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Abstract

This paper is about the reduced group C∗-algebras of real reductive groups, and
about Hilbert C∗-modules over these C∗-algebras. We shall do three things. First, we
shall apply theorems from the tempered representation theory of reductive groups to
determine the structure of the reduced C∗-algebra (the result has been known for some
time, but it is difficult to assemble a full treatment from the existing literature). Second,
we shall use the structure of the reduced C∗-algebra to determine the structure of the
Hilbert C∗-bimodule that represents the functor of parabolic induction. Third, we shall
prove that the parabolic induction bimodule admits a secondary inner product, using
which we can define a functor of parabolic restriction in tempered representation theory.
We shall prove in a sequel to this paper that parabolic restriction is adjoint, on both
the left and the right, to parabolic induction in the context of tempered unitary Hilbert
space representations.

1. Introduction

The unitary dual Ĝ of a locally compact group G may be topologized through the uniform
convergence on compact sets of matrix coefficient functions. The reduced dual is the closed
subset of Ĝ consisting of (equivalence classes of) irreducible unitary representations that are
weakly contained in the regular representation on L2(G). The unitary dual identifies naturally,
as a topological space, with the spectrum of the group C∗-algebra C∗(G), while the reduced
dual identifies with the spectrum of the reduced group C∗-algebra C∗r (G), which is the operator
norm-closure of the L1-convolution algebra of G inside the algebra of bounded operators on
L2(G). For all this see [Dix77] or [BdlHV08, Appendix F].

The purpose of this paper is to examine the structure of the reduced dual and the reduced
group C∗-algebra in the case of a real reductive group, for which the irreducible representations
in the reduced dual are precisely Harish-Chandra’s irreducible tempered representations; see, for
example, [CHH88]. We shall pay special attention to the functor of parabolic induction, which is
not surprising given the dominant role that parabolic induction plays in constructing irreducible
tempered representations.

Let G be a real reductive group and let P be a parabolic subgroup with Levi factor L (the
precise class of groups that we shall consider is described in § 3). We shall approach parabolic
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induction through the (C∗r (G), C∗r (L))-correspondence introduced in [Cla13] (the notation used
there was E(G/N); here we shall use C∗r (G/N)). The general properties of this correspondence,
especially the fact that C∗r (G) acts on C∗r (G/N) by compact operators (in the Hilbert module
sense), contribute in a very helpful way to the determination of the structure of C∗r (G). In the
reverse direction, once the structure of the reduced C∗-algebra has been determined, it is not
difficult to determine the structure of the correspondence.

The problems of determining the unitary dual or the reduced dual as topological spaces,
and of determining the structure of the associated C∗-algebras, have a long history. To give
just a sample of interesting advances we offer the list [Fel60, Lip70, Mil73, BM76, PP83, Val85,
Was87]. The final paper in the list, a short announcement by Wassermann, gives in some sense
the final word on the subject in the case of the reduced C∗-algebra. But it relies on a short
announcement [Art75] by Arthur on the structure of the Harish-Chandra Schwartz algebra of a
real reductive group, and neither of Wassermann’s nor Arthur’s announcements was followed by
detailed published accounts. Because of this, and because in any case a direct approach through
C∗-algebras, rather than Schwartz algebras, is a bit more economical (see, for example, the use
of elementary C∗-algebra ideas in Lemmas 5.10, 5.12 and 5.14), we felt it worthwhile to provide
an account of the matter here.

We should emphasize the obvious, that the structure theorem for C∗r (G) relies very heavily
on results from tempered representation theory, due mostly to Harish-Chandra and Langlands.
Our contribution is to indicate how the structure of C∗r (G) can be obtained as a relatively simple
consequence of these results.

Actually our main interest is parabolic induction, not the structure of C∗r (G), and in our view
the main contribution of this paper lies there. It is shown in [Cla13] that if Hτ is the Hilbert
space of a tempered representation τ of L, then the Hilbert module tensor product

C∗r (G/N)⊗C∗r (L) Hτ ,

which is a Hilbert space carrying a representation of C∗r (G), is the representation of G
parabolically induced from τ . In the final part of this paper we shall construct a functor of
parabolic restriction, from tempered representations of G to tempered representations of L.

To do so we shall study the adjoint module C∗r (N\G) = C∗r (G/N)∗. As a vector space
this is simply the complex conjugate of C∗r (G/N), and we equip it with the structure of a
C∗r (L)–C∗r (G)-bimodule using the formula

b · e · a = a∗eb∗.

Our main observation is that C∗r (N\G) carries a compatible (C∗r (L), C∗r (G))-correspondence
structure, namely a compatible, complete, C∗r (G)-valued inner product, hence a secondary norm
which is equivalent to the original one. We can then define parabolic restriction using the Hilbert
module tensor product

C∗r (N\G)⊗C∗r (G) Hπ,

which carries tempered representations of G to tempered representations of L. The details are
given in § 8. It is not difficult to calculate the functor, given all the structure theory in the
preceding sections, and we shall give some examples in § 8. But the most important feature
of the parabolic restriction functor is that it is both left and right adjoint to the functor of
parabolic induction between categories of tempered unitary representations. This we prove in a
separate paper [CCH14] (the proof is not difficult, but it involves a quite different set of ideas
from operator space theory that would be slightly out of place in the present paper).
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Of course, the presence of an adjoint to parabolic induction on both sides calls to mind
Bernstein’s second adjoint theorem in the representation theory of p-adic reductive groups [Ber92,
ch. 3]. We hope to return to the relationship between the second adjoint theorem and our
bimodule elsewhere (for a few preliminary comments, see Remark 8.9 in this paper). But at the
moment, a full understanding of the parabolic restriction functor introduced here is beyond our
reach. It would be especially interesting to obtain a geometric perspective on parabolic restriction
and the second adjoint theorem in the real case (compare [BK15] for the p-adic case).

In the final section of the paper we shall explain the relation between our parabolic restriction
functor and the Plancherel formula. Using Harish-Chandra’s wave packets, we give a simple
explicit formula for the C∗r (G)-valued inner product on (a dense subspace of) C∗r (N\G).

2. Compact operators on Hilbert modules

Throughout the paper we shall use the language of Hilbert modules over C∗-algebras. For
background information we refer the reader to [Lan95].1 In this section we shall fix some
terminology and notation, and describe some specialized ideas concerning group actions that
will soon feature prominently.

Compact operators
Definition 2.1. Let C be a C∗-algebra, and let H1 and H2 be Hilbert C-modules. We shall
denote by B(H1,H2) the space of bounded operators T : H1 → H2 that possess an adjoint
T ∗ : H2→ H1, characterized by the usual formula

〈Tv1, v2〉 = 〈v1, T ∗v2〉

for all v1 ∈ H1 and all v2 ∈ H2. We say that T is adjointable if it possesses an adjoint.

Definition 2.2. An adjointable operator in B(H1,H2) is compact if it lies in the operator
norm-closure of the linear span of the elementary operators

v2 ⊗ v∗1 : v 7→ v2〈v1, v〉

determined by vectors v1 ∈ H1 and v2 ∈ H2. We shall denote by K(H1,H2) the closed subspace
in B(H1,H2) consisting of all compact operators.

For general background information on Hilbert modules we refer the reader to [Lan95]. The
algebra K(H) of all compact operators on a single Hilbert C-module H is in fact a C∗-algebra
(so is the algebra of all bounded, adjointable operators, but this will play a lesser role).

Group actions
Let H be a Hilbert module over a C∗-algebra C. We shall need to consider group actions on the
C∗-algebra K(H) that are constructed from the following sorts of automorphisms of H.

Definition 2.3. By a twisted unitary automorphism of H we shall mean the following data:

(a) an automorphism c 7→ α(c) of the C∗-algebra C; and

(b) a complex-linear automorphism v 7→ U(v) of H, with the property that

(i) U(vc) = U(v)α(c) for all v ∈ H, all c ∈ C, and

(ii) 〈U(v1), U(v2)〉 = α(〈v1, v2〉) for all v1, v2 ∈ H.

1 Whereas the term Hilbert C∗-module is used in [Lan95], here we shall use the contracted form Hilbert module.
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We shall say that the automorphism U :H→H covers the C∗-algebra automorphism α : C→ C.

Example 2.4. Let X be a locally compact space, and let

w : X −→ X

be a homeomorphism. Let E be an equivariant Hermitian vector bundle over X, and let

w̃ : E −→ E

be a homeomorphism that covers w and is fiberwise a unitary vector space isomorphism. Let
C = C0(X) and let H be the Hilbert C-module of continuous sections of E vanishing at infinity
on X. Then the formulas

αw(f)(x) = f(w−1x) and Uw̃(v)(x) = w̃(v(w−1x)) ∈ Ex
define a twisted unitary automorphism of H.

Definition 2.5. Suppose that u is a unitary element in C, or in the multiplier algebra of C;
see [Ped79, § 3.12] or [Lan95, ch. 2]. The multiplier C∗-algebra contains C as a closed, two-sided
ideal, and the right C-action on H extends uniquely to the multiplier algebra. Because of this,
we can define a twisted unitary automorphism of H as follows:

(a) α(c) = ucu∗ for all c ∈ C; and

(b) U(v) = vu∗ for all v ∈ H.

We shall call U an inner twisted unitary automorphism of H.

Every twisted unitary automorphism g = (α,U) of a Hilbert module H induces an ordinary
C∗-algebra automorphism

Adg : K(H) −→ K(H),

since if an operator T :H→H is compact in the sense of Definition 2.2, then so is the composition

Adg(T ) = U ◦ T ◦ U−1 : H −→ H. (2.1)

In fact

g(v2 ⊗ v∗1) = U(v2)⊗ U(v1)
∗. (2.2)

Lemma 2.6. If g is an inner automorphism of H, then the induced automorphism Adg of K(H)
is the identity automorphism.

