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Abstract

In this paper we analyze players’ long-run behavior in evolutionary coordination
games with imperfect monitoring in a large population. Players can observe signals
corresponding to other players’ unseen actions and use the proposed simple or maximum
likelihood estimation algorithm to extract information from the signals. In the simple
learning process we find conditions for the risk-dominant and the non-risk-dominant
equilibria to emerge alone in the long run. Furthermore, we find that the two equilibria
can coexist in the long run. In contrast, the coexistence of the two equilibria is the
only limit distribution under the maximum likelihood estimation learning algorithm. We
also analyze the long-run equilibria of other 2 × 2 symmetric games under imperfect
monitoring.
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1. Introduction

The multiplicity of Nash equilibria has weakened the prediction power and application
potentials of game theory on human behavior. The coordination game with risk- and payoff-
dominant equilibria is a typical example. The evolutionary learning process is a dynamic method
to refine Nash equilibria. Various hypotheses have been given in the literature to characterize
players’ boundedly rational behavior, resulting in the distinct emergence of Nash equilibrium
in the long run. For instance, under the best-response dynamics, Young (1993), Ellison (1993),
and Blume (1993), (1995) showed that players will eventually coordinate at a risk-dominant
equilibrium in the long run. However, the equilibrium could be changed to a payoff-dominant
equilibrium when state-dependent (see, e.g. Bergin and Lipman (1996)) or time-dependent
mutations (see, e.g. Robles (1998) and Chen and Chow (2001)) are imposed. On the other
hand, under Darwinian-type dynamics, Kandori et al. (1993) and Robson and Vega-Redondo
(1996) demonstrated that different equilibria will emerge in the long run when players’matching
methods are distinct. Kandori et al. (1993) showed that the risk-dominant equilibrium will be
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chosen when individuals play with all other players, while Robson and Vega-Redondo (1996)
proved that the payoff-dominant equilibrium will be selected when players are randomly paired
to play the game multiple rounds per period. However, Miekisz (2005) showed that the two
models would yield the same results if the number of players approaches infinity.

Although acquiring different conclusions, all the above models assume that players’ actions
and payoffs are observable. However, examples of unseen players’ actions, with the visual
signals relating stochastically to the underlying actions, are numerous in the real world. For
instance, although the regulator does not know a firm’s exact pollution-abatement activities,
pollutant emissions can be measured and depend on a firm’s abatement levels and some random
factors, such as weather conditions. In principal and agent problems, agents’ efforts are usually
unseen to principals. However, outputs are correlated with agents’ efforts and can be observed.
In oligopolistic markets, output prices are indicators of the unknown product quality even
though they are also affected by factors such as stochastic market demands.

In this paper we aim to analyze equilibrium selection for a large population under evolution-
ary learning processes with imperfect monitoring of players’ actions and payoffs. Our models
are built in Section 2. At the beginning of each time period, players know only their own actions
and payoffs that occurred in the last period, while the signals corresponding to other players’
underlying actions in the last period are revealed publicly. There are two possible signals
for each action: the prime signal is the one more likely to occur. The correlations between
signals and the underlying actions are assumed to be fixed over time and across players. Two
learning schemes are proposed to represent players’ distinct ways of using signals to form their
beliefs about their opponents’ current plays. Then, based on the beliefs, players choose actions
to maximize their expected current payoffs. Different from previous evolutionary models
examined in Vega-Redondo (1995), we suppose no mutation on players’ rational choices as
well as on players’ expectation updating process.

In the simple learning process players are assumed to use signals’ occurring frequencies in
the last period to simultaneously forecast their opponents’ current behavior. The associated
dynamic system is a two-state Markov chain. In previous evolutionary models, mutation is
the driving force making transitions between equilibria possible. In contrast, random signals
in our model play the role of mutation. As shown in Theorem 1, below, players’ long-run
behavior in a large population is completely determined by the correlation between the signals
and their underlying actions. This is because the law of large numbers (LLN) is in force as
the population size grows to infinity. As a consequence, players would eventually select the
risk-dominant equilibrium in case the non-risk-dominant strategy and its prime signal are not
highly correlated. For the rest cases, the non-risk-dominant equilibrium could emerge alone or
players could visit both equilibria with positive probability in the long run.

Inspired by the broad usage of the maximum likelihood estimation (MLE) in empirical
works, we use the MLE as our second learning algorithm. In the MLE learning process,
players are assumed to adopt the maximum likelihood estimate of the observed signals to form
expectations about their opponents’ current plays. The associated dynamic system is also a
two-state Markov chain. However, unlike in the simple learning process, the coexistence of the
risk-dominant and the non-risk-dominant equilibria is shown in Theorem 2, below, as the only
long-run limit for a large population. This demonstrates that the equilibrium selection is quite
sensitive to the signal handling scheme when players cannot observe other players’ actions and
payoffs.

