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HIGH LEVEL OCCUPATION TIMES FOR GAUSSIAN 
STOCHASTIC PROCESSES WITH SAMPLE PATHS IN 

ORLICZ SPACES 

ANNA T. LAWNICZAK 

Let X be a complete separable metric space, and {P€} a family of 
probability measures on the Borel subsets of X. We say that {Pe} obeys the 
large deviation principle (LDP) with a rate function /(•) if there exists a 
function /(•) from X into [0, oo] satisfying: 

(i) 0 ^ I(x) ^ oo for all x <= X. 
(ii) /(•) is lower semicontinuous. 

(iii) For each / < oo the set {x:I(x) ^ /} is a compact set in X. 
(iv) For each closed set C c X 

lim supelog P€(C) ^ - i n f J(x). 

(v) For each open set G c X 

lim infclog P€(G) ^ - i n f / ( A : ) . 
€^0 x^G 

It is easy to see that if A is a Borel set such that 

inf I(x) = inf I(x) = inf I(x) 
x^A° x^A X<EA 

then 

lim e log Pe(A) = - in f /(JC) 

where A0 and v4 are respectively the interior and the closure of the Borel 
set A. 

1. PROPOSITION [12]. Let P€ satisfy the large deviation principle with a 
rate function /(•). Let F be a continuous map from X —> L where L is 
another complete separable metric space. Then if we define Q€ on L by 
Qe = P€ o F~ , then Qe satisfies the large deviation principle with a rate 

function J*{') defined by 

f(y) = inf / (* ) . 
x:F(x)=y 
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2. PROPOSITION [3, 11]. Let (B, &(B), /x) be a real separable Banach space 
with a mean-zero Gaussian measure fi defined on the Borel o-algebra &(B). 
Let H^ be the closure in L2(/x) of the set {x*(-):x* e B*}; and, for 
h e H let us define 

S (h) = I xh{x)[i{dx). 

Let {Xi}
(^=] be a sequence of independent B-valued random elements, each 

with distribution fi. Set 

n 

Sn = 2J Xm 
1 

and let \in be the distribution of Sn/n9 then {/xw:w = 1} satisfies the large 
deviation principle with the rate function I„(•) defined as follows 

[ OO ifx G 5 \ S „ ( f y , 

and for any closed set F: 

lim sup e log ii(e~V2F) ^ — inf IJx), 
e-^0 x^F 

for any open set G: 

lim inf e log /x(e_1/2G) ^ - i n f I (x). 
e-M) x^G 

In this paper we are going to show that Proposition 2 is true for Orlicz 
spaces L^ such that <HVÔ *S equivalent to $(/) concave. It is easy to see 
that this class of Orlicz spaces includes some non-locally convex vector 
spaces. By applying the L.D.P. for Orlicz spaces we extend Kallianpur's 
and Oodaira's (1978), Marlow's (1973) results concerning some asymptot
ic estimates for the probabilities of high level occupation times for 
continuous Gaussian stochastic processes to the class of Gaussian 
stochastic processes with sample paths in Orlicz spaces. 

Let (T, J^ m) be an arbitrary a-finite measure space with a-algebra J** 
and a separable measure m. Let S be the space of equivalence classes in 
measure m of all real valued J^measurable functions. By cj> let us denote a 
continuous, non-negative, non-decreasing function defined for u ^ 0 such 
that <j>(u) = 0 if and only if u = 0. We assume additionally that the 
function <f>(u) satisfies the so-called A2 condition, i.e., there is a positive 
constant k such that for any u 

<j>(2u) ^ k(j>(u). 

For x G S let us define 
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**(*) = JT^\x(t)\)m(dt) 
and let L^ be the set of all x e S such that R^ax) < oo for some positive 
scalar a. The set L^ is a linear space under the usual addition and scalar 
multiplication. Moreover it becomes a complete, separable metric space 
under the (usually non-homogeneous) seminorm ||||^: 

IW|^ = inf{c:c > 0, i^(c_1%) < c}. 