Assume now that a group W acts by automorphisms2 on the C∗-algebra C. Assume that
associated to each element w ∈W we are given a twisted unitary automorphism

Uw : H −→ H

that covers w. In addition, assume that for all w, z ∈W the composition

H Uw−→ H Uz−→ H

is the composition of Uzw with an inner automorphism (on either the left or the right).
Necessarily3 the inner automorphism covers the identity automorphism of C; that is, it is
constructed, as in Definition 2.5, from a central unitary u in C or in the multiplier algebra
of C.

2 More generally, we could consider an action by outer automorphisms, that is, an action modulo inner
automorphisms. But this extra generality will not be needed for the examples we shall consider in this paper.
3 This would not be so if we were considering outer actions; see the previous footnote.
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Definition 2.7. In this situation we shall say that the group W acts projectively on the Hilbert
module H.

Such a projective action of W on H induces an ordinary action of W by C∗-algebra
automorphisms on K(H), and we shall be studying throughout the paper the associated fixed-
point algebra.

Definition 2.8. We shall denote by K(H)W the fixed-point C∗-subalgebra of K(H) under the
above action.

Remark 2.9. Given any projective action, we can form the group extension

1 −→ Inn(H) −→ W̃ −→W −→ 1, (2.3)

in which Inn(H) is the group of inner automorphisms of H associated to central unitary elements

of C or its multiplier algebra, while W̃ is the Cartesian product Inn(H)×W as a set, but with
group structure

(U1, w1)(U2, w2) = (U12, w1w2)

where
U1Uw1U2Uw2 = U12Uw1w2 : H −→ H.

There is then an actual (rather than projective) action of W̃ on H by twisted unitary

automorphisms. The fixed point algebras associated to W̃ and W are the same.

Hilbert correspondences and tensor products
Definition 2.10. Let B and C be C∗-algebras and let H be a Hilbert C-module. We shall call
H a correspondence from B to C, or a (B,C)-correspondence if it is equipped with an action
homomorphism of C∗-algebras

B −→ B(H). (2.4)

Definition 2.11. Let E be a Hilbert B-module and let H be a correspondence from B to C.
The interior tensor product E ⊗B H is constructed from the algebraic tensor product E ⊗alg

B H
by completion in the norm associated to the C-valued inner product

〈e1 ⊗ v1, e2 ⊗ v2〉C = 〈v1, 〈e1, e2〉Bv2〉C .

On the right-hand side, the element 〈e1, e2〉B ∈ B is regarded as an operator on H via the action
homomorphism (2.4). See [Lan95, Proposition 4.5] for details.

If E is a Hilbert correspondence from A to B, then the interior tensor product is a
correspondence from A to C.

Lemma 2.12. If E is a Hilbert B-module, if B acts on a Hilbert C-module H through compact
operators, and if S is a compact operator on E , then S ⊗ I is a compact operator on E ⊗B H.

Proof. This follows directly from [Lan95, Proposition 4.7]. 2

For the rest of this section we shall be concerned with the situation in which a finite group W
acts projectively on a Hilbert C-module H by twisted unitary automorphisms, as in the previous
section. We shall take

B = K(H)W , (2.5)

which acts on H in the obvious way and gives H the structure of a correspondence from B to C.
We shall examine the structure of the interior tensor product E ⊗B H in this case, and the

structure of the C∗-algebra K(E ⊗B H) of compact operators on the tensor product.

1290

https://doi.org/10.1112/S0010437X15007824 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007824


Parabolic induction and restriction via C∗-algebras

Lemma 2.13. If H and B are as above, then the formula

Uw(e⊗ v) = e⊗ Uw(v)

defines a projective action of W by twisted unitary automorphisms on the interior tensor product
E ⊗B H.

Proof. The action on the algebraic tensor product is isometric in the interior tensor product
norm, and so extends to the completion E ⊗B H. The compatibility conditions in Definition 2.3
can be checked on the algebraic tensor product, and then they extend by continuity to the
completion. 2

Now let e ∈ E . The formula

Te : v 7→ e⊗ v (2.6)

defines an operator Te : H→ E ⊗B H with adjoint

T ∗e : f ⊗ v 7→ 〈e, f〉v. (2.7)

Lemma 2.14. Each of the operators Te in (2.6) is compact and W -equivariant.

Proof. The W -equivariance of Te is clear from the definition of the action in Lemma 2.13.
Assuming, as we are in (2.5), that B acts on H through compact operators, the composition

T ∗e Te : v 7→ 〈e, e〉v

is evidently compact. Therefore Te is compact, too. 2

Now consider the map

E −→ K(H, E ⊗B H)W (2.8)

that sends e ∈ E to the compact operator Te. Consider the target space as a Hilbert B-module
under the inner product

〈S, T 〉 = S∗T ∈ K(H)W .

Proposition 2.15. The map (2.8) is an isometric isomorphism of Hilbert B-modules.

Proof. Consider the diagram of isometric isomorphisms of Hilbert B-modules

E
∼=
←− E ⊗B B

∼=−→ E ⊗B K(H)W ,

in which the left-hand map is multiplication and the right-hand map simply recalls the definition
of B in (2.5). Using the isomorphisms, we can think of (2.8) as a map

E ⊗B K(H)W −→ K(H, E ⊗B H)W .

On elementary tensors the map has the form

e⊗ (v1 ⊗ v∗2) 7→ (e⊗ v1)⊗ v∗2.

It preserves inner products and has dense range, so it is an isometric isomorphism. 2
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We turn now to a description of K(E). The formula S 7→ S ⊗ I defines a homomorphism of
C∗-algebras

K(E) −→ B(E ⊗B H). (2.9)

See [Lan95, p. 42].

Lemma 2.16. The operators S ⊗ I are compact and W -invariant.

Proof. The W -invariance is clear. Compactness is a consequence of Lemma 2.12. 2

Proposition 2.17. The map S 7→ S ⊗ I determines an isomorphism of C∗-algebras

K(E)
∼=−→ K(E ⊗B H)W .

Remark 2.18. The value of this result is that in our application the C∗-algebra C will have a very
simple structure (in fact it will be abelian), and it will be easy to calculate the tensor product
E ⊗B H.

Proof of Proposition 2.17. It is proved in [Lan95, Proposition 4.7] that the homomorphism is
injective, and moreover that it is an isomorphism when W is trivial. The following small
modification of the argument in [Lan95] handles surjectivity in the general case. It suffices to
show that the operator

Average[(e2 ⊗ v2)⊗ (e1 ⊗ v1)∗] ∈ K(E ⊗B H)W (2.10)

lies in the image of our homomorphism of C∗-algebras, where the average is taken over the
W -action on compact operators. The operator (2.10) acts on E ⊗B H as follows:

e⊗ v 7→ 1

|W |
∑
w∈W

e2 ⊗ Uw(v2)〈Uw(v1), 〈e1, e〉v〉. (2.11)

Here, in the case of a projective action, we lift each element w ∈ W to an element of the group
W̃ in (2.3) before acting on H; the choice of lift does not affect the formula. Using (2.2), we can
rewrite (2.11) as

e⊗ v 7→ e2 ⊗Average[v2 ⊗ v∗1] · 〈e1, e〉 · v,

or equivalently (since the tensor product is over B = K(H)W )

e⊗ v 7→ e2 ·Average[v2 ⊗ v∗1]⊗ 〈e1, e〉 · v.

But this is the formula for the action of the operator S ⊗ I, where

S = e2 Average[v2 ⊗ v∗1]⊗ e∗1 ∈ K(E),

and so the proof is complete. 2

Direct sums
In the coming sections the C∗-algebras B of concern to us, namely the reduced group C∗-algebras
of reductive groups, will be direct sums of C∗-algebras of the type K(H)W considered in the
previous section. Thus we shall be considering C∗-algebras of the form

B =
⊕
α

Bα =
⊕
α

K(Hα)Wα . (2.12)
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The direct sum is to be taken in the C∗-algebraic sense, which is to say that B is the completion
of the algebraic direct sum in the supremum norm. The C∗-algebra operations are defined
coordinatewise.

If E is a Hilbert module over B =
⊕

αBα, then E decomposes in a unique way as a direct
sum

E =
⊕
α

Eα, (2.13)

with Eα a Hilbert module over Bα. Once again, the direct sum here is the completion of the
algebraic direct sum in the supremum norm, and all operations are defined pointwise (so, for
example, distinct summands of E are orthogonal to one another, and the inner product of two
elements from a single summand Eα lies in the summand Bα of B).

In the situation displayed in (2.12), applying Proposition 2.15 coordinatewise, we obtain an
isomorphism

E
∼=−→
⊕
α

K(Hα, E ⊗B Hα)Wα , (2.14)

which describes the summands Eα. Here Hα is given a left action of B through the projection

B −→ Bα = K(Hα)Wα .

Similarly, applying Proposition 2.17 coordinatewise, we obtain an isomorphism

K(E)
∼=−→
⊕
α

K(Eα ⊗B Hα)Wα . (2.15)

3. Reductive groups and parabolic subgroups

We shall not attempt to strive for the utmost generality in the class of groups we shall consider.
Instead we shall aim for (relative) simplicity. This will also guarantee that the diverse references
that we shall cite in the next several sections will actually cover our class of groups.

Consider first the class of connected, self-adjoint matrix groups. This is the class of those
closed, connected subgroups of the matrix groups GL(n,R) that are invariant under the transpose
operation on matrices. Given such a group G ⊆ GL(n,R), the connected Lie subgroup GC ⊆
GL(n,C) whose Lie algebra is the complexification of the Lie algebra of G is a connected (in
the algebraic sense [Hum75, § 7.3]) reductive algebraic group defined over R. The group G is an
open subgroup (in the usual analytic topology on matrices) in the group of real points of this
algebraic group. The group of all real points need not itself be connected, although it has at
most finitely many components.

