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REMARKS ON THE UNIQUENESS PROBLEM FOR
THE LOGISTIC EQUATION ON THE ENTIRE SPACE

YlHONG DU AND LlSHAN LlU

We consider the logistic equation —Au = a(x)u — b(x)uq on all of RN with
a(x)/\x\y and b(x)/\x\T bounded away from 0 and infinity for all large \x\, where
7 > —2, T 6 (—co,oo). We show that this problem has a unique positive solution.
This considerably improves some earlier results. The main new technique here is
a Safonov type iteration argument. The result can also be proved by a technique
introduced by Marcus and Veron, and the two different techniques are compared.

1. INTRODUCTION

We consider the logistic elliptic equation

(1.1) - A u = a(x)u - b(x)u", x € RN,

where q is a constant greater than 1, a(x) and b(x) are continuous functions with b(x)

positive on RN. Equations of this kind have attracted extensive study because of interests
in mathematical biology and Riemannian geometry. We refer to [1, 3 , 6, 7, 9, 10, 15]
and the references therein for some of the previous research.

When the limits

Ooo = lim a(x) and &oo = lim b(x)
| l | - » 0 O | l | - K X >

exist and are positive numbers, it was shown in [9] that problem (1.1) has a unique
positive solution u, and moreover,

u(x) -> (aoo/boo)1^-1) as \x\ -> oo.

In [7], this result was extended to cases where these limits may not exist. Suppose
that for some 7 ^ 0 , there exist positive numbers ai ,«2 and 0\,02 such that

a{x) j ^ - a{x)

( 1 2j |<|-»oo M 7 M-»« M 7

01= lim b(x), 02 = iim b{x).
|x|-»oo ^ H 0 0
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It is easily seen that under these conditions, (1.1) has at least one (weak) positive solution.
By standard regularity theory of elliptic equations ([11]), any W^(RN) solution of (1.1)
belongs to C^fl^).

It was proved in [7] that if u € Cl(RN) is a positive solution of (1.1), and if (1.2) is
satisfied, then

u{x) ^ fatiy/iv-i) — u(x)

|x|-»OO

If in addition, we suppose that

(1.3)

then (1.1) has a unique positive solution. The techniques in [7] were partly motivated by
[3, 15].

In this paper, we shall show that this uniqueness result holds without the extra
condition (1.3). Moreover, we can relax condition (1.2) to the following:

There exist
7> -2, T € (-00,00),

and positive numbers a\,ac2 and /Ji,/32 such that

a(x) -— a(x)

A- Hn.M, A . E | f e i .

Condition (1.4) was first used in [6]. It follows from [6, Corollary 3.5] that under
(1.4), equation (1.1) has a minimal and a maximal positive solution. Here, our uniqueness
result implies that these solutions coincide.

In section 2, we use an iteration argument motivated by one attributed to Safonov (in
an unpublished article) to prove the uniqueness result. For boundary blow-up solutions
over a bounded domain, various versions of this technique have been successfully used in
uniqueness proofs in [12, 4, 8, 5]. Here we show that this technique can also be used for
entire space problems.

We would like to remark that, in proving uniqueness results for boundary trace prob-
lems over a bounded domain, Marcus and Veron ([13]) introduced a different technique,
which can be used to prove, among other things, similar uniqueness results to those in
[12, 4, 8]. However, it seems difficult to apply to problems where the nonlinearity is not
necessarily convex, such as those treated in [5].

In section 3, we adapt the Marcus-Veron technique to give an alternative proof of
our uniqueness result, which turns out to be much shorter than the one given in section
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2. Nevertheless, our proof in section 2 (which is the one we found first) can be extended
to cases where the nonlinearity is not necessarily convex (see Remark 2.4), besides other
possible applications. So it seems worthwhile to publish that proof.

The assumption that 7 > —2 in (1.4) plays an important role in our proofs. If
a(x) ^ C\x\y with 7 < —2 for some C > 0 and all large \x\, and a(x) is positive
somewhere in RN, and b(x) > 0 in RN, then the results in [10] apply and by Theorem 1
there, there exists a unique <7i > 0 such that

-Au - Xa(x)u - b(x)u", x € RN

has a unique positive solution u € H when A > CTI, and there is no such solution when

0 < A ^ <Ti, where H denotes the completion of CQ(RN) under the norm

1/2

It is unclear whether there are positive solutions outside H, but for the special case
b(x) = 1 and q = 2, it was shown in [1] that, indeed, there are no other positive solutions.

2. MAIN RESULT AND ITS PROOF

We first recall a comparison principle (see, for example, [9, Lemma 2.1]) which will
be used in the later proof.