The space (L^, ||-||^) is called an Orlicz space. It is easy to see that 
convergence in the L^ seminorm implies convergence in measure. In the 
case that 4> is a convex function L^ is a Banach space [10]. We say that 
<K\A) is equivalent to a concave function $(w) if for all u = 0 

A^y/u) ^ $(w) ^ B&C2VVL) 

for some cl5 c2, ^4, i? positive constants. In this case Theorem 7.2.5 [5] 
implies that <j>(u) satisfies A2-condition. The best known examples of the 
Orlicz spaces are L (T,^9 m) spaces for 0 ^ p < oo [10]. 

For convenience let us recall some necessary facts concerning probabil
ity measures on (L^, ^(L^) ) spaces. 

A. For each probability measure fi on (L^, ^(L^) ) can be constructed a 
measurable stochastic process £ = {£(t):t e T} on 

(0, 2 , P) = L^ @{L^ M) 

with sample paths in L^ such that £(x) = x JU, a.e.; induced measure ^ is 
equal to /A, and for every pair (s, u) of real numbers 

!(/; sx =b wy) = s£(t9 x) ± ui-(t, y) m X jn X /A a.e. 

Conversely, each jointly measurable stochastic process £(V, co), defined on 
T, with almost all its sample paths in L^ induces an L^(T, ^ m) valued 
random element [1]. 

B. An L^-valued r.e. £ (or p.m. /i on (L^, ^(L^) ) is Gaussian if for any 
pair of independent copies of £, Xx and X2, the random elements Xx + X2 

and Xx — X2 are independent; this is equivalent to: the process £ with 
sample paths in L^ is Gaussian if and only if there exists a measurable 
subset T0, m(T0) = 0 such that for all finite sets {^, . . . , tk} c T\T0 the 
random vector (£(/j),. . . , £(tk) > is Gaussian [1]. 

C. Let £ = {£(0-* G T} be a measurable Gaussian stochastic process 
and let 

0(0 = Eè(tX K(s, t) = £(«*) - fl(5))(«/) - 0(0). 

Then for almost every u, £(•, co) e L. if and only if d(t) e L^ and 
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KVl(t, t) G LQ. If almost all sample paths of the process £ belong to the 
space L^ then the measure /x̂  induced by £ on (L^, ^(L^) ) is Gaussian 

D. Let /A be a mean-zero non-degenerate Gaussian measure on 
(L^, ^(L^) ) and let £ = {£(t):t G T} be a measurable stochastic process, 
such as in A, inducing the measure xi. By A there exists a measurable 
subset T0, m(r 0 ) = 0 such that for any t <E T\T0 

£(/, x ± y) = £(r, x) ± £(*, .y) ju X it a.e. 

Let 

Hp = ]m{&t):t G r \ r 0 } L ^ . 

From [7] it follows that the space H^ does not depend on the version of the 
stochastic process inducing the measure /x and consists of quasi-additive 
measurable functionals (q.m.f.) F [7], i.e., 

H^ = [F:F:LQ —> R, measurable, 

F(x ± y) = F(x) zb F(y) /x X /x a.e.}. 

For each F e H„ let 

(AF)(0 = [f fr9x)F(x)tidx)\ = [ A ^ ( ) ] 

where [•] denotes the class of functions equivalent m a.e. In [7] it was 
shown that A is a one-to-one map which embeds continuously the space 
Hp into L^, and this embedding does not depend on the version of the 
stochastic process inducing the measure xi. When L^ is a Banach space 
from [7] it follows that S defined in Proposition 2 equals A and the rate 
function 1^) is expressed as follows: 

( 1 

hW = 
JA - 1 *!^ if* G A(HJ 

oo if x £ A ( ^ ) . 

Let {Ej} be a C.O.N.S. in H^ and fyt) = <£(/), Ej), then by [1, 2] 

oo 

«/, *) = 2 */*)£;•(*) 
y = l 

/x a.e. in the seminorm of L.. 