Although connectedness is a natural assumption, for technical reasons it will be more
convenient to work with the full group of real points. So from now on, we shall let G ⊆ GL(n,R)
be a self-adjoint group which is also the group of real points of a connected (and necessarily
reductive) algebraic group defined over R. For brevity, we shall simply say that G is a real
reductive group.

This convention excludes some examples that we might otherwise consider (for instance, the
group of all matrices with positive determinant), but it has the winning advantage for us that the
class of groups under consideration now is closed under passage to the standard Levi subgroups
whose definition we shall recall in a moment.

Definition 3.1. Let K = G ∩ O(n), which is a maximal compact subgroup of G [Kna86,
Proposition 1.2].
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Definition 3.2. Let A be a maximal abelian subgroup of positive-definite matrices in G.

Remark 3.3. The group A is not unique, but it is unique up to conjugacy by an element of
K [Kna02, ch. VII].

The positive-definite group A is isomorphic to its Lie algebra a via the exponential map. We
can use elements of a to define standard Levi subgroups of G, as follows.

Definition 3.4. The standard Levi subgroups of G (for a given choice of subgroup A ⊆ G) are
the subgroups of the form

L = LX = {g ∈ G : exp(tX)g exp(−tX) = g ∀t ∈ R},

associated to elements X ∈ a. They are real reductive groups.

There is a dense open set of elementsX ∈ a that all define the same group L. This particular L
is minimal in dimension among all standard Levi subgroups and indeed is contained in every other
standard Levi subgroup (for example, if G = GL(n,R), and if A is the group of positive diagonal
matrices, then all X with distinct diagonal entries define the same standard Levi subgroup of
diagonal matrices). Fix a connected component of this dense open set in a, and call it the positive
chamber a+ ⊆ a (there are finitely many choices).

Definition 3.5. The standard unipotent subgroups of G (for a given choice of positive-definite
group A and positive chamber a+ ⊆ a) are the closed subgroups

N = NX =
{
g ∈ G : lim

t→+∞
exp(tX)g exp(−tX) = e

}
,

associated to elements X ∈ a+. The standard parabolic subgroups of G are the closed subgroups

P = PX = LXNX = LN,

associated to elements X ∈ a+.

It is obvious from the definitions that L normalizes N , so the product P = LN is indeed a
subgroup, isomorphic to the semidirect product of L acting on N by conjugation. In fact P is
a closed subgroup of G, diffeomorphic to the Cartesian product of the spaces L and N [Kna02,
ch. VII § 7].

Example 3.6. If G = GL(n,R), and if a+ consists of diagonal matrices whose entries increase
down the diagonal, then the standard parabolic subgroups are the various block upper triangular
subgroups (for the various possible sequences of block sizes). Their Levi factors L are the
block diagonal groups, and the unipotent subgroups N are the block unipotent upper triangular
subgroups.

Remark 3.7. Different choices of chamber a+ ⊆ a are conjugate to one another via elements of K
that normalize a. As a result, different choices of chamber lead to conjugate families of standard
parabolic subgroups.

4. Parabolic induction

Fix throughout this section a real reductive group G (along with a choice of positive-
definite subgroup A and positive chamber a+). In addition, fix a standard parabolic subgroup
P = LN ⊆ G, as in the previous section.
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Apart from being a subgroup of P = LnN , the Levi factor L = P/N is also a quotient. So
if τ : L→ U(H) is a unitary representation of L, then we can consider τ as a representation of
P too, and so form the unitarily induced representation

IndGP τ : G −→ U(IndGP H).

This is the functor of parabolic induction, going from unitary representations of L to unitary
representations of G, and its behavior on tempered unitary representations will be our main
concern in the rest of the paper.

We shall now recall the construction of the (C∗r (G), C∗r (L))-correspondence C∗r (G/N)
from [Cla13, § 2], and then prove a few elementary facts about it.

As a Banach space, C∗r (G/N) is a completion of the space of smooth, compactly supported
functions on the homogeneous space G/N . There is a G-invariant smooth measure on G/N ,
which is unique up to a multiplicative constant. We choose it with respect to the fixed Haar
measures on G and N so that∫

G
f(g) dg =

∫
G/N

∫
N
f(gn) dn d(gN)

for any measurable function f . By G-invariance the natural left translation action of G on
C∞c (G/N) is unitary for the L2-inner product. There is an associated convolution action

C∞c (G)⊗ C∞c (G/N) −→ C∞c (G/N)

defined by the usual formula

(f0 ∗ f)(gN) =

∫
G
f0(γ)f(γ−1gN) dγ. (4.1)

The G-invariant measure on G/N is not invariant for the natural right action of the Levi
factor L. Instead there is a character δ : L→ R×+ such that∫

G/N
f(x`) dx = δ(`)−1

∫
G/N

f(x) dx

for all f ∈ C∞c (G/N) and all ` ∈ L. In fact,

δ(`) = |det(Ad` : n→ n)|. (4.2)

But if we adjust the right action of L on the function space C∞c (G/N) by means of the formula

(f · `)(x) = δ(`)−1/2f(x`−1),

then we obtain a unitary action for the natural L2-inner product. There is an associated
convolution action

C∞c (G/N)⊗ C∞c (L) −→ C∞c (G/N)

defined by

(f ∗ f1)(x) =

∫
L
δ(`)−1/2f(x`−1)f1(`) d`

=

∫
L
δ(`)1/2f(x`)f1(`

−1) d`,
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where the integrals are equal because L is unimodular. Finally, a C∞c (L)-valued inner product
is defined on C∞c (G/N) by

〈h, f〉 : ` 7→ δ(`)1/2
∫
G/N

h(x)f(x`) dx,

or equivalently

〈h, f〉 : ` 7→ δ(`)−1/2
∫
G/N

h(x`−1)f(x) dx

(the integrands are compactly supported functions because the right action of L on the
homogeneous space G/N is proper, which in turn follows from the fact that LN is a closed
subgroup of G). All these structures extend by completion to give the Hilbert module C∗r (G/N).
See [Cla13, Proposition 1].

Remark 4.1. In [Cla13], the Hilbert module C∗r (G/N) is shown to admit a left action of the full
group C∗-algebra C∗(G). To see that the left action factors through C∗r (G), let f0 ∈ C∞c (G) and
let

T : C∗r (G/N) −→ C∗r (G/N)

be the convolution operator determined by the formula (4.1). We need to prove that the operator
norm of T is bounded by the reduced C∗-algebra norm of f0.

Let ψ be a faithful state of C∗r (L). The formula

〈f1, f2〉ψ = ψ(〈f1, f2〉C∗r (G/N))

defines a scalar inner product on C∗r (G/N). Denote by C∗r (G/N)ψ the associated Hilbert space
completion. Each bounded, adjointable operator on C∗r (G/N) extends to a bounded operator on
C∗r (G/N)ψ, and the localization map

B(C∗r (G/N)) −→ B(C∗r (G/N)ψ)

defined in this manner is an injective, and hence isometric, homomorphism of C∗-algebras;
see [Lan95, p. 55].

Returning to the matter at hand, it follows that the norms of T as an operator on C∗r (G/N)
and on C∗r (G/N)ψ are equal. But the representation of C∗(G) on C∗r (G/N)ψ is easily checked to
be weakly contained in L2(G/N), and the representation of C∗(G) on this Hilbert space factors
through C∗r (G) because N is amenable.

The significance of the correspondence C∗r (G/N) is that it implements the functor of parabolic
induction.

Proposition 4.2 (See [Cla13, Corollary 1]). Let τ be a tempered unitary representation of L
on a Hilbert space H. The parabolically induced representation IndGP τ is unitarily equivalent to
the representation of G on the Hilbert space C∗r (G/N)⊗C∗r (L) H.

Remark 4.3. We might call the correspondence C∗r (G/N) the C∗-algebraic universal principal
series, following similar terminology that is used in the p-adic context; see [BK15].

Definition 4.4. Let H be a correspondence from C∗r (L) to a C∗-algebra C. We define the
parabolically induced Hilbert module IndGP H to be the Hilbert module

IndGP H = C∗r (G/N)⊗C∗r (L) H.

It is a correspondence from C∗r (G) to C.
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Proposition 4.5. The C∗-algebra C∗r (G) acts by compact operators on the Hilbert module
C∗r (G/N).

Proof. Let f0 ∈ C∞c (G) and let f ∈ C∞c (G/N). Then

(f0 ∗ f)(x) =

∫
G
f0(γ)f(γ−1x) dγ

=

∫
G/N

k(x, y)f(y) dy,

where

k(g1N, g2N) =

∫
N
f0(g1ng

−1
2 ) dn.

The kernel function

k : G/N ×G/N −→ C (4.3)

defined from f0 by the above integral is δ-homogeneous under the right action of L in the sense
that

k(x`, y`) = δ(`)−1k(x, y). (4.4)

Here δ is the character (4.2). So the support of k is an L-invariant closed set in G/N ×G/N for
the diagonal right action of L.

We claim that the image of the support of the kernel function k in the quotient space
(G/N × G/N)/L is a compact set. To see this, consider the mapping from G/P × supp(f0) to
(G/N ×G/N)/L given by

(h1P, h2) 7→ (h1N,h
−1
2 h1N)L. (4.5)

If (g1N, g2N) lies in the support of k then there is some n ∈N for which g1ng
−1
2 lies in the support

of f0, and then the image of (g1N, g2N) in the quotient (G/N ×G/N)/L is equal to the image
of the point (g1P, g1ng

−1
2 ) under (4.5). Thus the image of the support of k in (G/N ×G/N)/L

is contained in the image of (4.5). But G = KP [Kna02, Proposition 7.83], so G/P is compact
and (4.5) has compact image.

Now, any smooth kernel function as in (4.3) with the homogeneity property (4.4) whose
support is compact in (G/N × G/N)/L defines a bounded, adjointable operator on C∗r (G/N).
We shall show that these operators are all compact.