Besides coordination games, we also examine the limit distribution of other 2×2 symmetric
games under these two learning algorithms. Similar conclusions are reached.
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Our models differ from the repeated prisoner’s dilemma games with imperfect monitoring
(see, e.g. Fudenberg et al. (1994), Sekiguchi (1997), Compte (2002), and Mailath and Morris
(2002)) in that our players are myopically rational while their players take actions to maximize
the expected discounted payoffs (i.e. longsightedly rational). Chen et al. (2006) examined
myopically rational players’ long-run behavior under imperfect monitoring, but constructed a
model different from ours in two respects. Firstly, they adopted the Bayesian learning process,
which is quite complicated and less compatible with the spirit of players’ bounded rationality.
Secondly, they only analyzed the coordination games, while we consider all 2 × 2 symmetric
games.

The rest of this paper is organized as follows. In Section 2 we present the coordination-game
models and the associated outcomes. In Section 3 we analyze other 2 × 2 symmetric games.
Finally, we draw our conclusions in Section 4 and give the proofs of Theorems 1, 2, and 4 in
Section 5.

2. The models

There are N players, where N is finite and even. At each time period t , t = 0, 1, 2, . . . ,
players are randomly and independently matched in pairs to play the coordination game shown
in Figure 1 once.

a, a b, c

c, b d, d

A

A

B

B

Figure 1.

Here {A, B} is the action set for all players and a, b, c, and d are payoffs with a − c >

d−b > 0. Under the present coordination game, (A, A) is called the risk-dominant equilibrium
and (B, B) is called the non-risk-dominant equilibrium. In conventional coordination games
an extra condition, d > a, is imposed. Then (B, B) is referred to as the payoff-dominant
equilibrium. Later, our results will show that it is the correlation between actions and signals
which determines players’ long-run behavior and not whether (B, B) is payoff-dominant. Thus,
the condition d > a is not assumed to hold here. Define

q∗ := d − b

(a − c) + (d − b)
<

1

2
. (1)

Then (q∗, 1 − q∗) is the unique mixed Nash equilibrium. It is assumed that players know only
their own actions and payoffs at each time period. However, signals corresponding to players’
underlying actions are publicly observable at each time period. Denote by {Ā, B̄} the signal
set for all players. The relations between signals and the underlying actions are described by
the following conditional probabilities:

P(Ā | A) = u and P(B̄ | B) = v, where 1
2 < u, v < 1. (2)

Hence, P(B̄ | A) = 1 − u < 1
2 and P(Ā | B) = 1 − v < 1

2 . This means that signal Ā or B̄ is
more likely to be seen when action A or, respectively, B is taken. Thus, Ā is called the prime
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signal of action A and B̄ is called the prime signal of action B. For simplicity, the correlation
formula (2) is assumed to be fixed over time and across players.

Since players’ actions are unobservable here, in the following two subsections we propose
using the simple and the MLE processes as two possible learning mechanisms to extract
information about players’ current plays from signals.

2.1. The simple learning process

Let Yt = (Y1t , Y2t , . . . , YNt ) ∈ {Ā, B̄}N be the revealed signal of all players at time t , and
let n(Ā, Yt ) = |{1 ≤ j ≤ N : Yj,t = Ā}| be the number of signal Ā in Yt . Since Ā and B̄ are
respectively the prime signal for action A and B, our simple learning process assumes that
players will naively treat the signals Ā and B̄ as the actions A and B, respectively. Because we
are mainly interested in a large population size N , n(Ā, Yt )/N is used, instead of |{1 ≤ j ≤
N, j �= i : Yj,t = Ā}|/(N − 1), as the probability that player i will match with a player of
action A when he is randomly paired with the other players in action updating. Therefore, the
expected payoff of player i at time (t + 1) is

ui(A, Yt ) = n(Ā, Yt )

N
a +

(
1 − n(Ā, Yt )

N

)
b if player i takes action A,

ui(B, Yt ) = n(Ā, Yt )

N
c +

(
1 − n(Ā, Yt )

N

)
d if player i takes action B.

A simple calculation shows that

ui(A, Yt ) ≥ ui(B, Yt ) if and only if (a − c + d − b)n(Ā, Yt ) ≥ (d − b)N. (3)

By maximizing one’s expected payoff,

player i will choose action A at time t + 1 if and only if ui(A, Yt ) ≥ ui(B, Yt ). (4)

Since a − c > d − b > 0 by assumption, (3) and (4) easily imply that

player i will choose action A at time t + 1 if and only if n(Ā, Yt ) ≥ Nq∗. (5)

In other words, player i will choose action A for the next period if and only if the number of
signal Ā observed at present is no less than Nq∗. It is worth mentioning that here no mutation
or the possibility of experimentating with new strategies is considered after players have chosen
their rational actions.

