
ON THE CONSTRUCTION OF SEQUENCE SPACES 
THAT HAVE SCHAUDER BASES 

WILLIAM RUCKLE 

1. Introduction. It is known that every Banach space which possesses 
a Schauder basis is essentially a space of sequences (6, Section 11.4). The 
primary objectives of this paper are: (1) to illustrate the close connection 
between sectionally bounded BK spaces and Banach spaces which have a 
Schauder basis, and (2) to consider some results in these theories in such a 
way as to render them easy and natural. In order to reach the largest number 
of readers we shall use (6) as the sole basis of our discussion. References to 
other authors are made in order to direct the reader to the original source 
of a theorem or to a related discussion. 

A BK space is a Banach space of sequences of real or complex numbers, 
S = {(Xi)}, on which the coordinate functionals are continuous; that is, 
(xtv) —> {pCi) in S implies xt

v —>x* for each i. The topology that makes a 
given space, S, of sequences a BK space is unique (6, Section 11.3, Corollary 
1). Thus if the norms || || and || ||0 on 5 make 5 a BK space, they are equi
valent, i.e. there are k and K > 0 such that k\\ (xt)\\ < ||(#*)||o < K ||(tfz)|| for 
each (xi) in S. If x = (x<), -Pn x denotes the nth section of x, (xi, %2i . . • , Xn, 
0, . . . ) ; ej = (ôij)Zi = (0, 0, . . . , 0, 1, 0, . . .) where 1 is in the j th place. 
The BK spaces which we shall discuss are always assumed to contain all 
finite sequences. A BK space is sectionally bounded if sup„ | |Pwx|| < °° for 
each x G 5 (4, p. 58). 

A Schauder basis for a Banach space (X, || ||) is a sequence Z = {zi, Z2, . . .} 
such that each member z of X has a unique expansion 

00 

Z = / j tf Xi 

where tu i = 1 , 2 , . . . , are scalars. The norm defined by 

n 

VLu Zi 
1 i=i 

is equivalent to || ||, and the functionals/^(z) = tt are continuous (6, Section 
11.4, Theorem 1). Hence, the space Sz of all sequences (ti) for which 
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converges in X, given the norm 

IIGOII 2^i ti Z i 

is a BK space, and it is a sectionally bounded BK space with the equivalent 
norm 

Under the mapping 

IIGOI supw Z) ui 

2-J ti^ii 

S with the norm || ||0 is topologically isomorphic to X. Under this mapping 
ei, e2, . . . in Sz correspond to the basis Z, so they form a basis for Sz. Thus 
as far as isomorphic properties are concerned, we may restrict our study of 
bases to the case of d , e2, . . . a basis for a BK space. In addition, we shall 
assume that the basis is bounded away from 0 and <», i.e. 

0 < infn j|ew|| < supn \\en\\ < œ. 

This is not a severe restriction since a basis can always be normalized and the 
resulting sequence is also a basis. 

2. The proper sequential norm. In this section we shall discuss a 
means of constructing sectionally bounded BK spaces in which ei, e2, . . . is 
bounded away from 0 and °°. Let s represent the space of all sequences with 
addition and scalar multiplication defined coordinate wise. 

2.1. Definition. A proper sequential norm (p.s.n.) is a function, N, from 5 
into R* which satisfies the following conditions: 

(1) N is a norm, i.e. 
(a) iV(x + y) <N(x)+N(y), 
(b) N(ax) = \a\ N(x) for each scalar a, 
(c) N(x) > 0, N(x) = 0 if and only if x = 0, 

(2) 0 < infniV(e») < supnN(en) < œ. 
(3) N(x) = s u p , ^ ( P , x ) . 

Let KN = sup,* N(en) and kN = infwiV(en). Since 

27V(x) > N{Pn x) + N(Pn^ x) > N(Pn x - Pn^ x) = N(xn en) > kN \xn\ 

and 

N(x) < N(pd ei) + N(x2, e2) + . . . < |^i| KN + \x2\ KN + . . . , 

we have 
n 

(4) \kN supw|xw| < N(pc) < KN sup^X) 1̂ *1-
z = l 
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2.2. THEOREM. For a p.s.n., N, the set SN of all x for which N(x) < oo, is 
a Banach space with norm N> and ei, e2, . . . form a basis for their closed linear 
span in SN. 