3. PROPOSITION [8]. ^4«y mean-zero, non-degenerate Gaussian measure /x 
defined on (L^, ^(L^) ) swc/z £/ztf/ <HVÔ " equivalent to $(7) concave is the 
image under a continuous linear map of a centered Gaussian measure on a 
separable real Hilbert space. 
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Sketch of the proof. Let b > 0 be an arbitrary constant such that 

1 

then 

RilLbK\t, t)) < oo, 

"*(*) = j A Wc2
 2K(t, t) )m(dt), i 6 5 

defines a non-negative, finite measure on J^ Let 

L2<> = L2(T, ^ v£ 

be a real, separable Hilbert space and M be a map defined on L2^ as 
follows: 

L24 3 f(t) M. (ufXO = f(f)K\t, t) 

then u is a linear, continuous map with values in L,. Let 

m = 
then 

xPj(t)K~V2(t, t) ]iK(t9 0 ^ 0 

0 otherwise 

s = 2 #/)£;• 

is a mean-zero Gaussian random element with values in L2 ^ such that 
uS = £ a.e. 

4. THEOREM. Le/ \i be a mean-zero, non-degenerate Gaussian measure 
defined on (L^, ^(L^) ) swc/z //za/: 

(i) <£>(/) is a convex function, 

or 

(ii) < H V 0 ^ equivalent to $(/) concave function. Let {Xi}°Zl be a 
sequence of independent L,-valued random elements, each with distribution /A. 
Set 

n 

Sn = 2a Xt 
i = 1 

and let jin be the distribution of Sn/n, then {iin:n i? 1} satisfies the large 
deviation principle with the rate function IJ^x), defined as follows: 

/„(*) = 
- j F2{x)ii{dx) ifx = AF 

ifx* Aff„. 

Proof In the case that <j>(t) is a convex function L^ is a Banach space 
and the theorem follows from Remark D. We have to prove only the case 
where <H VÔ *s equivalent to $(/) concave function. 
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In the proof we use the same notation as in the sketch of the proof of 
Proposition 3. Let 

"<f>,0 {/('):/(') e L^f(t) = 0 on the set {t:K(t, t) = 0} }. 

It is easy to see that L, 0 is a closed linear subspace of L^, such that 
u(L2^) Q L^Q. Since the measures ^ and m are absolutely continuous 
with respect to each other on the set {t:K(t, t) ¥= 0}, then u is a one-to-one 

- l map with u 

(«_1/xo = 

defined as follows: 

K~v\t, 0 / ( 0 if AT(/, 0 # 0 

0 if #( / , 0 = 0 

for a n y / G L^0. 
Proposition 3 implies that the measure JU, is concentrated on the 

subspace L^0 and }i(A) = txs(u~lA) for any measurable subset A, where 
[xs denotes the distribution of the random element S. 

Since u is a continuous linear map [8], /x = jis o u~ , [is is a mean-zero 
Gaussian measure defined on the Hilbert space L2^, then by Propositions 
1 and 2 {/xn:« â 1} satisfies the L.D.P. with the rate function 

/M(x) = inf / 5 ( ^ ) 
y : « ( > > ) = * 

where Is is a rate function for the measures /x5 „. We will prove that 

w = 
\u- lx\\2 i f i G A//„ 

if x £ AH 

where | | | | denotes the norm in the Hilbert space H . 
Let us denote by £ = {£(t):t e T}, rç = {??(/):/ e 7} a measurable 

stochastic processes such as in A, inducing the measures fi and fis 

respectively. Since 

77(7, x) e x for JU,£ a.e. x; 

£(/, i ) G i for /x a.e. x 

then 

WT?(-, x) = £(•, wx) m a.e. for ju5 a.e. x 

w~ £(% •*) == *?(•> w x) ^ a - e - f°r /* a e - x-

Let i / be the space of quasi-additive measurable functional defined on 
(L^, âS(L^), fi) and / / 5 the space of quasi-additive measurable functional 
defined on (L2^ &(L2<i>), /x5). Since 
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|AgF(/) | =i ( /e( tw) V l ( j "F^Y = JfV.OHFH 

then 

If F is a q.m.f. on the space (L^, ^(L^), ju) then F o w i s a q.m.f. on the 
space (L2^ &(L2<})), ns) and if G is a q.m.f. on the space (L2(f>, &(L2<i), /x$) 
then G o u~ is a q.m.f. on the space (L^, ^(L^), /x). These follow from 

0 = jLt X K { (JC, y):F(x ± y) * F(x) ± F(y) } ) 

= Ms X Ms( { {u~Xx, u-ly):F(x ± y) * F(x) ± F(y) } ) 

= Ms X Ms( { (*, s):F(u(z ± s)) * F(uz) ± F(us) } ). 