Since the revealed signals are public information and all players adopt the same decision
rule to simultaneously update their next actions, it is clear from (5) that players would take an
identical action at each period. As a result, the evolutionary process above can be represented
by a time-homogeneous Markov chain {Xt : t ≥ 1} on the state space {A, B}, where A =
(A, A, . . . , A) and B = (B, B, . . . , B) are the all-A and all-B action profiles, respectively.
Moreover, its transition matrix

TN =
[
pAA(N) pAB(N)

pBA(N) pBB(N)

]
, (6)

where px,y(N) = P(Xt+1 = y | Xt = x) for x, y ∈ {A, B}, satisfies

pAA(N) = P(n(Ā, Yt ) ≥ Nq∗ | Xt = A) =
∑

k≥Nq∗
uk(1 − u)N−kCN

k (7)
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and
pBA(N) = P(n(Ā, Yt ) ≥ Nq∗ | Xt = B) =

∑
k≥Nq∗

(1 − v)kvN−kCN
k . (8)

Here CN
k = N !/(k! (N − k)!). Note that P(n(Ā, Yt ) = k | Xt = A) = uk(1 − u)N−kCN

k , as
players reveal their signals independently according to (2). The ergodic theorem for Markov
chains implies that, independent of the initial distribution, the following ergodic distribution
exists:

(pN(A), pN(B)) = lim
t→∞(P(Xt = A), P(Xt = B))

with (pN(A), pN(B))TN = (pN(A), pN(B)). Using pN(A) + pN(B) = 1, we easily obtain

pN(A) = pBA(N)

pAB(N) + pBA(N)
and pN(B) = pAB(N)

pAB(N) + pBA(N)
. (9)

Remember that we are interested in (pN(A), pN(B)) for a large population. For instance,
although min(pN(A), pN(B)) > 0 for any fixed population size N by the ergodic theorem,
we wonder when lim infN→∞ min(pN(A), pN(B)) > 0, meaning that players will visit both
equilibria with positive probability.

Taking advantage of the exact form (9), we now study the asymptotic behavior of (pN(A),

pN(B)). By (9),

pN(A) + pN(B) = 1 and
pN(A)

pN(B)
= pBA(N)

pAB(N)
. (10)

Hence, it is enough to study the ratio of pBA(N) and pAB(N).
Introduce independent, identically distributed (i.i.d.) Bernoulli random variables {Yi : i ≥ 1}

and {Zi : i ≥ 1} with

P(Y1 = 1) = u, P(Y1 = 0) = 1 − u,

P(Z1 = 1) = 1 − v, P(Z1 = 0) = v.
(11)

Then (7) and (8) can be expressed as

pAA(N) = P

( N∑
i=1

Yi

N
≥ q∗

)
and pBA(N) = P

( N∑
i=1

Zi

N
≥ q∗

)
. (12)

By (1) and (2), u > 1
2 > q∗. Then (11), (12), and the LLN imply that

lim
N

pAB(N) = 1 − lim
N

pAA(N) = 0. (13)

Similarly,

lim
N

pBA(N) = 1 or 0 depending on whether 1 − v > q∗ or 1 − v < q∗, respectively. (14)

For the case in which 1 − v = q∗, we may apply the central limit theorem (CLT) to obtain

pBA(N) = P

( N∑
i=1

Zi − (1 − v)

N
≥ 0

)
= P

( N∑
i=1

Zi − (1 − v)√
Nv(1 − v)

≥ 0

)
→ 1

2
as N → ∞.

(15)
Combining (10) and (13)–(15), we can prove Theorem 1(a), below.
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Theorem 1. Assume that a − c > d − b > 0 and that the simple learning algorithm (4) holds.

(a) If (1 − v) ≥ q∗ then limN→∞ pN(A) = 1.

(b) Suppose that (1 − v) < q∗. Let f (x) = q∗ log x + (1 − q∗) log(1 − x). Then

(i) limN→∞ pN(A) = 1 if f (1 − v) > f (u), which holds in particular for u ≥ v;

(ii) limN→∞ pN(B) = 1 if f (1 − v) < f (u); and

(iii) lim infN min(pN(A), pN(B)) > 0 if f (1 − v) = f (u).

Since (1 − v) < q∗ in Theorem 1(b), limN pAB(N) = limN pBA(N) = 0 by (13) and (14).
In view of (10), we have to compare the convergence rate to 0 of pBA(N) with that of pAB(N).
Chernoff’s theorem of large deviations (see, e.g. Billingsley (1995, p. 151)) can be applied to
show that, for large N ,

pAB(N) = P

( N∑
i=1

Yi

N
< q∗

)
= P

( N∑
i=1

q∗ − Yi

N
> 0

)
≈ ρN

1 , (16)

where ρ1 = inf t E exp(t (q∗ − Y1)) = inf t [uet (q∗−1) + (1 − u)etq∗ ]. Simple calculus yields
the infinimum at t∗ = log(u(1 − q∗)/(1 − u)q∗) and, thus, log ρ1 = f (u)−f (q∗). Similarly,

pBA(N) = P

( N∑
i=1

Zi

N
≥ q∗

)
= P

( N∑
i=1

Zi − q∗

N
≥ 0

)
≈ ρN

2 , (17)

where ρ2 = inf t E exp(t (Z1 − q∗)) and satisfies log ρ2 = f (1 − v) − f (q∗). Hence,

log
ρ2

ρ1
= log ρ2 − log ρ1 = f (1 − v) − f (u). (18)

Theorem 1(b)(i) and (ii) follow easily from (10) and (16)–(18), except that we still need to
check that f (1 − v) > f (u) when u ≥ v > 1

2 . Since f ′(x) = q∗/x − (1 − q∗)/(1 − x) =
(q∗ − x)/x(1 − x) < 0 for x > q∗, f (x) is decreasing on the interval [q∗, 1]. Then, for
u ≥ v > 1

2 > q∗,

f (1 − v) − f (u) ≥ f (1 − v) − f (v)

= q∗ log

(
1 − v

v

)
+ (1 − q∗) log

(
v

1 − v

)

= (1 − 2q∗) log

(
v

1 − v

)

> 0.