Proof. Condition (1) of 2.1 shows that SN is a linear space and N is a norm 
in SN. If {x(n)} is a Cauchy sequence in SN, xt — limwx*(7î) exists for each i 
because of (4). Write x = (xt); then limn N(Pk(x — x(w))) = 0 for each k by 
the second inequality in (4). If H is such that p and q > H imply 

N(x<» - x<«) < e, 

then for each k, N(Pk(x^ - x^) < e, so N(Pk(x^ - x)) < e for p > iJ. 
Thus iV(x(p) - x) < e for p > i7 which implies N(x) < oo and 

limwiV(x - x ^ ) = 0. 

The elements d , e2, . . . are a basis for their closed linear span; in other 
words, basic; because for each pair of integers p > q > 0 and arbitrary 
scalars au a^, . . . , av\ 

(6, Section 11.4, Theorem 5). 
Inequality (4) shows that SN is a BK space. The subspace of SN for which 

{e*} is a basis will be designated SN°. If (5, || ||) is any BK space having 
ei, e2, . . . for a basis which is bounded away from 0 and oo, define 

N(x) = SUpn / J X\ e^ 

Then N is a p.s.n. which is equivalent to || || on 5, so 5 is a closed subspace 
of SN which implies 5 = SN°. Therefore, every Banach space which has a 
basis is topologically isomorphic to a space 5^° for N, a p.s.n. 

Examples of p.s.n.'s are: N(x) = sup \xi\ for which SN = m, the space of 
bounded sequences and SN° = c0, the space of sequences which converge to 0 ; 

for which SN 

L norms, 

it, 

N(x) = supwX \xi\ 

SN° — h, the space of absolutely convergent series; and the 

/ n \l/p 

N(x) = sup J 2 \xi\P) 

for 1 < p < oo ; see (6, p. 289). 

2.3. THEOREM. Let S(,\\ ||) be a sectionally bounded BK space in which 
ei, e2, . . . are bounded away from 0 and oo. Define N(x) to be 

SUpn 
*=1 

then N is a p.s.n. and S is a closed subspace of SN which contains SN°. 
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Proof. Direct calculation shows that N is a p.s.n. Since S is sectionally 
bounded, N(x) < oo for each x in S, thus S C SN. But S and 5^ are BK spaces, 
so by (6, Section 11.3, Corollary 1) the topology of S is stronger than that 
of SN. This implies that S is a closed subspace of SN because N(x) > ||x(| 
for x in S. Also ei, e2, . . . are in 5, so SN° C S. 

A sequence x == (xt) can be partitioned into consecutive blocks; thus: 

X / j A j j 2Lj / j X j C j 

j = l t=2» ( i—1) 

where 1 = p(0) < p(l) < . . . is an arbitrary increasing sequence of indices. 
The convergence of 

oo 

EX; 
3=1 

refers to coordinatewise convergence, i.e. the usual topology of 5. The follow
ing idea is reminiscent of that of the block basis (1, p. 152; 3). 

2.4. LEMMA. Let N be a p.s.n. and t be any sequence partitioned into blocks, 

oo P O ' ) - l 

\ = = / j v j i t j / j Li " i, 

3=1 i=P(j—l) 

such that 0 < inf;- N(tj) < sup;-iV(t;) < oo. The function defined by 

M{x) = iV^f>,t,J 

is a p.s.n., and SM and SM° are isometric to closed subspaces of SN and SN° 
respectively. 

Proof. That M is a p.s.n. can be verified directly from the defining con
ditions. The correspondence between x in SM and 

oo 

/ v Xi If 

1 = 1 

in SN is an isometry between SM and a closed subspace of SN. If 

/ J X i T. i 

i = l 

is in SN°y then x is in SM° since 

( oo p(ri) i 

X) *«t, - E l i t . 
i = l z = l / 

which converges to 0 as n —» oo. On the other hand, if x is in SM°, 
CO 

/ J X i 1 1 
i=l 
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converges in SN, but t* is in SN° for each i, so 

CO 

/ J X \ \ \ 
i = l 

is in SN°. 

2.5. Definition. A p.s.n. M such as described in the previous lemma will 
be called the p.s.n. subordinate to N (with respect to ti, t2, . . .). 

For example, let N(x) = supn \xn\, and let 

t i = ei, t2 = e2 + e3, t3 = e4 + e5 + e6 , . . . . 

