach. We consider a set of rules constrained by our experimental and numerical
observations describing the outcomes of individual break-up events, then aggregate the
outcomes of these events into child size distributions.

5.3.1. Statistics on the number of child bubbles formed
A key step in modelling each break-up is to constrain the distribution of the number
of bubbles formed in each event. To this end, we first consider the data from our

951 A32-25


https://doi.org/10.1017/jfm.2022.604

https://doi.org/10.1017/jfm.2022.604 Published online by Cambridge University Press

D.J. Ruth and others

a) 102 b) 100
( ) —&— Dynamical data ( ) ™ 4
Cavity disintegration data &
% DNS (Riviére ef al. 2021) % X 3
& Vejrazka et al. (2018) iy - =
= \ 2=
% X 1071 \\
Y AN u
{m) 11 ¥ S AN . Wy
*‘g L; m A l\;\, [ ]
PieAd S 10—2 **\\ .
i A d \\
g N
\\
100 - 103 . . N
100 10! 0 2 4 6 8 10
dy/dy, m'/{m')

Figure 17. Experimental data on the number of child bubbles formed in each break-up. (a) The average
number of resolved bubbles (with d,,;,/dg = 0.07) formed in each break-up event (m) as a function of the
dimensionless parent bubble size. The shaded region shows =+ one half of a standard around the mean for
our dynamical data. Open circles give data from the disintegration of the three largest cavities and closed
circles give those data with an adjustment for the differing spatial resolution. Open stars give data from DNSs
from Riviere er al. (2021) and closed stars give those data with the spatial resolution adjustment. The open
grey markers give data from experiments reported by Vejrazka er al. (2018). The thick orange line is the
parameterisation given in (5.2). (b) The p.d.f.s of m'/(m') = (m — myn)/({m) — my;,) for the experiments
(squares) and DNSs (stars), along with the exponential fit employed in the Monte Carlo simulations.

dynamical experiments given in § 4. The average number of child bubbles larger than the
experimentally-resolvable minimum size d;,/dg ~ 0.07, (m), is shown in figure 17(a).
As the parent bubble increases in size, more child bubbles are typically produced.
Given the steep dependence of j(8; A) on &, we must qualify each observation of m
with the minimum resolved bubble size to better enable comparisons between different
experiments. For compactness, however, we take all m values to be the number of resolved
bubbles larger than 0.07dy unless otherwise noted. Our experimental observations of (m),
binned by dy/dy, are shown in the black squares and the grey region around them bounds
= one half of a standard deviation around the mean.

Next, to consider the number of bubbles produced in the break-ups of larger bubbles,
we turn to data from the disintegration of the three largest cavities presented in § 3. With
the assumption that the initial splitting event happens nearly instantly after the bubble is
released into the turbulence, to apply the same definition of the duration of the break-up,
we define (m) for this dataset as the number of resolved bubbles present after one eddy
turnover time 77,4 (dp) = eV 3d§/ 3 has elapsed after the cavity release, which are denoted
by the open circles in figures 8(a) and 17(a). We invoke (C1) to apply a slight adjustment
to these numbers in order to extrapolate results to the finer spatial resolution of the
tracked break-up experiment, as discussed in Appendix C. The number of bubbles in the
extrapolated range constitutes about 30 % of those in the observable range. These adjusted
values are shown as the filled-in light blue circles in figure 17(a).

We have additionally re-analysed the DNSs of bubbles breaking in homogeneous,
isotropic turbulence presented in Riviere et al. (2021, 2022), tracking the bubble break-up
events in a similar way to what has been done on the experimental data in § 4. From these
DNSs, we can compute the average number of bubbles formed per event as a function of
the parent bubble size, included in figure 17(a) as the red star markers. Open stars give
the original observations, for which d,,;,,/dg = 0.25, whereas the filled-in stars give the
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number adjusted for the spatial resolution. Note that while we consider We, = 1 for the
experimental data, the value of dy for the DNS is given by We, = 3 (Riviere et al. 2021).

Finally, as a comparison, the open grey markers show the (un-adjusted) number of
bubbles detected experimentally in break-ups by Vejrazka et al. (2018), in which break-ups
varied in € and dy (which is denoted by the marker shape). As shown in their paper, once
collapsed to dy/dy, the dependence on the dimensional bubble size nearly disappears.