The critical case, f (1 − v) = f (u), is most subtle, as the previous argument is no longer
decisive. Using brute-force computations, we will show in Section 5 that

lim
N

pAB(N)

pBA(N)

(
(1 − u)(1 − v)

uv

){Nq∗}
= (1 − u)(q∗ + v − 1)

v(u − q∗)
> 0, (19)

where {x} = �x� − x lies in [0, 1) and �x� is the least integer greater than or equal to x. Then
Theorem 1(b)(iii) follows easily from (10).
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In summary, Theorem 1 shows that players’ long-run behavior is determined by q∗ in (1) and
the correlation between signals and their underlying actions, (2). Depending on the conditions
specified in Theorem 1, the risk-dominant equilibrium, the non-risk-dominant equilibrium, or
coexistence of both equilibria could emerge in the long run when the population size N is large
enough.

As a side result, this model can be compared with those under perfect monitoring. In our setup
two nonprime signals reflecting different strategies can be regarded as two kinds of mutation.
The noises of the signals, measured by (1 − u) = εα and (1 − v) = εη, are then interpreted
as the associated mutation rates. Here, ε, α, and η are positive constants. Being the mutation
rate, we may assume that ε is small. By (12),

pAB(N) = P

( N∑
i=1

Yi < �Nq∗�
)

≈ (1 − u)N−�Nq∗�+1 = εα(N−�Nq∗�+1).

Similarly,

pBA(N) = P

( N∑
i=1

Zi ≥ �Nq∗�
)

≈ (1 − v)�Nq∗� = εη�Nq∗�.

Using �Nq∗� = Nq∗ + {Nq∗} and (10),

pN(A)

pN(B)
≈ εη�Nq∗�

εα(N−�Nq∗�+1)
= ε−N(α(1−q∗)−ηq∗)+({Nq∗}(η+α)−α). (20)

For the case in which α = ηq∗/(1 − q∗), the above formula is simplified as

pN(A)

pN(B)
≈ ε{Nq∗}(η+α)−α. (21)

Since {Nq∗} ∈ [0, 1), the following can be easily verified using (10), (20), and (21).

Proposition 1. Let 1 − u = εα and 1 − v = εη be the mutation rates of the actions A and B,
respectively, where ε, α, and η are positive constants.

(a) For large N , limε→0 pN(A) = 1 if α > ηq∗/(1 − q∗), and limε→0 pN(A) = 0 if
α < ηq∗/(1 − q∗).

(b) For the case in which α = ηq∗/(1 − q∗), we have pN(A) → 0, 1, or neither as ε → 0,
depending on whether {Nq∗}(η + α) − α is positive, negative, or 0, respectively.

Except for the critical case, α = ηq∗/(1 − q∗), Proposition 1 is a special case in Bergin and
Lipman (1996), where the Darwinian-type dynamics were adopted on the state space {A, B}N .
Kandori et al. (1993) studied the same dynamics, but with 1 − u = 1 − v (that is, with equal
mutation rates).

Generally speaking, the long-run equilibrium would depend on the relative depths of the
basins of attraction at the two equilibria. Here, the depths of the basins of attraction at the
risk-dominant and the non-risk-dominant equilibria are proportional to the values of α and η,
respectively. The larger α is, the more difficult it is to jump out from the risk-dominant
equilibrium; hence, the deeper the basin of attraction is at the risk-dominant equilibrium. A
similar remark holds for η. It is no surprise that limε→0 pN(A) = 1 or 0 if α is large enough
or small enough, respectively, as shown in Proposition 1(a). However, it may not be easy to
see that α = ηq∗/(1 − q∗) is the critical value and that in this case the ergodic distribution
depends on {Nq∗}(η + α) − α. Note that (21) holds for any finite N .
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2.2. The MLE learning process

In this subsection we explore players’ long-run behavior under the MLE learning algorithm.
Let Yt = (Y1t , Y2t , . . . , YNt ) ∈ {A, B}N be the revealed signal of all players at time t and let
yt = (y1t , y2t , . . . , yNt ) be its realization. Since the revealed signals are public information
and all players adopt the same decision rule to simultaneously update their next actions,
the process can be represented as in Section 2.1 by a time-homogeneous Markov process
{X̃t : t ≥ 1} with state space {A, B}. Players are presumed to compare P(Yt = yt | X̃t = A)

with P(Yt = yt | X̃t = B). If

P(Yt = yt | X̃t = A)