Then the subordinate p.s.n. with respect to ti , t2, . . . is M(x) 

M(x) = N(xU X2, X2, XZ, XZ, Xd, . . .) = SUpn \xn\. 

Thus SM = SN = m and SM is isometric to the subspace of SN of all x for 
which X2 = Xz, XA = x5 = x6, etc. 

3. The conjugate space of SN°. 

3.1. Definition. The conjugate p.s.n. of N, a p.s.n., is the function from s 
into R* given by 

N'(y) = sup (supn Z) XiJi ;iV(; x) < l ) 

The vérification that N' is a p.s.n. is a straightforward application of its 
definition and properties of the supremum. However, this task is largely 
unnecessary in view of the following theorem. 

3.2. THEOREM. The conjugate space of SN°, (SN
0)*, is isometric to SN> under 

the correspondence of f in (SN
0)* to y in SN' where ji— /(©z) for each i. Also 

CO 

f(x) =J2xiJi 

for each x in SN°. 

Proof. Given / in (5^°)* and 

CO CO 

x = X) %ieiin 5Y°, f(x) =J2xtyi 
1 = 1 1=1 

by the continuity of / . If N(x) < 1, 

]£ *<?i = |/(P»X)| < H/11 N(Pnx) < 

where || || is the norm in (SN
0)*. Thus y 6 SN and N(y) < 

Assume iV'(y) < oo. For x in SN° and each n, 

Z) **?< N(x) £ (pct/N(x))yi 
i = i 

< N(x)N'(y). 
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Hence the functional 

/n(x) = Hxtyt 
i=i 

is continuous on SN° and ||/w|| < N'(y). Since limw/w(eO = yt for each i, and 
ei, e2, . . . is fundamental in SN°, the Banach Steinhaus Theorem (6, Section 
7.6, Theorem 3) implies that / (y ) = limn/n(y) is a continuous linear func
tional defined on SN° and ||/| | < N'(y). 

For x in ISJV0 and y in Sw, define 

oo 

(x, y) = ^xtyt. 

Theorem 3.2 implies that SN* can be identified with (SN
0)* and that the 

duality between these two spaces given by (x, y) can be identified with that 
between SN° and (SN

0)* given b y / ( x ) . For convenience, we describe this by 
saying that SN* represents (SN

0)*. 

3.3. COROLLARY. For N, a p.s.n., SN> is (1) the space of all sequences y such 
that 

OO 

converges for each x in SN° and (2) the space of all sequences y for which 

SUpn 53 octyt < oo 

for each x in SN. 

Proof. If y is such that 
oo 

53*<y< 

converges for each x in SN°, define the linear functional / on SN° by 
oo 

Since SN° is a BK space, / is continuous (6, Section 11.3, Corollary 5). Thus 
y is in SN> and Nr (y) = | |/ | | by Theorem 3.2. In the course of proving the 
same theorem, we showed that if y € SN>, 

oo 

53 xtyi 

converges for each x 6 SN°; cf. (6, Section 11.3, Problem 1). 
If x G SN and y Ç SN>, 

53 xtyt < N(x)N(y) 
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for each n; hence 

supw Z) xiJi 

On the other hand, if y is such that 

supw Z ) Xiji 

< CO. 

< œ 

for each x in SNl define the seminorm 

*»(x) = ]C XiJi on SN. 

Then the collection {<j>n} is pointwise bounded on SN>, hence uniformly bounded 
(6, Section 7.6, Theorem 1). Thus 

N'(y) = sup-)supn J^OCiJi :N(x) < 1 

= sup{sup„ 4>n(x) :N(x) < 1} = supn ||</>n|| < » . 

3.4. LEMMA. For each sequence x, (N')'(x) = N(x). 

Proof. The statement will follow from (3) of 2.1 if we prove that 

(N')'(Pkx) = N(Pkx) for k = 1, 2, . . . . 

When i\T(y) < 1, N'(PHy) < 1, so 

(N')'(Pkx) = sup{ > } -Z *tyï.N'(y) <l\ = sup{/(P*x): H/11 < 1} = iV(P,x). 

The last statement is a consequence of (6, Section 4.4, Theorem 2 and Corol
lary 3). 