Each such kernel function k may be written in the form

k(x, y) =

∫
L
u(x`, y`)δ(`) d`

for some u ∈ C∞c (G/N × G/N). The function u may be approximated in the uniform norm
by linear combinations of elementary functions (x, y) 7→ h1(x)h2(y), with all the elementary
functions uniformly compactly supported. It suffices to show that a kernel function

k(x1, x2) =

∫
L
h1(x1`)h2(x2`)δ(`) d`

associated to a single elementary function gives rise to a compact operator.
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The operator in this case maps f ∈ C∞c (G/N) to the function

x 7→
∫
G/N

∫
L
h1(x`)h2(y`)δ(`)f(y) dy d`,

which may be rewritten as

x 7→
∫
L
δ(`)1/2h1(x`)

∫
G/N

h2(y`)δ(`)
1/2f(y) dy d`.

This is precisely how the rank-one operator

h1 ⊗ h∗2 : f 7→ h1〈h2, f〉,

acts. 2

Corollary 4.6. If C∗r (L) acts through compact operators on a Hilbert module H, then C∗r (G)
acts through compact operators on the parabolically induced Hilbert module IndGP H.

Proof. This is a consequence of Proposition 4.5 and Lemma 2.12. 2

The corollary applies to any irreducible unitary Hilbert space representation of G as a result
of a fundamental theorem of Harish-Chandra (see [HC53, Theorem 6, p. 230]).

Theorem 4.7. The C∗-algebra of a real reductive group acts by compact operators in any
irreducible unitary representation of G.

Remark 4.8. For proofs of this theorem more congenial to operator algebra theory, see [God52,
Theorem 2] or [Sti58]. See also [Dix57].

Let us now examine the tempered representations of L in more detail. The group L factors
canonically as a Cartesian product of two closed and commuting Lie subgroups. We will follow
tradition and express this in terms of the Langlands decomposition

P = (MP ×AP ) nNP = MPAPNP ,

where:

(a) NP = N ;

(b) MPAP = L;

(c) AP is the group of positive-definite matrices in the center of L;

(d) MP may be characterized as the subgroup of L generated by the compact subgroups of L,
and we shall call it the compactly generated part of L.

See, for example, [Kna02, ch. VII, § 7]. We find that every tempered irreducible representation of
L is a product σ⊗ϕ of a tempered irreducible representation σ of MP with a unitary character
ϕ of AP . We are especially interested in the special case where

σ : MP −→ U(Hσ)

is an irreducible square-integrable unitary Hilbert space representation of MP . It is not actually
necessary to specialize to square-integrable representations for the results of this section, but
we shall do so anyway, to fix ideas and notation for the next two sections. The representations
obtained from such σ by extending σ ⊗ ϕ to P trivially across N then inducing to G,

IndGP (σ ⊗ ϕ),

are the (unitary) principal series representations of G.
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Definition 4.9. Denote by
Hσ = C0(Â,Hσ)

the Hilbert C0(Â)-module of continuous functions, vanishing at infinity, from the Pontryagin
dual Â into the Hilbert space Hσ. The C0(Â)-module action is by pointwise multiplication, and
the C0(Â)-valued inner product is the pointwise inner product of Hilbert space-valued functions
on Â.

The C∗-algebra C∗r (L) acts on Hσ through the family of representations σ ⊗ ϕ of L = MA
on the Hilbert space Hσ. Thus if f ∈ C∗r (L) and h ∈ C0(Â,Hσ), then

(f · h)(ϕ) = (σ ⊗ ϕ)(f)h(ϕ)

for all ϕ ∈ Â.

Lemma 4.10. The C∗-algebra C∗r (L) acts by compact operators on the Hilbert module Hσ.

Proof. The reduced C∗-algebra of L = MA has the form

C∗r (L) ∼= C∗r (M)⊗ C∗r (A) ∼= C∗r (M)⊗ C0(Â),

where the first isomorphism uses the product structure of L and the second uses the Fourier
transform for the abelian group A. The first factor in C∗r (M)⊗C0(Â) acts on C0(Â,Hσ) through
compact operators on Hσ, and the second factor acts through pointwise multiplications. So the
reduced C∗-algebra of L acts through the C∗-algebra C0(Â,K(Hσ)). This is the C∗-algebra of
compact operators on Hσ = C0(Â,Hσ). 2

Remark 4.11. In fact the action map is a surjective homomorphism from C∗r (L) onto K(Hσ).

Corollary 4.12. The C∗-algebra C∗r (G) acts as compact operators on the Hilbert module
IndGP Hσ.

5. Decomposition of the reduced C∗-algebra

In this section we shall use the analysis of the tempered dual, carried out mostly by Harish-
Chandra and Langlands, to decompose the reduced group C∗-algebra into a direct sum of
component C∗-algebras. The decomposition is well known, but not especially well documented.
In any case, the arguments are quite simple and fit well into the Hilbert module context.

Definition 5.1. Let P be a parabolic subgroup of G, and let σ be an irreducible, square-
integrable representation of the compactly generated part of the Levi factor of P . Denote by

C∗r (G)P,σ ⊆ K(IndGP Hσ)

the image of the C∗-algebra C∗r (G) under its action as compact operators on the Hilbert module
IndGP Hσ; see Corollary 4.12.

Our aim is to show that the natural quotient homomorphisms from C∗r (G) to the component
algebras C∗r (G)P,σ determine an isomorphism of C∗-algebras

C∗r (G)
∼=−→
⊕
[P,σ]

C∗r (G)P,σ,

where the sum is over representatives of suitable equivalence classes of parabolic subgroups P
and irreducible square-integrable representations σ.

First, we shall describe the equivalence relation used above on pairs (P, σ).
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Definition 5.2. Two pairs (P1, σ1) and (P2, σ2), each consisting of a (standard) parabolic
subgroup and an irreducible, square-integrable representation of the compactly generated part of
the Levi factor of the parabolic, are associate if there is an element of G that conjugates the Levi
factor of P1 to the Levi factor of P2, and conjugates σ1 to a representation unitarily equivalent
to σ2.

The relevance of this concept of equivalence stems from the following result, which is the
first of several substantial theorems in representation theory that we shall merely quote.

Theorem 5.3 (See [HC72, § 11]). If (P1, σ1) and (P2, σ2) are associate, then every parabolically

induced representation IndGP1
(σ1 ⊗ ϕ1) is unitarily equivalent to some parabolically induced

representation IndGP2
(σ2 ⊗ ϕ2).

Remark 5.4. In fact it is also true that the representations of G on the Hilbert modules IndGP1
Hσ2

and IndGP2
Hσ2 are unitarily equivalent, as we shall note in the next section, but this is a more

difficult result. Theorem 5.3 is proved by computing that the characters of IndGP1
(σ1 ⊗ ϕ1) and

IndGP2
(σ2 ⊗ ϕ2) are equal, but this technique does not apply in the Hilbert module case.

Next, we shall need the following theorem of Harish-Chandra [HC66, § 36] (see also [Wal88,
§ 7.7] for an exposition) that is the counterpart, for tempered representations of real reductive
groups, of Bernstein’s uniform admissibility theorem [Ber92, § 1.4]. Hence the title we shall give
it here.

Theorem 5.5 (Uniform admissibility). Let G be a reductive group with maximal compact
subgroup K. Let τ be an irreducible representation of K. There are at most finitely many
equivalence classes of irreducible, square-integrable representations of the compactly generated
part of G whose restrictions to K contain τ as a subrepresentation.

Corollary 5.6. Let L = MA be a Levi subgroup of G, and form the direct sum Hilbert space
representation

⊕
[σ]Hσ ofM , indexed by a set of representatives of the unitary equivalence classes

of the irreducible, square-integrable representations of M . The action of C∗r (M) on
⊕

[σ]Hσ is
through compact operators.

Proof. As p ranges over the isotypical projections associated to irreducible representations of
K ∩M (a maximal compact subgroup of M) the subspaces C∗r (M)p span a dense subspace of
C∗r (M). But according to Theorem 5.5, the elements of C∗r (M)p act as the zero operator in all but
finitely many of the Hilbert spaces Hσ. The result follows from this and from Theorem 4.7. 2

Corollary 5.7. Form the direct sum Hilbert C0(Â)-module⊕
[P,σ]

IndGP Hσ

indexed by a set of representatives of the associate classes of pairs (P, σ). The action of C∗r (G)
on this Hilbert module is through compact operators.

Proof. First, fix a standard Levi subgroup, and consider only those parabolics P with that Levi
factor. As in the proof of Lemma 4.10, it follows from Corollary 5.6 that the action of C∗r (L) on
the orthogonal direct sum Hilbert module⊕

[σ]

Hσ =
⊕
[σ]

C0(Â,Hσ)
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is through compact operators. It follows from Proposition 4.5 and Lemma 2.12 that C∗r (G) acts
on
⊕

[P,σ] IndGP Hσ through compact operators. The full result follows from the fact that there
are only finitely many standard Levi subgroups. 2

We obtain from the corollary a homomorphism of C∗-algebras

C∗r (G) −→
⊕
[P,σ]

K(IndGP Hσ),

and so by definition a homomorphism

C∗r (G) −→
⊕
[P,σ]

C∗r (G)P,σ. (5.1)

Remark 5.8. Of course the important point about (5.1) is that the image lies within the C∗-
algebraic direct sum, consisting of families of elements aσ ∈ C∗r (G)P,σ with limσ→∞ ‖aσ‖ = 0.
See, for instance, [Lan95, p. 6].

Our next task is to compute the image of the homomorphism (5.1). For this we shall need the
following important theorem of Langlands on the disjointness of principal series representations.
References for this result are [Lan89, p. 142ff.] and [HC72]; see also [Kna86, Theorem 14.90].