P(Yt = yt | X̃t = A) + P(Yt = yt | X̃t = B)
≥ β,

where β ∈ (0, 1) is a preset threshold, players are hypothesized to guess X̃t = A and, thus,
adopt action A at time t + 1. Otherwise, players would adopt action B. It is easy to see from
(2) that

P(Yt = yt | X̃t = A) = uk(1 −u)N−k and P(Yt = yt | X̃t = B) = (1 − v)kvN−k, (22)

where k = n(Ā, yt ) := |{1 ≤ j ≤ N : yj,t = Ā}| is the number of signal Ā in yt . Thus,

X̃t+1 = A if and only if
P(Yt = yt | X̃t = A)

P(Yt = yt | X̃t = B)
≥ β

(1 − β)
. (23)

By taking the logarithm, a simple calculation shows that

X̃t+1 = A if and only if n(Ā, Yt ) ≥ N
log (v/(1 − u))

log (uv/(1 − u)(1 − v))

+ log(β/(1 − β))

log(uv/(1 − u)(1 − v))

≡ Nγ ∗ + δ. (24)

By Bayes rule,

P(X̃t+1 = A) = P(X̃t = A) P(X̃t+1 = A | X̃t = A) + P(X̃t = B) P(X̃t+1 = A | X̃t = B).

Then, from (22) and (24), we obtain

P(X̃t+1 = A) = P(X̃t = A) P(n(Ā, Yt ) ≥ Nγ ∗ + δ | X̃t = A)

+ P(X̃t = B) P(n(Ā, Yt ) ≥ Nγ ∗ + δ | X̃t = B)

= P(X̃t = A) P

( N∑
i=1

Yi ≥ Nγ ∗ + δ

)
+ P(X̃t = B) P

( N∑
i=1

Zi ≥ Nγ ∗ + δ

)
,

where {Yi, Zi} are the i.i.d. Bernoulli random variables given in (11). A similar expression can
be obtained for P(X̃t+1 = B). As a consequence, the transition matrix of {X̃t : t ≥ 1} is similar
to (6) except that now

pAA(N) = P

( N∑
i=1

Yi ≥ Nγ ∗ + δ

)
and pBA(N) = P

( N∑
i=1

Zi ≥ Nγ ∗ + δ

)
. (25)
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The method used in Section 2.1 can be repeated to find its ergodic distribution:

(p̃N (A), p̃N (B)) := lim
t→∞(P(X̃t = A), P(X̃t = B)).

Since we still have the following analog to (10):

p̃N (A) + p̃N (B) = 1 and
p̃N (A)

p̃N (B)
= pBA(N)

pAB(N)
, (26)

it suffices to study the ratio of pBA(N) and pAB(N). It will be shown in Section 5 that

1 − v < γ ∗ < u for 1
2 < u, v < 1, (27)

where γ ∗ is given in (24). As (Nγ ∗ + δ)/N ≈ γ ∗ for large N , the LLN implies that
limN pAB(N) = limN pBA(N) = 0. Then Chernoff’s theorem can be applied to show that,
for large N ,

pAB(N) ≈ ρ̃N
1 and pBA(N) ≈ ρ̃N

2 , (28)

where ρ̃1 = inf t E exp(t (γ ∗ − Y1)) and ρ̃2 = inf t E exp(t (Z1 − γ ∗)). A similar calculation to
that used in (16) and (17) shows that

log ρ̃1 = γ ∗ log

(
u

γ ∗

)
+ (1 − γ ∗) log

(
1 − u

1 − γ ∗

)

and

log ρ̃2 = γ ∗ log

(
1 − v

γ ∗

)
+ (1 − γ ∗) log

(
v

1 − γ ∗

)
.

Since

γ ∗ = log
v/(1 − u)

log(uv/(1 − u)(1 − v))
,

1 − γ ∗ = log
u/(1 − v)

log(uv/(1 − u)(1 − v))

and then

log ρ̃2 − log ρ̃1 = (1 − γ ∗) log

(
v

1 − u

)
− γ ∗ log

(
u

1 − v

)
= 0.

Hence, ρ̃2 = ρ̃1 and the order estimates in (28) are not good enough. We have to estimate
pAB(N) and pBA(N) directly as we did in Theorem 1(b)(iii). Similar to (19), we will show in
Section 5 that

lim
N

pAB(N)

pBA(N)

(
(1 − u)(1 − v)

uv

)δ+{Nγ ∗+δ}
= (1 − u)(γ ∗ + v − 1)

v(u − γ ∗)
> 0. (29)

Note that the constants γ ∗ and δ are defined in (24). In view of (26), we obtain the following
theorem.
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Theorem 2. For the MLE learning algorithm (23), lim infN min(p̃N (A), p̃N (B)) > 0.

In view of (23) and (24), players’ optimal behavior is determined by whether the number of
Ā in the revealed signal exceeds Nγ ∗ + δ, which depends on u, v, and β but not on the payoff
parameters a, b, c, and d . Thus, Theorem 2 remains true for other 2 × 2 symmetric games as
long as players adopt the MLE learning algorithm.