From Lemma 3.4 and Theorem 2.2 we obtain: 

3.5. THEOREM, (a) SN> represents (SN
0)*, (b) SN represents (SN>0)*. 

3.6. THEOREM. For p.s.n.'s M and N the following statements are equivalent: 
(a) oM — ^N y (b) oM

 =
 <^NJ ( C ) <SM' = o y , (d) SM' = oN' . 

Proof, (a) => (b). If SM° = SN°, M and N are equivalent norms on SM°\ 
so for each x, supw M(Pn x) < oo if and only if supn N(Pn x) < œ. Thus by 
(2.1-3) 5 M = S*. 

(b) => (c) follows from Corollary 3.3. 
(c) =» (d). Since M"and iVare equivalent norms on o^, l im n iV(x -P„x )=0 , 

if and only if limn M(x — Pnx) = 0. 
That (d) => (c) => (b) =» (a) follows from Lemma 3.4 and the preceding. 
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4. The balanced and the symmetric proper sequential norms. 

4 .1 . Definition. A p.s.n. TV is balanced if N(x) = sup{N(aiXi) : \at\ < 1} 
for each sequence x. 

4.2. L E M M A . Suppose M is a p.s.n. with the property that M(x) < oo implies 

M{diXi) < oo for each (at) Ç m. Then there is a balanced p.s.n., N for which 

^M — UN-

Proof. Given x in SM, define the linear operator Tx from m into SM by 
Tx a = (aiXt). Since both m and SM are B K spaces, Tx is cont inuous (6, 
Section 11.3, Corollary 5). If 

N(x) = sup{M(aiXi) : \at\ < 1}, 

N(x) is the norm of Tx in the uniform topology of operators between m and 
SM. Direct calculations will prove t h a t N is a p.s.n. and the previous dis
cussion shows t h a t SN 2 SM. B u t N(x) > Mix) for each x, so SM Ç SN. 

4.3. LEMMA. 7 / ikT is a balanced p.s.n., so is Mf. 

Proof. Suppose y is a sequence and \at\ < 1 for each i. Since M(atXi) < 1 
whenever M(x) < 1, 

M'taiji) = sup {supn X) atyi%i : Af (x) < 1 

< sup")supw J^XtJi :M(x) < 1Ï = M'(y). 

4.4. Definition. A Schauder basis X of a Banach space X is uncondit ional 
if for each 

oo 

x =^2 atXi in X 

the convergence of the series to x is unconditional. T h a t is, given e > 0 there 
is a finite set of integers F such t h a t if G is a finite set of integers containing 
F, 

^ atXi — x <e 

(2, p . 73 ; 3, p . 518). 

4.5. T H E O R E M . If d , e2, . . . is an unconditional basis for a B K space T, 
there is a balanced p.s.n. N such that T — SN°. 

Proof. By the discussion following Theorem 2.2, there is a p.s.n. M for 
which SM° = T. If x is in SM° and y is in SM', 

Y^Xiji 
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converges unconditionally to (x, y) since 

oo 

f J %i d 

converges unconditionally to x. This fact plus Corollary 3.3 imply 

SM
f = "Jy: 23 xiJi converges absolutely for each x in SM°\ . 

Hence, if y 6 SM> so is (at jj) for (at) in m. By Lemma 4.2 there is a balanced 
p.s.n. iVi such that SNl = SM>. Let N = iV/; then N is balanced according 
to Lemma 4.3 and SN° = SM° by Theorem 3.6. 

The preceding theorem implies that every Banach space having an uncon
ditional basis can be realized as a space of the type SN° for N a balanced 
p.s.n. Conversely, if N is a balanced p.s.n., it is not hard to show that 
d , e2, . . . is an unconditional basis of SN°. 

4.6. Definition. A p.s.n. N is symmetric if N(x) = N(XT(D, xT(2), . . .) for 
each permutation x on the integers. 

We shall not study the properties of the symmetric p.s.n. in detail here. 
If N is symmetric, d , d , . . . is a symmetric basis for SN°\ that is, if 

oo 

23 ai^t converges, 

then 
oo 

converges for each permutation TT on the integers (5). Conversely, every 
Banach space with a symmetric basis can be realized as a space SN° where N 
is a symmetric p.s.n. 