The four datasets (our two experiments, those from Vejrazka et al. (2018), and DNSs
from Riviere et al. 2021) produce a coherent picture regarding the number of bubbles
formed. When dy/dy is small, break-ups tend to be binary, producing on average two
child bubbles after Ty,,;(dy). As dy/dy increases, the number of child bubbles increases.
Surface tension is less effective at preventing the severe deformation of larger bubbles,
leading to more complex deformed bubble shapes that yield a greater number of child
bubbles. The orange curve in figure 17(a) shows a fit to the data of the form

by
(m) = iy - L (52)
1
where m,,;, = 2 and the fit constants are b; = 4 and by = 2.3.

Figure 17(b) compiles experimental and DNS data on the distribution of the number of
child bubbles produced for increasing dy/dy. The probability density functions (p d.f.s)
of m' /(m') are well-described by an exponential function exp(—m’/{m’)), with m’ = m —
Mpin and (m') = (m) — my;y, for both the experiments (shown as the squares) and DNSs
(shown as the stars). Thus, for any parent bubble size we can write the p.d.f. of m’ as an
exponential distribution,

/ /
r(m'; do/dy) = W, m >0, (5.3)

with (m’) + my;, the mean number of children, a function of the parent bubble size.

5.3.2. A stochastic model for each break-up
The Monte Carlo approach involves running many iterations of a stochastic model and
developing a statistical representation of the aggregated results. Each discrete simulation
of a break-up mirrors the physical processes involved: the bubble, sketched in figure 18(a),
is first deformed into two lobes, shown in (), and then some number of capillary bubbles
are created as the neck separating the lobes collapses to create the two inertial child
bubbles. ~
For each iteration (i.e. one simulated breakup) at a given value of A, we first define the
number of bubbles m that will be produced by picking a value of m’ from the distribution
r(m do /dH) given by (5.3), adding m,,;, = 2, and rounding to the nearest integer. We pick
Smm = 0.073 in order to match the experimental dataset on which the parameterisation of
) is based. As we show, once the p.d.f.s have been constructed for this given value of

(m
Smm, it is stralghtforward to extend them to lower or higher values of Smm

For cases in which m > 3, the capillary mechanism produces m' =m — 2
bubbles, whose sizes follow a o 8% distribution with o = —7/6 (corresponding to
the Py(d/dn; do/dn) o (d/dy)~3/% scaling described by Riviere er al. (2022), as
distributions in diameter are related to those in volume by Py(d/dy; do/dy) =
3(d/dH)213(<§; A~) (Martinez-Bazan et al. 2010; Qi et al. 2020)). As is sketched in
figure 18(c), the volume Scap,i of capillary bubble i is picked from a power-law distribution

with slope «, bounded between &,,;, and the maximum allowable volume for a capillary
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Figure 18. Process of simulating one break-up with the Monte Carlo approach for a bubble of volume A,
shown in (a). (b) First, the bubble is taken to be deformed into two lobes, separated by a neck of gas. (¢) Next,
the sizes of the m’ = m — 2 capillary bubbles are picked from a 8611], distribution. (d) Finally, the sizes of the

two inertial bubbles 5inemal. ; are picked from a uniform distribution over the remaining parent bubble volume
(that which has not gone to the capillary bubbles).

bubble given the previously produced bubbles, Swp,mw{,,‘. For the production of the first
capillary bubble, we set Scap,max,l = A (noting that the steep slope of Py(d/dy; do/dn)
with respect to d/dy makes the production of capillary bubbles this large uncommon) For
the production of the remaining capillary bubbles, we set Swp max.i = A— Z 5mp J-
At each step of the process, if Smp, is greater than 8cap max.i/2, we replace it with

8cap max,if 2 — SCap i» such that for any splitting event, the smaller of the two produced does
not further split.