Theorem 2 demonstrates that players will visit the risk-dominant and the non-risk-dominant
equilibria with positive probability in the long run under the MLE learning process, rather
than stick to one equilibrium. Because the exponent {Nγ ∗ + δ} in (29) lies in [0, 1) and varies
with N by (27), limN(p̃N(A), p̃N (B)) does not exist. Hence, the probability for players to visit
the two equilibria in the long run is unlikely to equal the mixed Nash equilibrium, (q∗, 1 − q∗),
of the coordination game.

Compared with Theorem 1, we discover that players’ long-run behavior under imperfect
monitoring is fairly sensitive to the information-extracting mechanism as N tends to ∞.

Finally, these results can be compared with those under perfect monitoring. As in Propo-
sition 1, we may regard the nonprime signals reflecting different strategies as two kinds of
mutation with rates (1 − u) and (1 − v). Then it can be shown that players’ long-run behavior
depends on how fast both mutation rates, 1 − u and 1 − v, tend to 0. Since its proof and
interpretation are the same as those of Proposition 1, they are omitted here.

3. Other symmetric 2 × 2 games

In addition to coordination games there are two other generic types of 2×2 symmetric games.
They are games with a dominant strategy and games with a unique mixed Nash equilibrium.
We analyze them below.

As in Section 2.1, the simultaneous simple learning process for any of these two games is
still a Markov chain on the state space {A, B}. Without causing any confusion, we still denote
by {Xt : t ≥ 1} the associated dynamic process.

The payoff for games with a strictly dominant equilibrium is as shown in Figure 1, but
with b > d > a > c. A typical example is the prisoners’ dilemma game. Under the present
assumption, (a − c + d − b) could be negative. For the case in which a − c ≤ b − d, the
inequality in (3) holds as 0 ≥ a − c + d − b > d − b and 0 ≤ n(Ā, Yt ) ≤ N . For the other
case, a − c > b − d , the inequality in (3) holds trivially as a − c + d − b > 0 > d − b. All
together, (4) implies that Xt = A for t ≥ 1 no matter what the initial value of X0. This can be
easily understood in view of the payoff matrix in Figure 1. Since a > c and b > d, any player
will choose action A for a better payoff, no matter what action his opponent will take.

Theorem 3. For 2×2 symmetric games, as depicted in Figure 1, with b > d > a > c, we have
Xt = A for t ≥ 1 under the simple learning algorithm (4). Hence, A is the unique long-run
equilibrium for a population size N ≥ 2.

The payoff structure for games with a unique mixed Nash equilibrium is as shown in Figure 1,
but with c > a and b > d . Then (A, B), (B, A), and the mixed strategy (q∗, 1 − q∗) are the
Nash equilibria, where q∗ ∈ (0, 1) is defined in (1) but the condition that q∗ < 1

2 is not required
here. Note that a − c < 0 and d − b < 0 now. For the simple learning algorithm, from (3)
and (4), we find that, for 1 ≤ i ≤ N ,

player i will choose action A at time t + 1 if and only if n(Ā, Yt ) ≤ Nq∗.
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Note that the inequality in (5) is reversed owing to a − c + d − b < 0 and d − b < 0. Then its
transition probabilities satisfy

pAB(N) = P(n(Ā, Yt ) > Nq∗ | Xt = A) = P

( N∑
i=1

Yi

N
> q∗

)
(30)

and

pBA(N) = P(n(Ā, Yt ) ≤ Nq∗ | Xt = B) = P

( N∑
i=1

Zi

N
≤ q∗

)
, (31)

where {Yi, Zi} are the i.i.d. Bernoulli random variables given in (11).
Let (pN(A), pN(B)) be the ergodic distribution of {Xt : t ≥ 1}. Then (9) and (10) still hold

since (30) and (31) look like the transition probabilities in (12). By repeating the arguments in
Theorem 1, the following result is proved in Section 5.

Theorem 4. Consider the 2 × 2 symmetric games of Figure 1 with c > a and b > d under the
simple learning algorithm (4).

(a) If u > q∗ and 1 − v > q∗ then limN→∞ pN(A) = 0.

(b) If u = q∗ = 1 − v or u > q∗ > 1 − v then limN→∞ pN(A) = limN→∞ pN(B) = 1
2 .

(c) Depending on whether u > q∗ = 1 − v or u = q∗ > 1 − v, limN→∞ pN(A) = 1
3 or 2

3 ,
respectively.

(d) If 1 − u ≤ q∗ and v ≤ q∗ then limN→∞ pN(A) = 1.

(e) Finally, for the case in which u < q∗ < 1−v, let f (x) = q∗ log x + (1−q∗) log(1−x).
Then

(i) limN→∞ pN(A) = 1 or 0 depending on whether f (1 − v) > f (u) or f (1 − v) <

f (u), respectively;

(ii) lim infN min(pN(A), pN(B)) > 0 if f (1 − v) = f (u).