Theorem 5.9 (Disjointness). If two principal series representations

IndGP1
(σ1 ⊗ ϕ1) and IndGP2

(σ2 ⊗ ϕ2)

share an irreducible constituent, then there is an element of G that conjugates the Levi factor
of P1 to the Levi factor of P2, and conjugates σ1 ⊗ ϕ1 to a representation of P2 that is unitarily
equivalent to σ2 ⊗ ϕ2.

We shall also need to apply some elementary facts from C∗-algebra representation theory
to (5.1).

Lemma 5.10. The irreducible representations of the C∗-algebra C∗(G)P,σ, viewed as irreducible
representations of G through the quotient mapping

C∗r (G) −→ C∗r (G)P,σ,

are precisely the irreducible constituents of the principal series representations IndGP (σ ⊗ ϕ), as
ϕ ranges over Â.

Proof. If C is any C∗-subalgebra of a C∗-algebra B, then every irreducible representation of
C is equivalent to the restriction of an irreducible representation of B to a C-invariant, C-
irreducible subspace (see [Dix77, Proposition 2.10.2]). In the present case, where C = C∗r (G)P,σ
andB = K(IndGP Hσ), the irreducible representations ofB are the natural representations given by

evaluation at ϕ ∈ Â on the Hilbert spaces IndGP Hσ⊗ϕ. Indeed, IndGP Hσ gives a Morita equivalence

between B and the commutative C∗-algebra C0(Â), so the irreducible representations of B are
exactly those induced from irreducible representations of C0(Â), which are in turn given by
evaluation maps. To conclude, observe that IndGP Hσ ⊗C0(Â)

Cϕ ' IndGP Hσ⊗ϕ as Hilbert spaces,

so that once restricted to C, this is precisely the principal series representation IndGP (σ⊗ϕ). 2

Definition 5.11. Let ϕ : A→ B be a surjective homomorphism of C∗-algebras. The support of
ϕ is the subset of the dual Â consisting of all irreducible representations that factor through ϕ
(that is, they vanish on the kernel of ϕ).
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Lemma 5.12. If ϕ1 : A→ B1 and ϕ2 : A→ B2 are surjective homomorphisms of C∗-algebras,
and if the support of ϕ1 is disjoint from the support of ϕ2, then the homomorphism

ϕ1 ⊕ ϕ2 : A −→ B1 ⊕B2

is surjective.

Proof. To say that the supports are disjoint is to say that no irreducible representation can
vanish on the kernels of both ϕ1 and ϕ2. But this can only happen when the algebraic sum
of the kernels, which is in any case a closed, two-sided ideal in A, is equal to A (otherwise
the quotient C∗-algebra A/(J1 + J2) would have a non-zero irreducible representation). But
elementary linear algebra shows that if J1 + J2 = A, then the natural projection map

ϕ1 ⊕ ϕ2 : A −→ A/J1 ⊕A/J2

is surjective. 2

Corollary 5.13. If ϕk : A→ Bk for k = 1, . . . , n are surjective homomorphisms of C∗-algebras,
and if the supports of the ϕk are pairwise disjoint, then the homomorphism⊕

k

ϕk : A −→
⊕
k

Bk

is surjective.

Lemma 5.14. Let {ϕα : A → Bα} be a family of surjective homomorphisms of C∗-algebras.
Assume that:

(a) the supports of the homomorphisms ϕα are pairwise disjoint; and

(b) the direct sum
⊕

α ϕα maps A into
⊕

αBα. That is,

lim
α→∞

‖ϕα(a)‖ = 0

for every a ∈ A.

Then the homomorphism ⊕
α

ϕα : A −→
⊕
α

Bα

that results from (b) is surjective.

Proof. Fix any index α0 and organize the direct sum C∗-algebra as⊕
α

Bα = Bα0 ⊕
⊕
α 6=α0

Bα.

To prove the lemma it suffices to show that the image of the homomorphism
⊕
ϕα contains all

elements in the direct sum that are zero in the second term. Let J be the kernel of ϕα0 . The
image of J in

⊕
α 6=α0

Bα is a closed C∗-subalgebra, as indeed is the image of any C∗-algebra
homomorphism. But it follows from Corollary 5.13 and the assumption (b) in the lemma that
the image is also a two-sided ideal. This image ideal must be all of

⊕
α 6=α0

Bα, for if it were not,
the quotient C∗-algebra would have an irreducible representation π. Its equivalence class, viewed
as a point in Â, would lie in the support of ϕα0 , and also in the support of ϕα for some α 6= α0,
contradicting disjointness of supports. 2
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Combining the Langlands disjointness theorem with these elementary observations, we arrive
at the following result.

Proposition 5.15. Form the C∗-algebra direct sum⊕
[P,σ]

C∗r (G)P,σ,

indexed by a set of representatives of the associate classes of pairs (P, σ). The quotient mappings
from C∗r (G) into each summand determine a C∗-algebra homomorphism

C∗r (G) −→
⊕
[P,σ]

C∗r (G)P,σ,

and, moreover, this homomorphism is surjective.

Proof. It follows from Theorem 5.9 that condition (a) in Lemma 5.14 is satisfied. As for (b), it
holds by Remark 5.8. 2

We need one final result from representation theory in this section.

Theorem 5.16 (See [Lan89, Lemma 4.10] or [Tro77]). Every tempered irreducible representation
of G may be realized as a subrepresentation of a principal series representation.

Proposition 5.17. Let G be a real reductive group. The C∗-algebra homomorphism

C∗r (G) −→
⊕
[P,σ]

C∗r (G)P,σ

is an isomorphism.

Proof. If the kernel were non-zero, then there would be an irreducible representation of C∗r (G)
which did not vanish on it, and which therefore was distinct from any parabolically induced
representation, or any subrepresentation of a parabolically induced representation, contrary to
Theorem 5.16. 2

Remark 5.18. It obviously follows from all of the above that the C∗-algebra C∗(G)P,σ depends
only on the associate class of the pair (P, σ), up to isomorphism. This will be made more explicit
in the next section.

6. Structure of the component C∗-algebras

In this section we shall determine the structure of the individual component C∗-algebras C∗r (G)P,σ
in Definition 5.1 (or at any rate, enough of the structure of these algebras for our purposes).
Once again, to do so we shall rely on some substantial results in representation theory, namely
Theorems 6.1 and 6.6 below.

Let P1 and P2 be standard parabolic subgroups of G with Levi factors Li = MPiAPi , and
suppose given irreducible square-integrable unitary representations σi of MPi for i ∈ {1, 2}.

Theorem 6.1. If w ∈K conjugates L1 into L2, and if Ad∗w σ1 ' σ2, then there is an Ad∗w-twisted
unitary isomorphism of Hilbert modules

Uw : IndGP1
Hσ1 −→ IndGP2

Hσ2
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that covers the isomorphism

Ad∗w : C0(ÂP1) −→ C0(ÂP2)

in the sense of Definition 2.3 and that commutes with the action of C∗r (G). It is unique up to a
composition with an inner automorphism.

Proof. Each Hilbert module IndGPi Hσi can be seen as a continuous field of Hilbert spaces over

ÂPi . The existence of the operators Uw then follows from that of the so-called Knapp and
Stein normalized intertwiners, constructed in [KS80] and providing unitary equivalences between
principal series representations IndGP1

σ1 ⊗ ϕ and IndGP2
σ2 ⊗ Ad∗w ϕ (see, for instance, [KS80,

Proposition 8.5(v)]).
As for the uniqueness assertion, let P be P1 or P2. There is a dense open set of characters

ϕ ∈ ÂP for which the unitary Hilbert space representation IndGP Hσ⊗ϕ is irreducible. This is due
to Bruhat [Bru56] if P is minimal and to Harish-Chandra [HC76] in general; see also [MP82]. In
any case it follows from the more advanced Theorem 6.6 below. Given two Ad∗w-twisted unitary
automorphisms, the composition of one with the inverse of the other is a unitary Hilbert module
automorphism IndGP Hσ that intertwines the action of C∗r (G). Again viewing the Hilbert module
as a continuous field of Hilbert spaces over ÂP , our unitary automorphism is then a continuous
family of unitary self-intertwiners of the representations IndGP Hσ⊗ϕ. 2

Remark 6.2. Another approach to Knapp–Stein theory in the context of Hilbert modules consists
in constructing w-twisted unitary operators directly at the level of C∗r (G/N). That point of view
was adopted in [Cla15, Cla14] where explicit unitary intertwiners were obtained in the case of
the special linear group.

Consider now a single parabolic subgroup P ⊆ G and associated Levi subgroup L, and form
the group

W = NK(L)/K ∩ L = NG(L)/L. (6.1)

This is a finite group; see [Kna86, ch. V]. Next, fix an irreducible square-integrable unitary
representation σ of the compactly generated part M of L. The group W acts as outer
automorphisms of M , and hence it acts on the set of equivalence classes of representations
of M . We define Wσ to be the isotropy group of the equivalence class of σ:

Wσ = {w ∈ NK(L) : Ad∗w σ ' σ}/K ∩ L.

The group W , and hence in particular the subgroup Wσ, acts as a group of automorphisms of
the vector group A ⊆ L.

According to Theorem 6.1, there is a group extension

1 −→ Inner(IndGP Hσ) −→ W̃σ −→Wσ −→ 1.

where:

(a) Inner(IndGP Hσ) is the group of inner unitary automorphims of IndGP Hσ. It is isomorphic
to the unitary group of the multiplier algebra of C0(Â), or in other words the group of modulus-
one continuous functions on Â.

(b) W̃σ is the group of all twisted unitary automorphisms of IndGP Hσ associated with elements
of the normalizer group NK(L) that fix σ up to equivalence, as in Theorem 6.1.
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In particular, the self-intertwiners associated to the elements of Wσ by Theorem 6.1 yield a
projective unitary action in the sense of Definition 2.7 of Wσ on IndGP Hσ, hence an action
homomorphism of the form

C∗r (G) −→ K(Hσ)Wσ . (6.2)

We will show that this map is surjective.