LEMMA 2 . 1 . (Comparison principle) Suppose that fi is a bounded domain in

RN. Let u\, u2 & CL(f2) be positive in fi and satisfy (in the weak sense)

(2.1) Aui + a(i)ui - b(x)uiq ^ 0 ^ Au2 + a(x)u2 - b(x)u2
q in fi

and
lim (u2 — ui) < 0.

d(z,an)-K)

where q > 1, a(x), b(x) are continuous with b(x) positive on n and ||a||i,oo(n) < 00. Then

u2 ^ tti in fl.

It should be noted that in Lemma 2.1, the assumption that U\ and u2 are positive
and satisfy (2.1) in Q has hidden restrictions on a(x) and b(x). Moreover, from the proof
in [9] one easily sees that the restriction that Ui,u2 € C2(Q) there can be replaced by
uuu2 €Cl(Q).

It follows from [6, Theorem 1] that, if (1.4) holds, then any positive solution
u € Cl{RN) of (1.1) satisfies

(2.2) hm , , ' ^ - i- , hm , . ^ -f-.

The following technical lemma is the core of our iteration argument to be used in

the uniqueness proof.
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LEMMA 2 . 2 . Suppose that (1.4) holds and ui, u2 are positive soJutions of (1.1).
Then there exists R > 1 large so that, ifx, 6 RN satisfies, for some k. ^ k > 1,

|x,| > #, 1*2(1.) > k,ux(x.),

then we can find y. € i?" , and positive constants CQ — Co(R,k) and r0 = ro(R,k)
independent ofx, and k,, such that

(2.3)

PROOF: By (1.4) and (2.2), for all large R > 1 and | i | > R,

(2.4)

and, for i = 1,2,

(2.5)

We now fix /2 > 1 large enough so that H-^^T/2) < 1/2 and (2.4), (2.5) hold for all
x satisfying |x| > R/2. Then we define

fio := {x € RN : tia(x) > *.«i(*)} n Br(x.),

where
r = ro |x, |-^2, Br{x.) = {x € RN : |x - x.| < r} ,

and r0 € (0,1) is to be determined below.
Clearly x € £20 implies

| x . | - r < |x | < \x,\+r,

which in turn implies, due to |x, | > R and our choice of R,

(2.6) (l/2)|x.| < |z| < (3/2)|x.|.

We now consider «2 — fc»Ui in Qo- Using (2.4), (2.5) and (2.6) and the assumption
that U2 > k.ui in flo> we deduce, for x G flo»

A(u2 - k,ui) — -o(x)(u2 - A;.i

^ -a(s)(ua - *.u») + 6(x)(JbJ«J - fc,tif)

|TuJ(fc! - fc.)
\x\T+^-T^"-l\kl - k.)

-M|x.|7(u2 - *.tii) + m*.|i,|*,
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where

M = 2ajmax{(l/2)M3/2p}, ° = r + g(7 - r)/fa - 1),
m =

With these preparations, we now define

w(x) = (2N)-1mk.\x.\a(r2 - \ x - x.\2).

Clearly w(x) > 0 in BT(xt) and Au; = —mfc,|x«|ff. It follows that, for x € HQ,

(2.7) A(u2 - *.Ui +w)^ - M | x , | 7 ( u 2 - fc.«i) ^ -M\x,\y(u2 - fc.it! + to).

If we denote by Ai(fl) the first eigenvalue of—A over fi under homogeneous Dirichlet
boundary conditions, we have

Ai(flo) > \i(BT(xm))=r-2\1(Bl(x.)).

Therefore

where Ai = Xi(Bi(xm)) is independent of x.. We now choose r0 € (0,1) small enough so
that

r(T2Ai > M and hence Ai(fi0) > M|x. |7 .

Then by the maximum principle (see [2]) , due to (2.7),

"2(2.) - fc,ui(x») + w(xt) ^ max(u2 - fc.«i + w).
BHQ

We observe that the maximum of (u2 - Ku\ + w) over dQo has to be achieved by some
y. € dBr(xt) since any j / G 9f20\9Br(x.) satisfies, by the definition of f20, "2(2/) = fc.
and hence

w{y) = w(y) ^ tu(x.) < u2(x») - A;.ut(x.) + w(xt).

Thus we can find y. G Sfio satisfying |y, — x,\ = r (hence w(ym) = 0) such that

y.) - *.ui(y.) + w(y.)

u2(x.) - fc,U!(x.) + w(xt)

w{x.) = (2iV)-1mfc,|x.|'7r2

where
1 l { ^ ^ l 1 ^ - T ' > ^ - ^ } > 0,
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and we have used (2.6). Making use of (2.5), we finally deduce

Therefore we can take CQ = C\n2
l and the proof if complete.

THEOREM 2 . 3 . Suppose that (1.4) holds. Then (1.1) has a unique positive so-
lution.