Theorem 4 shows that players’ long-run behavior depends not only on the relative values of
1−v and q∗, but also on the relative magnitudes of u and q∗. This is because the condition that
q∗ < 1

2 is not required, as in Section 2.1. In the simple learning process, a players’ long-run
behavior is mainly determined by signals’ occurring frequencies. Thus, it is not a surprise to
have A or B alone in the long run even though they are not Nash equilibria. Theorem 4(b)
and (c) indicate that coexistence of both A or B is probable. The unique symmetric mixed
Nash equilibrium could possibly survive only when u < q∗ < 1 − v and f (1 − u) = f (v).

For the MLE learning process, Theorem 2 still holds as remarked in the paragraph after
Theorem 2.

4. Conclusions

In this paper we have analyzed players’long-run behavior in evolutionary coordination games
with imperfect monitoring in a large population. Players can only observe public signals relating
to other players’ underlying actions, and can employ the simple or the MLE learning process
to form expectations about their opponents’ current plays based on the signals. In our setup,
random signals are like mutations in the perfect monitoring literature, which make transitions
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between equilibria possible. However, unlike perfect-monitoring models with state- and time-
invariant mutations, the random signals setup may not be able to refine Nash equilibria. For
instance, Theorem 1 shows that in the simple learning process the risk-dominant equilibrium, the
non-risk-dominant equilibrium, or coexistence of both equilibria could appear in the long run.
Which equilibrium will survive in the long run would depend on the correlation degrees between
signals and their underlying actions. In contrast, Theorem 2 shows that coexistence of the two
equilibria is the unique long-run limit in the MLE learning process. All together, it suggests
that players’ means to extract information from the observed signals has a critical impact on
their long-run behavior in evolutionary games with imperfect monitoring. Theorems 3 and 4
show that similar conclusions can be extended to other 2 × 2 symmetric games with imperfect
monitoring.

In our model players are assumed to update their actions simultaneously at each time period.
This presumption makes our dynamics a simple two-state Markov chain with state space {A, B}.
The corresponding ergodic distribution can then be explicitly specified as in (10). This is the
main reason why players’long-run behavior in a large population can be thoroughly determined,
as in Theorems 1–4 of this paper.

There are two other updating schemes. In a sequential or random agent updating scheme
(see, e.g. Blume (1995) and Miekisz (2005)), only one player is allowed to update his action
per period. The other scheme lets all players have the same positive revision probability at
each time period (see, e.g. Vega-Redondo (1997), Eshel et al. (1998), and Miekisz (2005)).
Under these two updating schemes, the associated dynamic systems become a Markov chain
with N + 1 and 2N states, respectively. In either case it is much more complicated than ours.
As shown by Eshel et al. (1998) and Miekisz (2005), players’ long-run behavior could change
accordingly. It would be interesting to see in the future how players’ long-run behavior changes
when these two updating schemes are adopted in our models.

5. Proofs of Theorems 1, 2, and 4

5.1. Proof of Theorem 1

It remains to verify (19) for part (b)(iii). By (16),

pAB(N) = P

( N∑
i=1

Yi < Nq∗
)

= P

( N∑
i=1

Yi < �Nq∗�
)

=
�Nq∗�∑
l=1

P

( N∑
i=1

Yi = �Nq∗� − l

)
.

(32)
Using �Nq∗� = Nq∗ + {Nq∗},

P

( N∑
i=1

Yi = �Nq∗� − l

)

= CN
�Nq∗�−lu

�Nq∗�−l (1 − u)N−�Nq∗�+l

= CN
�Nq∗�(u

q∗
(1 − u)1−q∗

)N
(

u

1 − u

){Nq∗}( l∏
j=1

�Nq∗� − j + 1

N − �Nq∗� + j

)(
1 − u

u

)l

. (33)

Since �Nq∗� − j ≤ Nq∗ for j ≥ 1, we find that, for each fixed l ≥ 1,

l∏
j=1

�Nq∗� − j + 1

N − �Nq∗� + j
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converges to (q∗/(1 − q∗))l and is bounded by (�Nq∗�/Nq∗)(q∗/(1 − q∗))l . It follows from
Lebesgue’s bounded convergence theorem that

lim
N

pAB(N)

CN
�Nq∗�(uq∗

(1 − u)1−q∗
)N

(
1 − u

u

){Nq∗}
=

∞∑
l=1

(
q∗(1 − u)

(1 − q∗)u

)l

. (34)

Similarly, from (12) we have

pBA(N) = P

( N∑
i=1

Zi ≥ Nq∗
)

= P

( N∑
i=1

Zi ≥ �Nq∗�
)

=
N−�Nq∗�∑

l=0

P

( N∑
i=1

Zi = �Nq∗� + l

)

=
N−�Nq∗�∑

l=0

CN
�Nq∗�+l (1 − v)�Nq∗�+lvN−�Nq∗�−l

=
N−�Nq∗�∑

l=0

CN
�Nq∗�((1 − v)q

∗
v1−q∗

)N
(

1 − v

v

){Nq∗}

×
( l∏

j=1

N − �Nq∗� − j + 1

�Nq∗� + j

)(
1 − v

v

)l

, (35)

and, thus,

lim
N

pBA(N)

CN
�Nq∗�((1 − v)q

∗
v1−q∗

)N

(
v

1 − v

){Nq∗}
=

∞∑
l=0

(
(1 − q∗)(1 − v)

q∗v

)l

. (36)

Since f (1 − v) = f (u) by assumption, uq∗
(1 − u)1−q∗ = (1 − v)q

∗
v1−q∗

. Using
∑∞

l=mxl =
xm/(1 − x) for 0 < x < 1, then (19) follows by taking the ratio of (34) and (35).