It can be shown that every symmetric p.s.n. is balanced. Symmetric p.s.n.'s 
are the lp norms and the supremum norm. A p.s.n. that is balanced but not 
symmetric is 

n 

N(x) = sup„23 \x*i\ + supw|x2n-i|. 
i=l 

5. Applications. The subject matter of this section is primarily a develop
ment oi results found in (3) in a manner that emphasizes the duality of 
sequence spaces. By examining the relevant définitions, it can be seen that 
condition (a) of Theorem 5.1 below is equivalent to having d , d , • . . a 
boundedly complete basis for SN° (3, Theorem 1, Condition (a)) and con
dition (b) is equivalent to having d , e2, . . . a shrinking basis for SN° (3, 
Theorem 1, Condition (b)); cf. (2, p. 69, Definition 3; 6, Section 11.4, 
Theorem 7). 
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5.1. THEOREM. The space SN° is reflexive if and only if (a) SN° = SN and 
(b) SN,° = SN„ 

Proof. If (a) and (b) hold, then SN° is reflexive by Theorem 3.2. 
If SN° is reflexive and x £ SN, then x represents a continuous linear func

tional on SN>°. Let F be a continuous extension of this functional to all of 
SN' (6, Section 4.4, Corollary 1). Since SN° is reflexive and SN> represents the 
conjugate space of SN°, F corresponds to a sequence z in SN°. But 

(z, e<) = f(et) = (x, et) 

for each i, which implies x G SN°, so (a) holds. To obtain (b) observe that 
SN° reflexive implies SN>, and, hence, SN'° reflexive (6, Section 7.2, problem 19). 

We omit the proofs of the following two lemmas which are easy. 

5.2. LEMMA. If N is a balanced p.s.n. and (1, 1, 1, . . .) is in SNj then SN = m. 

5.3. LEMMA. A p.s.n. that is subordinate to a balanced p.s.n. is balanced. 

The next theorem corresponds to (3, Lemmas 1 and 2). 

5.4. THEOREM. Suppose N is a balanced p.s.n. and SN° ^ SNl then 
(a) There is a closed subspace of SN topologically isomorphic to m. 
(b) There is a closed subspace of SN° topologically isomorphic to c0. 
(c) There is a closed subspace of SN ° topologically isomorphic to h. 

Proof. Let t be in SN but not SN°. Then 

is not a Cauchy sequence, so there is a number rj > 0 and integers 

1 =p(0) <p(l) < . . . 

such that 
/ p(k)-l \ 

N[ £ het) >r7. 
\i=p(k-l) / 

Let 

P(k)-1 

i=p(k-l) 

and let M be the p.s.n. subordinate to N with respect to ti , t2, . . . . Then 
M is a balanced p.s.n. by Lemma 5.4 and SM = m by Lemma 5.2 because 
M(l, 1, . . .) = iV(t) < oo. By Lemma 2.4, SM = m is isometric to a closed 
subspace of 5V and SM° = c0 to a closed subspace of SN°. This establishes 
(a) and (b). 

Let 
P(k)-1 

i=p(k—l) 
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be a sequence in SN>, such that N>(sk) < 1 and (t*, 8*) > rj for each k. The 
existence of such a sequence follows from the fact that SN* is the conjugate 
space of SN° (6, Section 4.4, Corollary 3). If 

oo 

k=l 

converges, so do 

oo p(Jc) — l oo P(k) — 1 

13 53 y*^*ei and 53 X W ^ e * 
A=l i=p(k-l) k=l i=p(k-l) 

since iV is balanced. Therefore, 

oo p(k) — 1 

t = l i=p(k-l) 

converges, which implies 
oo 

53 M 
k=l 

converges. Consequently, the closed linear span of Si, s2, . . . in SN>° is topo-
logically isomorphic to h. 

5.5. THEOREM. For N a balanced p.s.n., SN° is reflexive if it has no subspace 
isomorphic with h or c0, or if SN° and SN> have no subspace isomorphic to h. 

Proof. If SN° is not reflexive, then either SN° ^ SN or SN* 9e SN'°. If 
SN° 9e SN, then (b) and (c) of 5.4 show that there is a closed subspace of 
SN° topologically isomorphic to c0 and a closed subspace of SN>° topologically 
isomorphic to h. If SN'° 9e SN', apply (b) and (c) of 5.5 to SNr° and SN"° = SN°. 