PROOF: AS mentioned before, by [6], under condition (1.4), equation (1.1) has at
least one positive' solution and any such solution satisfies (2.2). Suppose by way of
contradiction that (1.1) has two different solutions ux and u2. Let

fci = km —7-7, k2 = lun —7-7.u W | | « ( a : )

By (2.2) we know that both ki and k2 are finite. If k\ ^ 1 and k2 < 1, then for any e > 0
there exists Re > 0 such that for all x satisfying \x\ > Re,

Ul(x) sj (1 +e)u2(x), u2(x) ^ (1 +e)u1{x).

Since (1 + e)ui and (1 + e)u2 are upper solutions of (1.1), we apply Lemma 2.1 over
ft = BR(Q), R> Rt, and deduce

m(x) ^ (1 +e)u2(x), u2{x) < (1 + £)«,(«), Vi 6 fl^.

Letting e —> 0 we obtain ux = u2, contradicting our assumption that they are different
solutions.

So necessarily max{A;i,A^} > 1. Without loss of generality we may assume that
k2 > 1. Therefore there exist a constant A; € (l,fc2)

 a n ^ a sequence {xn} such that

| in | -> 00, u2(xn)/ui(xn) > k, n = 1,2,... .

We are now in a position to apply Lemma 2.2. Let R, r0 and CQ be determined by
Lemma 2.2. We recall that R satisfies R~l~^/2) < 1/2. We first find an integer j > 1
such that

Since |xn| —> 00, we can then find n0 large enough such that

Taking x, = !„„ and k, = k in Lemma 2.2, we can find y, = j/i such that

|2h - x.| = ro |x.r7 / 2 , u2(yi) > (
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Clearly

IVil > |*.| - ro|*.r7/a £ K J U - R-l-W) > \xno\(l/2) > R.

We now take x. = j/i and k, = (1 + Co)* in Lemma 2.2, and we can find y2 such that

Is/2 ~ Vi\ = ro\yi\-y/2, u2{y2) > (1 + Co)2fcui(y2)-

Let us note that

Ift l^ly, | ( l /2) ^ | I n o | ( l /2)2 > fl.

We can repeat the above process until we obtain j/j, which satisfies

u2(yj) > (l+CoYkmiyj), |y,|> \xno\(l/2Y > R.

Therefore

\x\>RUi(x)

This contradiction completes our proof. D

REMARK 2.4. The arguments in this section can be extended to cases where the right

hand side of (1.1) is more general. For example, suppose that, for u > 0, f(u)/u is

increasing and ci ^ f(u)/uq ^ c2 for some positive constants C\ and c2, and suppose

furthermore that lim f{u)/uq exists when 7 > T, lim f(u)/uq exists when 7 < r, and

Cl = c2 when 7 = r. Then Theorem 2.3 remains true if uq is replaced by f(u) in (1.1).

3. AN ALTERNATIVE PROOF BY THE MARCUS-VERON TECHNIQUE

In this section, we provide an alternative proof of Theorem 2.3 by making use of a
technique introduced by Marcus and Veron in [13, page 226] (see also [14]), which relies
on the convexity of the nonlinearity and hence does not seem easily extendable to cases
as discussed in Remark 2.4. However, this proof is considerably simpler.

Suppose that (1.4) holds. By Lemma 3.1 and Proposition 3.4 of [6], we know that
for all large R, the problem

(3.1) -Av = a(x)v - b(x)vq, v\aBR{0) = 0

has a unique positive solution VR, and as R increases to infinity, VR increases to a positive

solution u, of (1.1). By Lemma 2.1, it is easily seen that u, is the minimal positive

solution of (1.1), namely, any positive solution of (1.1) satisfies u ^ u..

Arguing indirectly, we assume that (1.1) has a positive solution u such that uj^u. .

By the strong maximum principle, we easily deduce that u > u, in RN. Due to (2.2), we

can find a constant A; > 1 such that u < ku, in RN.

We are now ready to apply the Marcus-Veron technique. Define
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Clearly

(3.2) „.>„>_«., +«., „ +
Denote f(x, t) = -a(x)t + b(x)t*. We find

for all x € RN and t > 0. Therefore f{x,t) is convex in t for * > 0, and by (3.2),

2Jfc 1
/ ( l'u')^2ifcTT/(l't ; ) + 2TTT/(x'u)-

It follows that

that is,
- A v ^ a(z)v - b(x)vq.

We now apply Lemma 2.1 with Q = BR(0), UX = v and ui = VR, where UR is the unique
positive solution of (3.1). It follows that VR < v in BR for all large R, from which we
deduce u , ^ v in iZ^. But this is a contradiction to (3.2). This proves the uniqueness
result.
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