5.2. Proof of Theorem 2

It remains to verify (27) and (29). The first one is easy. Since

γ ∗ = log (v/(1 − u))

log (uv/(1 − u)(1 − v))
,

as given in (24), we have 1−γ ∗ = log (u/(1 − v))/ log (uv/(1 − u)(1 − v)). By symmetry, it
is enough to prove the first inequality in (27). A simple calculation shows that this is equivalent
to

g(1 − v) − g(u) > 0, (37)

where g(x) = v log(1 − x) + (1 − v) log x for x ∈ (0, 1). By differentiation, we have
g′(x) = −v/(1 − x) + (1 − v)/x = (1 − v − x)/x(1 − x), which is positive on (0, 1 − v) and
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negative on (1−v, 1). Hence, g(x) attains its unique maximum at x = 1−v. This verifies (37)
and, thus, (27).

Now we deal with (29), which is similar to (19) and will thus be proved by the same method.
By (25),

pAB(N) = P

( N∑
i=1

Yi < Nγ ∗ + δ

)
=

�Nγ ∗+δ�∑
l=1

P

( N∑
i=1

Yi = �Nγ ∗ + δ� − l

)

and

pBA(N) = P

( N∑
i=1

Zi ≥ Nγ ∗ + δ

)
=

N−�Nγ ∗+δ�∑
l=0

P

( N∑
i=1

Zi = �Nγ ∗ + δ� + l

)
,

which are similar to (32) and (35), respectively. Replacing Nq∗ in (33) and (35) by Nγ ∗ + δ,
we will obtain in a parallel way the following analogs to (34) and (36):

lim
N

pAB(N)

CN
�Nγ ∗+δ�(uγ ∗

(1 − u)1−γ ∗
)N

(
1 − u

u

)δ+{Nγ ∗+δ}
=

∞∑
l=1

(
γ ∗(1 − u)

(1 − γ ∗)u

)l

and

lim
N

pBA(N)

CN
�Nγ ∗+δ�((1 − v)γ

∗
v1−γ ∗

)N

(
v

1 − v

)δ+{Nγ ∗+δ}
=

∞∑
l=0

(
(1 − γ ∗)(1 − v)

γ ∗v

)l

.

Taking the ratio of these two formulae, we obtain (29) after a little calculation. This completes
the proof.

5.3. Proof of Theorem 4

We follow the same procedure as in Theorem 1. Applying the LLN and CLT to (30),

lim
N

pAB(N) = 0, 1, or 1
2 depending on whether u < q∗, u > q∗, or u = q∗, respectively.

(38)
Note that E Y1 = u and E Z1 = 1 − v. Similarly, from (31) we obtain

lim
N

pBA(N) = 0, 1, or 1
2 depending on whether

1 − v > q∗, 1 − v < q∗, or 1 − v = q∗, respectively.
(39)

Since (10) remains valid for the present ergodic distribution (pN(A), pN(B)), all the conclu-
sions in parts (a)–(d) follow easily from (38) and (39).

For part (e), limN pAB(N) = limN pBA(N) = 0 as u < q∗ < 1 − v now. We are obliged
to compare their convergence rates to 0 in order to find the limit via (10). As in (16) and (17),
Chernoff’s theorem of large deviation implies that

pAB(N) ≈ ρN
1 and pBA(N) ≈ ρN

2 for u < q∗ < 1 − v,

where ρ1 and ρ2 are the same as in (16) and (17). Hence, (18) still holds. Part (e)(i) follows as
a consequence. It remains to treat the critical case, f (1 − v) = f (u).
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Rewrite (30) and (31) respectively as

pAB(N) = P

( N∑
i=1

(1 − Yi) < N(1 − q∗)
)

= P

( N∑
i=1

(1 − Yi) < �N(1 − q∗)�
)

and

pBA(N) = P

( N∑
i=1

(1 − Zi) ≥ N(1 − q∗)
)

= P

( N∑
i=1

(1 − Zi) ≥ �N(1 − q∗)�
)

.

These equations are the same as (32) and (35), respectively, except that Yi , Zi , and q∗ there are
replaced by (1 − Yi), (1 − Zi), and 1 − q∗. Hence, (34), (36), and then (19) still hold but with
u, v, and q∗ there replaced by (1 − u), (1 − v), and 1 − q∗. In particular, (19) becomes

lim
N

pAB(N)

pBA(N)

(
uv

(1 − u)(1 − v)

){N(1−q∗)}
= u(1 − v − q∗)

(1 − v)(q∗ − u)
> 0.

Part (e)(ii) is verified in view of (10). This completes the proof.
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