Once the volumes of the m capillary bubbles are specified, we must determine the
volumes of the two inertial bubbles. To that end, we first compute the portion of the parent

bubble volume that has gone to the capillary bubbles, x.qp = 22":/ 1 Scap, i/ A. The size of
the first of the two inertial child bubbles S,-nemal,l is drawn uniformly from the remaining
bubble volume, (1 — pr)j, and the second is taken as its complement, Sinertial,2 =(1-
)(Cap)A~ — Sinertial, 1. Once this is done, the volumes of all child bubbles produced in this
single break-up have been determined. The uniform distribution for gmer,,-al,] is chosen for
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Figure 19. Volumetric child size distributions constructed via the Monte Carlo approach. (a) Volumetric child
size distributions p(8; A) for five values of the parent bubble size A. Distributions compiled from the Monte
Carlo simulations are given by the thin lines, whereas the thick fainter lines give the fits using (5.4). The two

components of the fit form of the distribution are illustrated for A = 10. (b) The average capillary fraction
{Xcap) calculated from the ensemble of simulations, as a function of the parent bubble size. (c) Fit values of the

exponent y(A~) employed in (5.4). Data for the curves in this figure and Python code to construct [7(5 ; A~) are
available online as supplementary material.

simplicity, and future work is warranted to better describe the distribution of the sizes of
the large bubbles formed by inertial deformations.

5.3.3. Aggregation of simulated break-ups into child size distributions
For a given value of dy/dy (or the equivalent normalised volume A= (do /dH)3), the
process of simulating one break-up stochastically is repeated ny;c = 107 times.

For each A, the sizes of the bubbles produced in each of the nyc events are aggregated,
and the distribution of all these child bubbles defines the volumetric child size distribution

[)(S; A). The distribution is normalised such that fo f)(g; A) = (m)(j), with (m)(A~)
the average number of bubbles formed. As the size distribution is aggregated from

geometrically plausible break-ups, it itself must satisfy any constraints relating to the sizes
of the bubbles produced. Figure 19(a) shows the volumetric child size distributions for

five values of A. When A is small, the child size distribution is nearly uniform, as the
capillary production mechanism is negligible for small bubbles; for moderate A, the child
size distribution exhibits a p oc 8 scaling for small bubbles, while remaining close to flat
for bubbles near the parent bubble size. For even larger bubbles, for which the capillary
production mechanism is the most effective, the entire distribution approaches a 5 scaling.

For each A, we also obtain ( Xcap)(j)’ shown in figure 19(b), by averaging the portion
of the parent bubble volume going to the capillary child bubbles x., over the nyc events.
When A < 1, Xcap ~ 0, and essentially all of the parent bubble volume goes to the two
inertial child bubbles. With larger A, Xcap increases, reaching x.qp = 0.1 at A = 60. Even
at A = 1000, less than half of the parent bubble volume goes to the capillary bubbles.
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We then fit each volumetric child size distribution as a sum of two components, each
stemming from one of the two mechanisms of child bubble production,
P& A= a®HFD 4+ b (5.4)
——

——
inertial mechanism  capillary mechanism

with @« = —7/6 set by the distribution from which the capillary bubbles are picked and
¥ (A) chosen to match the aggregated Monte Carlo simulation data. The two remaining

coefficients, a(A) and b(A), are constrained by the volume going to bubbles produced by
each mechanism, leading to

o (v +2)4
a(A) = (1 — (Xxcap)) <A~y”—_5’};;2> , (5.5
x (@+2)A
b(A) = (Xcap) <A‘)‘H—W) . (5.6)

The fits to each child size distribution with (5.4) are shown as the faint, thick lines in
figure 19(a).

Figure 19(c) shows the evolution of the exponent y (A) describing the inertial production
mechanism. Values of ( Xcap)(j) and y(A~), which together contain all the necessary

information about the child size distributions, are stored for many values of A. To
implement the child size distributions in a population balance model, we interpolate
(Xcap)(AN) and y(AN) for a given value of A. Numerical data giving the child size
distributions for a range of parent bubble sizes are provided as supplementary material
at https://doi.org/10.1017/jfm.2022.604, and Python code to simulate break-ups and create
the child size distributions is available at https://github.com/DeikelLab/mc-child-size-
distributions.