Definition 6.3. Given ϕ ∈ Â, let

Wσ,ϕ = {w ∈Wσ : Ad∗w(ϕ) = ϕ}.

For each w ∈ Wσ,ϕ the twisted unitary automorphism Uw of IndGP Hσ appearing in
Theorem 6.1 restricts to an actual unitary automorphism Uw,ϕ of the fiber IndGP (σ ⊗ ϕ).

Definition 6.4. We denote by I(σ, ϕ) the finite-dimensional C∗-algebra of operators on the
Hilbert space of the principal series representation IndGP (σ ⊗ ϕ) generated by the Knapp–Stein
intertwiners Uw,ϕ associated with the elements of the finite group Wσ,ϕ.

We start by taking note of the representation theory of the fixed point algebra (compare the
discussion in [Dix77, 5.4.13]).

Lemma 6.5. Let ϕ ∈ Â and p ∈ I(σ, ϕ) be a minimal projection.

(a) The C∗-algebra K(IndGP Hσ)Wσ is represented irreducibly on the range of p.

(b) Every irreducible representation of K(IndGP Hσ)Wσ arises this way, up to unitary equivalence.

(c) The representations associated to two minimal projections

p1 ∈ I(σ, ϕ1) and p2 ∈ I(σ, ϕ2)

are equivalent if and only if there is some element w ∈ Wσ such that Ad∗w(ϕ1) = ϕ2 and
such that the projection Ad∗w(p1) ∈ I(σ, ϕ2) is equivalent to p2.

The following result is known as Harish-Chandra’s completeness theorem.

Theorem 6.6 [HC76, Theorem 38.1]. Let σ be an irreducible square-integrable unitary
representation of M , and let ϕ be a unitary character of A. The finite-dimensional C∗-algebra
I(σ, ϕ) is the full commutant of the parabolically induced representation IndGP (σ ⊗ ϕ).

Proof. See [KS80, Corollary 9.8] and [Kna86, Theorem 14.31]. 2

Proposition 6.7. The action homomorphism

C∗r (G) −→ K(IndGP Hσ)Wσ

is surjective, and therefore C∗r (G)P,σ = K(IndGP Hσ)Wσ .

Proof. It is evident from Lemma 6.5 that the C∗-algebra

B = K(IndGP Hσ)Wσ

is postliminal, meaning that the image of B in any irreducible representation is the C∗-
algebra of compact operators on the representation Hilbert space. We may therefore invoke
Dixmier’s version of the Stone–Weierstrass theorem [Dix77, Theorem 11.1.8] to prove surjectivity.
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According to Dixmier’s theorem, it suffices to prove that the irreducible representations of B pull
back to irreducible representations of C∗r (G), and that inequivalent irreducible representations
of B pull back to inequivalent irreducible representations of C∗r (G).

It follows from Harish-Chandra’s completeness theorem that every irreducible representation
of B does indeed pull back to an irreducible representation of C∗r (G), and that for a given
unitary character ϕ of A, the irreducible representations of B associated to inequivalent minimal
projections in I(σ, ϕ) remain inequivalent when pulled back to C∗r (G). Part (b) of Lemma 6.5
ensures that irreducible representations of B associated to unitary characters of A in distinct
Wσ orbits remain inequivalent when pulled back to C∗r (G). 2

The isomorphism of Proposition 5.17 can now be rephrased as follows.

Theorem 6.8. Let G be a real reductive group. The combined action homomorphism

C∗r (G) −→
⊕
[P,σ]

K(IndGP Hσ)Wσ (6.3)

is an isomorphism of C∗-algebras.

Remark 6.9. A refined version of this decomposition appears in Wassermann’s short
note [Was87]. It incorporates additional information, due to Knapp and Stein, about the structure
of the stabilizers Wσ (see [KS72], [KS80], and [Kna86, XIV § 9]). Knapp and Stein showed that
the group Wσ,ϕ admits a semidirect product decomposition

Wσ,ϕ = W ′σ,ϕ oRσ,ϕ,

in which the factor Rσ,ϕ, called the R-group attached to (σ, ϕ), consists of those elements that
actually contribute non-trivially to the intertwining algebra of IndGP (σ ⊗ ϕ). The full group Wσ

can also be written as semidirect product

Wσ = W ′σ oRσ,

and Wassermann notes that

K(IndGP Hσ)Wσ ∼
Morita

C0(ÂP /W
′
σ) oRσ.

This is needed in the computation of the K-theory of C∗r (G), which was Wassermann’s main
concern. See [BCH94, § 4] for an account of the K-theoretic aspects of C∗r (G) (the Connes–
Kasparov and Baum–Connes conjectures). The theory of the R-group will not be required for
our purposes. The decomposition of Theorem 6.8 will be enough.

Example 6.10. The structure of the reduced C∗-algebra of real-rank-one groups was elucidated
in [BM76]. Let us consider the basic case of G = SL(2,R); see [BM76, § 4] and [BCH94, p. 256].

Up to association there are two parabolic subgroups: the group G itself and the group P of
upper triangular matrices. The group M in the decomposition P = MAN consists of ±I, while
A is isomorphic to R+. The Weyl group consists of only two elements, both of which fix each of
the two representations σ0 and σ1 of M (the first being the trivial representation).

According to Theorem 6.8, the reduced C∗-algebra decomposes as

C∗r (G) ∼=
⊕
[π]

K(Hπ)⊕ C0(R,K(Hσ0))Z2 ⊕ C0(R,K(Hσ1))Z2 ,

where the first direct sum is indexed by the discrete series of G.
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Remark 6.11. A more refined analysis, as in Remark 6.9, shows that

C0(R,K(Hσ0))Z2 ∼
Morita

C0(R/Z2)

and
C0(R,K(Hσ1))Z2 ∼

Morita
C0(R) o Z2.

7. Structure of the universal principal series

In this section we shall work with a fixed standard parabolic subgroup

P = LN (7.1)

of a real reductive group G. We shall determine the structure of the correspondence C∗r (G/N)
using the information about reduced group C∗-algebras that we presented in §§ 5 and 6.

Applying the results in those sections to the real reductive group L rather than G, we find
that the action of L on its principal series representations determines an isomorphism

C∗r (L)
∼=−→
⊕
[Q,σ]

K(IndLQHσ)Wσ . (7.2)

The sum is over associate classes of pairs (Q, σ) consisting of a standard parabolic subgroup
Q ⊆ L and an irreducible, square-integrable representation of the compactly generated part of
the Levi factor of Q.

As we indicated in (2.13), the above direct sum decomposition of C∗r (L) gives rise to a
direct sum decomposition of any Hilbert C∗r (L)-module, and our first task is to understand these
summands in the case of C∗r (G/N). According to (2.14), if E is any Hilbert C∗r (L)-module, then
the summands have the form

K(IndLQHσ, E ⊗C∗r (L) IndLQHσ)Wσ , (7.3)

so we shall need to compute the tensor product C∗r (G/N)⊗C∗r (L) IndLQHσ.
To this end, we shall first make explicit what we mean by standard in the context of the

group L. If A is the given maximal abelian positive-definite subgroup of G, then A ∩ L is a
maximal abelian positive-definite subgroup of L. Similarly, if a+ is a chamber defining a family
of standard parabolic subgroups for G, then a+ ∩ l is contained in a chamber defining a family
of standard parabolic subgroups for L. We shall make compatible choices in this way. Having
made these choices, the first lemma of this section follows from [Vog81, Lemma 4.1.17].

Lemma 7.1. If P = LNP , as in (7.1), and if Q is any standard parabolic subgroup of L, then
the product QNP is a standard parabolic subgroup of G. Moreover, if we denote by NQ the
unipotent radical of the standard parabolic subgroup Q ⊆ L, then the unipotent radical of QNP

is NQNP .

Define a convolution product

C∞c (G/NP )⊗ C∞c (L/NQ) −→ C∞c (G/NPNQ) (7.4)

by

(f1 ∗ f2)(x) =

∫
L
δ(`)−1/2f1(x`

−1NP )f2(`NQ) d`

=

∫
L
δ(`)1/2f1(x`NP )f2(`

−1NQ) d`,
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where δ = δGP is the character (4.2) involved in the definition of C∗r (G/NP ). This product factors
through the tensor product over C∞c (L) and has dense range. Moreover, denoting the Levi
component of Q by J so that Q = JNQ and QNP = JNQNP , it is compatible with the C∞c (J)-
valued inner products, as follows.

Lemma 7.2 (Induction in stages). The convolution product (7.4) determines a unitary
isomorphism of Hilbert C∗r (J)-modules

C∗r (G/NP )⊗C∗r (L) C
∗
r (L/NQ)

∼=−→ C∗r (G/NPNQ)

that is compatible with the left actions of C∗r (G) on both sides.

Remark 7.3. Induction in stages for representations of C∗-algebras was described in the
original work of Rieffel [Rie74, Theorems 5.9 and 5.11]. The lemma above reflects relations
among successively induced principal series representations that can be found in [Vog81,
Proposition 4.1.18].

From this it is easy to compute the Hilbert module tensor product that appears in (7.3).

Corollary 7.4. Let Q be a standard parabolic subgroup of L with Levi factor J , and let σ be
an irreducible, square-integrable representation of the compactly generated part of J . There is
a unitary isomorphism of Hilbert C∗r (J)-modules

C∗r (G/N)⊗C∗r (L) IndLQHσ
∼=−→ IndGQN Hσ

compatible with the left actions of C∗r (G).

Proof. This is an immediate consequence of the above lemma and the fact that IndLQHσ =
C∗r (L/NQ)⊗C∗r (J) Hσ. 2

Applying the results of § 2, we obtain the following description of the C∗-algebraic universal
principal series.

Theorem 7.5. There is a unitary isomorphism of Hilbert modules

C∗r (G/N)
∼=−→
⊕
[Q,σ]

K(IndLQHσ, IndGQN Hσ)Wσ

with the following properties.