The method of proving the second statement is similar. 
We shall now discuss the example in (3) of a non-reflexive Banach space 

isomorphic to its second conjugate. Define 

J(X) = SUpl X (*p(2«-l) — %(2z))2 + fe(2n+l))2J 

where the supremum is taken over all positive integers n and finite increasing 
sequences of integers p(l), p(2), . . . , p(2n + 1). It is clear that J satisfies 
the conditions defining a p.s.n. except possibly for ( l ) - (a) , the triangular 
inequality. For the reader's convenience we repeat James's proof that it does 
(3, p. 524). Given e > 0, there is an increasing sequence of integers 

for which 

L i=i 
J(x + y ) < e + I 2./ (xP(2i-D + yP(2i-D — xP(2i) — yP(2i)) 

+ (Xp{2n+1) + yP(2n+l)) j < / (x) + / ( y ) + €. 
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5.6. LEMMA, (a) Sj Q c, (b) 5 / = Sj r \ c0, (c) S r = S r ° . 

Proof, (a) Suppose limn xn does no t exist ; then there is e > 0 and a sequence 
p{\) < p(2) < . . . such t h a t \xv^i-i) — xp^i)\ > t for each i. T h u s 

for each n, which implies x $ Sj. 
(b) Let x £ 5 / P i c0. Given e > 0, there mus t be K so large t h a t whenever 

K <p(l) <p{2) < . . . <p(2n), 

n 
2_j (Xp(2i-1) — Xp(2i) Y < eV2 

and such t h a t n ^ K implies \xn\ < e / V 2 . If k > K and 

*</>(!) <P@) < . . . < £(2* + l), 
then 

n 
2 (#1,(21-1) — Xp(2i))2 + (X2,(2W+1))2 < €2/2 + ^/2 = €2. 
*=1 

Therefore, J ( x - P * x) < e for & > K. 
(c) T h e a rgument used here is essentially t h a t of James (3, p . 524). Suppose 

there is y G SN} for which limfc J ' ( y — Pky) ; 0 is false. Then there is e > 0 
and integers 1 = k(l) < k(2) < . . . such t h a t 

/fc(i+i)-i \ 
J [ X) yJ e J > e for i = 1, 2, . . . . 

\ j=k(i) / 

Since 5 j / represents the conjugate space of Sj°, there is a sequence Xi, x2, . . . 
such t h a t 

A(i+1)-1 / *(i+l)-l \ 
x^ = ] C xj£ji J(*i) < 1» and I x j , J ^ ^ ^ e J > e for each i. 

Let z be the sequence with zt = ( l / # ) x * for &(w) < i < fe(m + 1). No te t h a t 
|SJ| < 1/w for any given w when i becomes sufficiently large so z 6 c0. For 
p{\) <p(2) < . . . < p(2n + 1) consider the sum 

w 
Z^ (Zp(2i-1) — 2p(2i)) + (2p(2w+l)) • 

For each i either (i) ZP(2*-D and 2^(20 are coordinates of the same xjn or (ii) 
they are coordinates of different elements, xn/n and xn+r/(n + r ) . T h e sum 
of the squares of the differences of the numbers of type (ii) is less t han or 
equal to 

00 00 

£ [1/n + l/(n + l)]2 < 4 £ (1/w)2 
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while the remaining terms have sum less than or equal to 

CO 

£ (J(zn)/n)2 < l/«2. 
n=l 

T h u s the sum in question is 

< 5 X 1/n2; 
7 1 = 1 

so J(z) < oo, which implies z Ç SN°. But 

(z .y )»( i : i /« ) 
for each £, which is a contradiction. 

Since e0 = (1, 1, . . .) is in Sj but not Sj°, Sj° is not reflexive. However, 
by (a) and (b) of Lemma 5.6 every member x of Sj can be written uniquely 

oo 

x = Xo e0 + X^ (xi — %o)Qii ^o = lim* xt. 

Define T from Sj into Sj° by Tx = y where j i = x0, y* = x^_i — x0 for 
i > 1. It can be verified directly that J(y) < oo and that y G c0; hence y 
is in Sj° Since the coefficient functional of a basis are continuous, T is a 
closed, thus a continuous, operator, It is also easy to show that T is onto 
and one to one. Since Sj represents the conjugate space of S j 0 which is equal 
to Sj'j Sj° is isomorphic to its second conjugate. 
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