5.4. Parameterisation of the break-up frequency

The next step is to parameterise how often the break-ups will occur. It is not possible to
compute a break-up frequency from our experiments which resolve break-ups dynamically,
because we only record data when bubbles are observed to break. Instead, using an
approach that has been successfully applied to the break-up of oil droplets in turbulent
jets (Aiyer et al. 2019; Aiyer & Meneveau 2020), we integrate the effects of eddies smaller
than the parent bubble size (each of dimensional diameter d,) which contribute to break-up
(Prince & Blanch 1990; Tsouris & Tavlarides 1994), yielding

- dy (/% 7 (dy 4
o(A) =K “(0 ¢

2
T 4 %) G (de/d
Liw Jo 4\ 4y +dH) Unrp ( e/ H)

A\ 4
X <ﬁ> $2(de/du; do/dn) d(de/dH), (5.7)
where K is an order-1 constant we adjust, it,urb(de/dH):C;/zelﬂdiﬂ/u/:

61/ 3(de /a'H)l/ 3(dH/L,-m)1/ 3 is the dimensionless turbulent velocity scale of the eddy,

(a'e/Lm,)_4 is the approximate dimensionless eddy density (Solsvik et al. 2016) and
2(d,/dy; do/dp) is the break-up efficiency given the eddy and bubble sizes. Neglecting
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viscous effects (given the low viscosity of air bubbles), the break-up efficiency, which
gives the probability that an eddy has sufficient energy to overcome surface tension, is
taken as the inverse of the exponential of the ratio between the average change in surface
energy associated with the break-up E; (dy) and the Kinetic energy of the eddy Eeqay(d,),
exp(—Eeday(de)/Es (d)). The average surface energy change is given dimensionally by

o ndy /6
Eo(do) = —~ f p(8; 1d3/6)8*3ds — d} | = M'mod}/4, (5.8)
)

min

with the proportional change in surface area due to break-up I" dependent on the form of
the child size distribution according to

A
ﬁ 5G: 135 d5
Smin 1. (5.9)

r4) = A2/3

The kinetic energy of the eddy is given by Eeqqy(de) = (11/4) pdg Cr(ed,)?/3. Expressed in
our non-dimensional units, the break-up efficiency is then

A 2
r(A)(do/dn) ) ’ 5.10)

$2(de/dn; do/dH) = exp (_W
with the critical Weber number We, necessary to link the scales of the bubble and the
turbulence.

With each component specified, (5.7) is evaluated numerically and is shown in figure 20,
using K = 2 picked through a comparison with the experimental data given in § 3. The
break-up rate increases as bubbles approach the Hinze scale and then plateaus due to two
competing effects: while larger bubbles are susceptible to a wider range of turbulent scales
that may cause break-up, they tend to break into many more bubbles than smaller bubbles,
leading to a greater surface energy term in (5.7). This means that although more eddies
are interacting with the parent bubble, each is less likely to have sufficient energy to cause
a break-up.

The thicker grey line in figure 20 gives the inverse of the turbulent turnover time at
the parent bubble scale, which we take to set the duration of each break-up event. The
break-up frequency is thus consistent with the break-up duration, since &@(A) = wTin
being strictly less than Tj,, /Ty (do) means that the typical duration of a break-up is
never longer than the typical time between such break-ups. Finally, the dotted orange line
gives the inverse of the (dimensionless) capillary timescale at the parent bubble scale,
Tint/ Teap(do), showing that capillary effects happen faster than both the break-up duration
and time between break-ups (up until the largest bubbles we consider). The capillary
pinching events responsible for sub-Hinze bubble creation thus occur over even shorter
durations, as the capillary timescales of the small child bubbles formed will be much
faster than that of the parent bubble.

5.5. Summary of parameters involved in the model

To summarise, table 2 lists each parameter in the model and explains how each is
determined.
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Figure 20. The parent bubble break-up rate @ as a function of its volume A, computed using the value of
dy /Lins for our dataset. The black line shows the parent bubble break-up frequency given by (5.7). The thicker
grey line gives the inverse of the eddy turnover time at the parent bubble scale, which is taken to be the upper
limit in the duration of each break-up event. The dotted orange line gives the inverse of the capillary timescale
at the parent bubble scale.

5.6. Model comparison with transient air cavity disintegration data

With [)(S; A~) and &)(A~) now fully specifying f”(g; A~), we can simulate the turbulent
disintegration of cavities we studied experimentally in § 3 by picking the appropriate initial
condition for each (i.e. NV (d/dy) giving one bubble of size dy/dy) and integrating (5.1)
in time. Figure 21 compares the experimental and modelled values of the dimensionless
bubble size distribution N'(d/dy) at t/T;,; = 1 and 3 for each value of dy/dy, with
do/dyg = 2.12 in (a) and do/dy = 8.30 in figure 21(f).