(a) The left action of C∗r (G) on C∗r (G/N) corresponds under the isomorphism to the left action
of C∗r (G) on each principal series Hilbert module IndGQN Hσ.

(b) The right action of C∗r (L) on C∗r (G/N) corresponds under the isomorphism to the left action
of C∗r (L) on each principal series Hilbert module IndLQHσ.

(c) The summands on the right-hand side are orthogonal to one another, and the Hilbert
module inner product on any one of them is

〈S, T 〉 = S∗T,

where the operator S∗T ∈ K(IndLQHσ)Wσ is to be viewed as an element of C∗r (L) via the
isomorphism (7.2).
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Example 7.6. In the case of a minimal parabolic subgroup P = LN = MAN , one has

C∗r (L) ∼=
⊕

[σ]∈M̂

C0(Â,K(Hσ)).

Note that there are no proper parabolic subgroups of L, and M is compact, so that each Hσ is
in fact finite-dimensional. The decomposition of Theorem 7.5 reduces to

C∗r (G/N) ∼=
⊕
σ∈M̂

K(Hσ, IndGP Hσ) ∼=
⊕
σ∈M̂

C0(Â,K(Hσ, IndGP Hσ)).

Note that the groups Wσ(L) are trivial in this case.

Remark 7.7. Results analogous to Theorem 7.5 at the Hilbert space level are presented in the
final chapter of [Wal92] in connection with Whittaker functions. See, in particular, [Wal92, 15.9.3]
for the Plancherel decomposition of the quasiregular representation of G on L2(G/N).

8. The adjoint Hilbert module

Definition 8.1. Let A and B be C∗-algebras, and let E be a Hilbert correspondence from A to
B. We shall denote by E∗ the complex conjugate vector space to E , equipped with the following
(algebraic) B-A-bimodule structure:

b · e · a = a∗eb∗.

This is the adjoint bimodule to E .

The adjoint bimodule E∗ will not typically carry the structure of a correspondence from B to
A, but in this section we shall show that when E = C∗r (G/N), the adjoint bimodule C∗r (G/N)∗

can be equipped with a C∗r (G)-valued inner product that makes it a correspondence from C∗r (L)
to C∗r (G). In the next section we shall characterize this secondary inner product using the
Plancherel theorem.

The significance of this fact is that interior tensor product with C∗r (G/N)∗, as in
Definition 2.11, gives a functor of parabolic restriction from tempered representations of G to
tempered representations of L. In this paper we shall merely introduce the parabolic restriction
functor. In a subsequent paper [CCH14] we shall show that the new functor is simultaneously left
and right adjoint to the functor of parabolic induction between categories of unitary tempered
Hilbert space representations.

The construction of the C∗r (G)-valued inner product on C∗r (G/N)∗ is in fact very
straightforward, given the structure theory developed in the last several sections.

Recall that according to Theorem 6.8 there is an isomorphism

C∗r (G)
∼=−→
⊕
[P,σ]

K(IndGP Hσ)Wσ , (8.1)

while according to Theorem 7.5 there is an isomorphism

C∗r (G/N)
∼=−→
⊕
[Q,σ]

K(IndLQHσ, IndGQN Hσ)Wσ . (8.2)

The first thing to say about the C∗r (G)-valued inner product is that, by definition, the summands
in (8.2), or rather the adjoint modules associated to them, will be orthogonal to one another.
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As for the individual summands in (8.2), the inner product of a pair of elements from the
[Q, σ]-summand will lie in the [QN, σ]-summand of (8.1); see Lemma 7.1. In order to define this
inner product it will be helpful to refine slightly the notation for groups of intertwining operators
Wσ that we have used up to now. Let J be a standard Levi subgroup of L, where L is in turn
a standard Levi subgroup of G, and let σ be an irreducible, square-integrable representation of
the compactly generated part of J . We shall now write

Wσ(G) = {w ∈ NK(J) : Ad∗w σ ' σ}/K ∩ J

and
Wσ(L) = {w ∈ NK∩L(J) : Ad∗w σ ' σ}/K ∩ J,

which takes into account the fact that J may regarded as a standard Levi subgroup of either G
or L. Of course,

Wσ(L) ⊆Wσ(G).

Suppose, then, that we are given two elements in one summand of C∗r (G/N)∗, say

S1, S2 ∈ K(IndLQHσ, IndGQN Hσ)Wσ(L)

(the complex conjugates are present as a result of our definition of the adjoint module). We
define

〈S1, S2〉C∗r (G) = AvWσ(G)(S1S
∗
2) ∈ K(IndGQN Hσ)Wσ(G), (8.3)

where on the right-hand side we have taken the average over the action of the finite group Wσ(G)
on the C∗-algebra K(IndGQN Hσ).

The formula (8.3) satisfies the algebraic requirements for a Hilbert module inner product.
In addition, the [Q, σ]-summand that we are studying is complete in the norm associated to the
inner product. This is because

〈S, S〉C∗r (G) = AvWσ(G)(SS
∗) >

|Wσ(L)|
|Wσ(G)|

SS∗,

and so, since ‖SS∗‖ = ‖S∗S‖,

‖S‖2C∗r (G/N)∗ >
|Wσ(L)|
|Wσ(G)|

‖S‖2C∗r (G/N). (8.4)

Therefore we obtain a Hilbert C∗r (G)-module structure on the [Q, σ]-summand of C∗r (G/N)∗, as
required.

To complete the construction we need to show that the (complex conjugate of the) Hilbert
module direct sum (8.2), which is the completion of the algebraic direct sum in the C∗r (G/N)-
norm, is also the Hilbert module direct sum in the C∗r (G/N)∗-norm.

Each summand of the Hilbert module is supported, as either a Hilbert C∗r (G)-module or a
Hilbert C∗r (L)-module, in a single summand of the reduced group C∗-algebra (that is, all the inner
products lie in a single summand in the direct sum decomposition of the C∗-algebra). Moreover,
there is a uniform bound on the number of Hilbert module summands that are supported in any
given C∗-algebra summand. Finally, in addition to inequality (8.4) we have the inequality

‖S‖2C∗r (G/N) > ‖S‖
2
C∗r (G/N)∗

in each Hilbert module summand. So the C∗r (G/N)-norm in each summand is bounded uniformly
by a multiple of the C∗r (G/N)∗-norm, and vice versa. It follows that the C∗r (G/N)-norm and
the C∗r (G/N)∗-norm are bounded by multiples of each other on the algebraic direct sum, so the
completions in the two norms agree, as required.
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Definition 8.2. Let G be a real reductive group and let P = LN be a parabolic subgroup of G.
We shall denote the correspondence from C∗r (L) to C∗r (G) just constructed by

C∗r (N\G) = C∗r (G/N)∗.

Remark 8.3. The notation reflects the fact that the L–G-bimodule C∗r (G/N)∗ can be viewed as
a completion of C∞c (N\G), with the left L-action and right G-action defined analogously to our
approach in § 4 to the actions on C∞c (G/N). One associates to a function f ∈ C∞c (N\G) the
function

f∗ : gN 7→ f(Ng−1)

on G/N .

Definition 8.4. If H is a Hilbert space carrying a tempered unitary representation of G, or
in other words a non-degenerate representation of the C∗-algebra C∗r (G), then the parabolic
restriction of H is the Hilbert space

ResGP H = C∗r (N\G)⊗C∗r (G) H,

together with the tempered unitary representation of L that it carries.

Here are the results of some easy sample calculations, along with some remarks about
parabolic restriction as it is understood from a more standard representation-theoretic point of
view. In each case the calculation is carried out using the explicit forms of C∗r (G) and C∗r (G/N)
that we have determined in the paper. In other words the calculations, though short, are far
from basic, in that they presuppose a great deal of representation theory of the sort relied upon
in this paper.

Example 8.5. The first thing to be said is that if an irreducible representation π is square-
integrable on the compactly generated part of G, then ResGP Hπ = 0 for all proper parabolic
subgroups P ⊆ G. This is because C∗r (G) can be written as a sum of two complementary ideals,
one acting trivially on Hπ and the other acting trivially on C∗r (N\G).

In contrast, the usual (left) adjoint to parabolic induction considered in representation theory
(the space of n-coinvariants of a (g,K)-module) is non-zero in this and indeed any admissible
case, by Casselman’s famous subrepresentation theorem.

Example 8.6. Consider next a principal series representation IndGP Hσ⊗ϕ. If the isotropy group
Wσ,ϕ of Definition 6.3 is trivial (and so, for example, by Theorem 6.6 the representation is
irreducible), then

ResGP IndGP Hσ⊗ϕ ∼=
⊕
w∈W

Hw(σ⊗ϕ).

This is consistent with the standard situation in representation theory.

Example 8.7. More interesting, perhaps, is the case of a principal series representation for which
the intertwining group Wσ,ϕ is large. Consider, for example, the base of the spherical principal
series. Here one has

ResGP IndGP C0
∼= C0.

As in Example 8.5, this is smaller than the space of n-coinvariants of the associated (g,K)-
module.

As we have already mentioned, the central fact about the functor of parabolic restriction,
which we establish in [CCH14], is as follows.
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Theorem 8.8. The functor ResGP , from tempered unitary representations of G to tempered
unitary representations of L, is both left and right adjoint to the functor IndGP of parabolic
induction.

The proof is not difficult, granted the structure theory for C∗r (G/N) that we have developed
here, but it involves a separate set of operator-algebraic ideas, and it is for this reason that we
have chosen to address it elsewhere.

Remark 8.9. Let us close this section by making a few informal comments for the benefit of those
who are familiar with Bernstein’s second adjoint theorem for smooth representations of reductive
p-adic groups [Ber92]. Bernstein begins by observing that there is a natural candidate unit map
for his adjunction. It takes the form of a bimodule map

C∞c (L) −→ Cc(N\G)⊗C∞c (G) C
∞
c (G/N),

where N is the unipotent subgroup opposite to N , and it is associated to the inclusion of N ·L ·N
as an open subset in G.

Passing to C∗-algebras and Hilbert modules (in either the real or the p-adic contexts), one
can ask whether Bernstein’s map extends to completions. It does not. However, it is reasonably
well behaved as an unbounded operator (it is regular [Lan95, ch. 9]).

Another manageable problem is the appearance of N in place of a second copy of N (as
we use in this paper and [CCH14]). The C∗-correspondences associated to the two different
unipotents are isomorphic.

After switching N for N , the unit map that arises from Theorem 8.8 can be viewed as a
bounded transform (in roughly the sense of [Lan95, ch. 10]). But we emphasize that it exists
only at the Hilbert space level, not the Hilbert module level.

In conclusion, then, Bernstein’s unit, and hence his adjunction, is distinct from that of
Theorem 8.8, but related to it.

A perhaps more interesting and more fundamental observation is that at the level of Harish-
Chandra’s Schwartz space (see the next section) and its associated bimodules, Bernstein’s unit
is indeed well defined. Moreover, we have checked for G = SL(2,R) that the counterpart of
Bernstein’s theorem is true (and we believe it is true generally). See [CH16] for some preliminary
computations in this direction; a fuller treatment of these matters is in preparation.

9. Relation to the Plancherel formula

We close this paper with a calculation that relates the inner product on the adjoint
correspondence C∗r (N\G) to the Plancherel formula.

It will be convenient to work with Harish-Chandra’s Schwartz space C(G). This is a Fréchet
space of smooth functions on G that contains as a dense subspace the smooth and compactly
supported functions. The Schwartz space is included continuously as a dense subspace in both
L2(G) and C∗r (G). See [HC66, part I] and, for an exposition, [Wal88, ch. 7]. In every irreducible
representation of C∗r (G) the functions in C(G) act as Hilbert–Schmidt operators.

We begin by reviewing the Plancherel formula for G (and for this purpose we shall not yet
need to fix a parabolic subgroup P ⊆ G).

Choose a representative (P, σ) for each of the associate classes [P, σ] forG, as in Definition 5.2.
There is a Langlands decomposition P = MPAPNP , and, as we noted earlier, the group AP ,
which consists entirely of positive-definite matrices, is isomorphic to its Lie algebra via the
exponential map. So AP carries the structure of a vector space, and we can speak of its space
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of Schwartz functions in the ordinary sense of harmonic analysis. The same goes for the unitary
(Pontryagin) dual ÂP . By a tempered measure on ÂP we mean a smooth measure for which
integration extends to a continuous linear functional on the Schwartz space.

Finally, let us write

πσ,ϕ = IndGP (σ ⊗ ϕ)

for the representation of G parabolically induced from the representation σ ⊗ ϕ of L = MPAP .
Using this terminology and notation, the general structure of Harish-Chandra’s Plancherel
formula for the group G [HC76] is as follows (see [Wal92, ch. 13] for an exposition).

Theorem 9.1. There are unique smooth, tempered, Wσ-invariant measures mP,σ on the spaces

ÂP such that

‖f‖2L2(G) =
∑
[P,σ]

∫
ÂP

‖πσ,ϕ(f)‖2H-S dmP,σ(ϕ),

for every f ∈ C(G).

As ϕ ∈ ÂP varies, the Hilbert spaces IndGP Hσ⊗ϕ can be identified with one another as

representations of K. Denote by IndGP Hσ this common Hilbert space (as we have done earlier)
and form the Hilbert space tensor product

L2(ÂP ,mP,σ)⊗ L2(IndGP Hσ), (9.1)

where L2(IndGP Hσ) denotes the Hilbert space of Hilbert–Schmidt operators on IndGP Hσ.
If f ∈ C(G) is K-finite, meaning that its left and right K-translates span a finite-dimensional

subspace of C(G), then for every pair (P, σ) the function

ÂP 3 ϕ 7→ πσ,ϕ(f) ∈ L2(IndGP Hσ)

is a Schwartz function from ÂP into a K-finite part of L2(IndGP Hσ), meaning a finite-dimensional
subspace that is invariant under the left and right actions of K. We can regard the function as
an element of the Hilbert space tensor product (9.1).

Definition 9.2. Let f ∈ C(G) be a K-finite function. Its Fourier transform is the element of
the direct sum Hilbert space ⊕

[P,σ]

L2(ÂP ,mP,σ)⊗ L2(IndGP Hσ)

determined by the operator-valued functions ϕ 7→ πσ,ϕ(f).

The Plancherel formula can be reformulated in these terms, as follows.

Theorem 9.3. The Fourier transform, defined initially on K-bifinite functions in C(G), extends
to an isometric linear map

L2(G) −→
⊕
[P,σ]

L2(ÂP ,mP,σ)⊗ L2(IndGP Hσ).

We shall also need the following determination of the range of the Fourier transform;
see [Art83, ch. 3, § 1].
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Theorem 9.4. The Fourier transform is a Hilbert space isometry from L2(G) onto the Hilbert
subspace ⊕

[P,σ]

[L2(ÂP ,mP,σ)⊗ L2(IndGP Hσ)]Wσ(G) ⊆
⊕
[P,σ]

L2(ÂP ,mP,σ)⊗ L2(IndGP Hσ).

We shall use this fact to calculate the adjoint to the Fourier transform in Definition 9.2.

Definition 9.5. Let h be a Schwartz-class function from ÂP into a K-finite part of L2(IndGP Hσ).
The wave packet associated to h is the scalar function

ȟ(g) =

∫
ÂP

Trace(πσ,ϕ(g−1)h(ϕ)) dmP,σ(ϕ). (9.2)

on the group G.

A fundamental theorem of Harish-Chandra asserts that wave packets are Schwartz functions
on G; see, for example, [Wal92, Theorems 12.7.1 and 13.4.1].

Theorem 9.6. The wave packets (9.2) associated to the Schwartz-class functions from ÂP into
the K-finite parts of L2(IndGP Hσ) all belong to the Harish-Chandra Schwartz space C(G).

We can now carry out the following crucial computation involving wave packets, which is a
simple consequence of Theorem 9.4.

Proposition 9.7. If f is a Harish-Chandra Schwartz function on G, and if h is a Schwartz
function from AP to the K-finite part of L2(IndGP Hσ), then

〈f, ȟ〉L2(G) = 〈f̂ , h〉
L2(Â,mP,σ)⊗L2(IndGP Hσ)

.

Proof. We calculate that

〈f, ȟ〉L2(G) =

∫
G
f(g) ȟ(g) dg

=

∫
G
f(g)

∫
ÂP

Trace(πσ,ϕ(g−1) · h(ϕ)) dmP,σ(ϕ) dg

=

∫
ÂP

Trace

(∫
G
f(g)πσ,ϕ(g−1) dg · h(ϕ)

)
dmP,σ(ϕ)

=

∫
ÂP

Trace(πσ,ϕ(f)∗h(ϕ)) dmP,σ(ϕ)

= 〈f̂ , h〉
L2(ÂP ,mP,σ)⊗L2(IndGP Hσ)

,

as required. 2

Corollary 9.8. The wave-packet operator h 7→ ȟ, defined on Schwartz functions with values in
K-finite parts of the Hilbert–Schmidt spaces L2(IndGP Hσ), extends to a bounded linear operator⊕

[P,σ]

L2(ÂP ,mP,σ)⊗ L2(IndGP Hσ) −→ L2(G)

that is adjoint to the Fourier transform. 2
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Now if h ∈ L2(ÂP ,mP,σ) ⊗ L2(IndGP Hσ), then define AvWσ(h) to be the average over the
action of the finite group Wσ:

AvWσ(G)(h)(ϕ) =
1

|Wσ|
∑
w∈Wσ

w(h(w−1(ϕ))).

The averaging operator

AvWσ(G) : L2(ÂP ,mP,σ)⊗ L2(IndGP Hσ) −→ L2(ÂP ,mP,σ)⊗ L2(IndGP Hσ)

is the orthogonal projection onto the Wσ(G)-invariant part of the tensor product.

Corollary 9.9. The [P, σ]-component of the Fourier transform of the wave packet ȟ is given
by the formula

πϕ(ȟ) = AvWσ(G)(h)(ϕ).

The other components of the Fourier transform are zero.

We are ready to give a formula for our C∗r (G)-valued inner product on the summand

[K(IndLQHσ, IndGQN Hσ)Wσ(L)]∗ ⊆ C∗r (G/N)∗

as in (8.2). Write

K(IndLQHσ, IndGQN Hσ)Wσ(L) ∼= C0(Â,K(IndLQHσ, IndGQN Hσ))Wσ(L),

and suppose we are given two functions

S1, S2 ∈ C0(ÂP ,K(IndLQHσ, IndGQN Hσ))Wσ(L)

that are in fact Schwartz functions from ÂP into a finite part of the Hilbert–Schmidt space
L2(IndLQHσ, IndGQN Hσ).

Theorem 9.10. Given S1 and S2 as above, the inner product

〈S1, S2〉C∗r (G) ∈ C∗r (G)

is the following Harish-Chandra Schwartz function on G:

〈S1, S2〉C∗r (G) =

[
g 7→

∫
ÂP

Trace(S2(ϕ)∗πσ,ϕ(g−1)S1(ϕ)) dmP,σ(ϕ)

]
(9.3)

Proof. By definition, the inner product is the unique element of C∗r (G) that is equal to

AvWσ(G)(S1S
∗
2)

in the [QN, σ]-component of the direct sum decomposition (6.3) of C∗r (G), and that is zero in
the other components of the direct sum decomposition; see (8.3). If we write the right-hand side
of (9.3) as

g 7→
∫
ÂP

Trace(πσ,ϕ(g−1)S1(ϕ)S2(ϕ)∗) dmP,σ(ϕ)

using the trace property, then we see from Corollary 9.9 that this function has precisely the
required property. 2
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