First, the model accurately reproduces the observed magnitudes of the size distributions
near the Hinze scale, both in time and in the initial cavity size. Second, an N (d/dy) o
(d/ dp) =32 scaling is approached for d/dy < 1 with larger do/dy, and this scaling
is adopted more rapidly with larger cavities. With dy/dy = 2.12 and 2.84, shown in
figures 21(a) and 21(b), N (d/dy) is flat near the Hinze scale at ¢/T;,; = 1, as the modelled
child size distributions for parent bubbles of these cavity sizes are largely flat (as shown in
figure 19a). With larger parent cavities, the sub-Hinze distribution steepens as the capillary
mechanism contributes more significantly to the child size distributions for parent bubbles
of these larger cavity sizes (as evidenced in the (x¢qp) (A~) curve shown in figure 190).

6. Conclusions

In this paper, we have used results from two sets of experimental measurements to describe
the production of bubbles smaller than the Hinze scale by turbulent bubble break-up. We
have demonstrated experimentally that a N(d) ox d—3/% scaling for bubbles smaller than
the Hinze scale (d < dp) is obtained with the break-up of air cavities much larger than the
Hinze scale subjected to forced turbulence, experimentally studying cavities up to dyp =
8.30dy with accurate measurements of bubble sizes down to approximately 0.1dy. The
N(d) scaling we find is similar to that reported in measurements and simulations of bubble
size distributions under breaking waves (Deane & Stokes 2002; Wang et al. 2016; Mostert
et al. 2022).

The small bubbles that are produced are significantly separated in size from the turbulent
motions which are strong enough to cause break-up. Thus, the link between their sizes
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Model element  Equation Variable Description Constraints
Number of 5.2) ATpreakup = Break-up duration (over Theory (§5.1),
bubbles Trurpb (do) which child bubbles are informed by
produced formed) experimental
and numerical data
(Risso & Fabre 1998;
Riviere et al. 2021)
b1 =4 Prefactor for number of Fit to our experimental
bubbles formed per and numerical
break-up data (figure 17)
by =23 Power-law exponent
in parent volume for
number of bubbles
Child size 5.4 a=-7/6 Power-law exponent for the Theory (Riviere et al.
distribution capillary contribution, 2022)
shape corresponding to
N(d) x d—3/?
a(A) Magnitude of the capillary Monte Carlo
contribution simulation results
(figure 19)
b(A~) Magnitude of the inertial
contribution
y(A) Power-law exponent for
the inertial contribution
Break-up 5.7 K= Break-up frequency Fit to transient
frequency prefactor experimental data,
within the range
suggested by
Aiyer et al. (2019)
C, =20 Dyr(d)/(ed)*? in Pope (2000)
inertial subrange for HIT
C.=0.7 eL,-,,,/u’3 for HIT Sreenivasan (1998)
(5.10) We, =1 Critical Weber number Experimental break-up

threshold

Table 2. Parameters involved in the bubble break-up model, their physical origin and the
experimental/numerical data constraints.

and the turbulent motions which do instigate break-up necessarily involves additional
physics. Following Riviere et al. (2022), we have identified the capillary instability of
deformed bubble ligaments which are involved in larger-scale turbulent deformations
as the mechanism responsible for small bubble production. Crucially, significant small
bubble production by this mechanism is limited to parent bubbles with dy > dp, as only
bubbles much larger than the Hinze scale can become deformed to a severe enough extent
to produce the ligaments from which the small bubbles originate.

The first piece of evidence we provide for this role of capillarity is visual: figures 9 and
10 show a number of instances of small bubbles being left behind after the collapse of
gas ligaments. Second, the experimental N(d) o d~3/% scaling for d < dy with dy > dy
is coherent with the P(d) oc d—3/? scaling for the break-up child size distribution reported
by Riviere et al. (2022), who showed that the lifetime of ligaments before their collapse to
produce a ;%bble of size d coincides with the capillary time scale of a bubble of size d,
Teap 0 d™7=.
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Figure 21. Comparisons of the experimental and modelled values of N'(d/dy) at t/Tj,; = 1 and 3 for each
value of do/dy. The dotted vertical line gives the value of dy/dy for each condition. Dotted lines give the
N(d/dy) o (d/dy) —3/2 sub-Hinze scaling. Good agreement between the measured and modelled distributions
is observed for the full range of do/dy and times.

We have implemented these physical ideas in a population balance model of turbulent
bubble break-up. The child size distributions describing individual break-up events have
been constructed with a Monte Carlo approach involving simulations of many break-ups.
The statistics of each simulated break-up have been prescribed by our understanding of
the role of capillarity and additional experimental results on individual bubble break-up
in which parent and child bubbles were tracked dynamically in three dimensions. The
resulting expression for the child size distribution (5.4) involves two components: one
describes the effect of the large-scale deformation to a parent bubble by an energetic
turbulent eddy and the other describes the action of capillarity in producing small bubbles.
Finally, the rate at which parent bubbles undergo break-ups has been determined by
integrating the action of eddies below the bubble’s size, which all contribute to break-up.
The complete model (consisting of the child size distributions and the parent break-up
frequency) yields a good match to our transient experimental data.

Along with the recent analysis of DNSs of bubble break-up in turbulence from Riviere
et al. (2021, 2022), this experimental work opens the door to a new understanding of role
of capillarity in turbulent bubble break-up, in which surface tension not only counteracts
the initial turbulent deformation to a bubble but also leads to the formation of sub-Hinze
bubbles through capillary instabilities that arise during the final stages of the break-up
process.

Supplementary material. Supplementary material available at https://doi.org/10.1017/jfm.2022.604
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Appendix A. Air cavity disintegration data processing
A.l. Identification of bubble sizes

Bubble sizes are detected with image processing of the images of the cavity disintegrations
in multiple stages. First, a simple image intensity threshold is applied to binarise each
greyscale image, and the bright spots at the interior of each bubble image are filled in.
A first pass at extracting the bubble diameter djensiry based on this intensity threshold
is then made by computing the equivalent diameter of a circle with the same projected
area as the binarised bubble image. As we find that the determined sizes of small bubbles
(dintensity < deutoff> With deyrofr = 1.5 mm) are sensitive to the image intensity threshold
chosen, we individually employ a Canny filter (Canny 1986) to the images of each of these
small bubbles to find their borders. Their diameter d is then defined as the equivalent
diameter of the projected area inside the bubble border. For larger bubbles (with djensiry >
dcutoff» for which the Canny edge detection often fails due to the deformed bubble shape),
we define the diameter as d = dinensiry + 04, Where o4 = —25 pum is the typical value to
which dcanny — dintensiry asymptotes for bubbles approaching deyoyy -

A.2. Adjusting the size distribution to account for bubble advection

Owing to the buoyant rise of the bubbles and their advection by the turbulence in the
air cavity disintegration experiments, bubbles leave the measurement region over time.
This complicates the analysis of our data: if we were to solely consider bubbles viewed
in-frame, we would calculate a rapid loss of bubble volume as bubbles leave the field of
view. Results would be further skewed by any size dependence of the bubbles’ motions.
Indeed, the transient bubble size distributions based on the bubbles viewed in-frame shown
in the left of figure 22 exhibit a non-physical decrease in N (d/dy) for small d at later
times. Similarly, the number of bubbles tracked and their total volume (normalised by Vy),
shown in the third and fourth columns, respectively, as the grey lines, decrease as bubbles
leave the field of view.

We address this experimental limitation by tracking the bubbles’ motion in two
dimensions and making note of when bubbles leave or enter the measurement region near
one of its four borders. Then, to compute N(d) for some time ¢, along with the bubbles
of size d imaged at time #, we add counts of all the bubbles of size d that have left the
measurement region before time ¢, and subtract counts of all the bubbles of size d that have
entered the measurement region before time 7. The resulting adjusted size distributions are
shown in the second column of figure 22.

This adjustment approach effectively ‘freezes’ in place the record of bubbles as they
leave the measurement volume. The green regions in the third and fourth columns of
figure 22 show the additional number of bubbles and corresponding additional bubble
volume added to the bubble record with this method. The black lines show the sum of the
in-frame measurements and this adjustment. A limit obtained by the adjusted n curve is
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Figure 22. Visualisation of the adjustment to the bubble size distributions based on the advection of bubbles
out of and into the field of view for each size air cavity studied. (@) The original (unadjusted) size distributions
of the bubbles in-frame at four times. (b) The adjusted size distributions. (¢) The total number of bubbles
detected in-frame (grey) and the total number of bubbles, including the advection adjustment (black). (d) The
sum of the volumes of the bubbles detected over time, normalised by the known volume of the air cavity. The
grey curve is the volume of bubbles detected in-frame; the black curve is that curve added to the volume of
bubbles from the advection adjustment, in green.

not necessarily physically meaningful, as some of the bubbles which have exited the field
of view are not much smaller than the Hinze scale, so they would eventually break apart
further if left within the turbulence region.

The plots of the summed bubble volume (normalised by the cavity’s initial volume)
shown in the fourth column of figure 22 reveal a second limitation in our bubble detection
method: the total volume of bubbles considered, fooo VNy(V)dV, is not a constant value
equal to the known volume of the air cavity V. This is due to the highly deformed shapes
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Figure 23. The cavity release experiments with and without turbulence. (a,b) A comparison between images
taken in quiescence and turbulence, respectively, for a bubble with dy/dy = 5.8 (when in turbulence). (c—e) A
comparison of the transient number of bubbles present for initial cavities of varying sizes, in turbulence (solid
lines) and in quiescence (dashed lines). The quiescent cases considered are limited to those within the range of
cup spin velocities taken in the experiments with turbulence.

of large bubbles, for which the equivalent diameter determination we employ is only a
rough approximation. Further, bubbles whose images overlap can be detected as a single
larger bubble.

We note that, aside from some representative images taken at late times, the latest
measurement of N/ (d/dy) presented in the paper or employed in our analysis is 7/ Tj,; = 4,
at which point the advection adjustment has had only a moderate effect on the size
distribution for all cavity sizes.

Appendix B. Comparison of cavity disintegration with and without turbulence

The cavity release experiment detailed in § 2.2 was also run with the turbulence-generating
pumps turned off, such that the cavity was released into otherwise still water. In these
experiments, the extent of the bubble production is greatly reduced. Figures 23(a) and
23(b) show snapshots of two bubbles of the same size, at the same time after their
release, into quiescence and turbulence, respectively. The bubble released into quiescence
is deformed by buoyancy but has not broken apart; the bubble released into turbulence has
undergone break-ups. Bubbles released into quiescence occasionally break due to the cup’s
motion or their large buoyant deformations (Landel et al. 2008), but figures 23(c)-23(e),
which show the number of bubbles produced over time in turbulence and quiescence for
the three largest cavity sizes, indicate that the moderate bubble production from these
break-ups is negligible compared with the much greater production in turbulence.
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Appendix C. Adjustment of the number of resolved bubbles to account for the
minimum resolved child size

As we find a bubble size distribution that scales as N(d) o« d* with ay < —1 for
small bubbles, the total number of bubbles above some minimum size will diverge as
that minimum size decreases, up until some additional physical limit is encountered.
Therefore, to enable a more direct comparison between datasets in which the experimental
or numerical resolution differs, we can adjust the total number of bubbles formed in a
break-up to account for the different resolved sizes.

Let us denote by m[d > zdy] the average number of resolved bubbles larger than
zdy that are formed in a break-up. Given a known value of m[d > xdy], we can find
the corresponding value of m[d > ydy], which is the hypothetical number resolved had
a minimum spatial resolution of ydy been employed. Following the conceptual model
presented in § 3.3, we assume that all but two of the child bubbles produced in each
break-up follow a power-law scaling o (d/dp)*¢, with oy = —3/2. With this assumption,
we calculate the appropriate prefactor for the sub-Hinze distribution given the observed
value of m[d > xdg], then extend the distribution to d,;,/dy = y and integrate over all
the larger bubble sizes to obtain the effective number in the range that is resolvable in the
hypothetical experiment, yielding

(do/dp) @D+ — ylea)+l

m[d > de] = (m[d > xdy] — 2) (dO/dH)(ozd)-l-l — ylap+1

+ 2. (C1)
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