/i X ju( { (*, 3;):G(M_ ,(JC ± J>) ) * G(«_1ac) ± G(«" V) } ) 

= fis X jus( { (w x, u y):G{u (x ± y) ) ^ G(w x) 

G(«"V)}) 
= M5 X Ms( { (z, s):G(z ±s)* G(z) ± G(s) } ) = 0. 

Let G be fis q.m.f., then 

M(A„G)(0 = u(j y(t, x)G(x),xs(dx)) 

= j K\t, tyq(t, x)G{x)iis(dx) 

= Jè(t, ux)G(x)ns(dx) = J t(t,y)G(u~\)ti(dy)ma.e. 

Since G o t / - 1 is /u. q.m.f., then i/(A^G) e A// , which implies u(AvHs) 
Q AHp. We use the same notation for a function and the corresponding 
equivalence class in measure. 

Let F be ju q.m.f., then 

«"'(AjFXO = ""MJ £0, x)F(xMJx)J 

= / K~v\t, t)£(t, x)F(xMdx) 

= j 7](t, u~ x)F(x)n(dx) 

i r)(t, y)F(uy)iis(dy) v^ a.e. 
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Since F o u is fis q.m.f., then 

«"'(AfF) e A„i/S, and M
_ , ( A ^ ) £ A„tf5, 

this implies that 

M(A„/7S) = A// , Q L^. 

From Propositions 1, 2 and Remark D it follows that 

/„(*) = inf Is(y) 
y:u(y)=x 

where Is() is the rate function for the sequence {Hsn
:n = 0 -

If x e A/ / then there exists a q.m.f. F such that x = AF. Since « is a 
one-to-one map, 

IJx) =Is(u-\AF)) 

\j\F(u (z))]2,xs(dz) =l- f F2(yMdy). i 
If x £ AH then there is no y e A Hs such that u(y) = x and this implies 
that I^(x) = oo. This finishes the proof of the theorem that 

V*) 
-HA"1*!!2 if x e A//M 

if x <£ AH„. 
r 

5. COROLLARY. Let fx be a mean-zero, non-degenerate Gaussian measure 
defined on (L^, &(LQ) ), such that <t>(\ft) is equivalent to §(t) concave, then 
for any closed subset E 

lim sup € log fi(e~/2E) ^ —inf IJx) 

and for any open subset D 

lim inf € log ju(e~1/2Z)) ^ - i n f I(x). 

Proof The proof of this corollary is an immediate consequence of 
Theorem 4 and Theorem 3.48 in [11], namely for any closed subset E and 
an open subset D 

lim sup € log ii(e~V2E) = lim sup c log ns(c~V2u~lE) 
€ ^ 0 e-H) 

^ - i n f 7,(x) = - i n f / ( j ) , 
x^u lE yGE 
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lim inf e log JU(€ VlD) = lim inf e log iis(e
 Vlu lD) 

inf Is(x) = - i n f I (y), 
u ]D y&D 

because for any subset B 

inf f inf Is(x) ifBnAHp** 
x^u B ^oo iîB n AHfl = <(> 

( inf /5(w~V) ifBnAH^<f> 

loo if B n A / ^ = <£> 

( inf J ( j ) ÏÎB n AH^<t> 
- hefinA//,, 

I oo if 5 n A//M = (j> 

= inf / . ( J ) . 
yeB 

6. PROPOSITION. Le/ (Z^, ^(L^), JLI) Z?e AH Or liez space with mean-zero, 
non-de generate Gaussian measure JX and a rate function I J')'. 

( 
^lA"1*!!2 ifx e AH 
2 

oo //JC £ AH 

//ze« 
(i) the set Kr = {AF:I (AF) ^ r2}, 0 < r < oo w compact in L^. 

(ii) /„(>>) W lower-semicontinuous on AH^ with respect to \\'\\^-norm 
convergence, i.e., if\\AFn — AF\\^ —* 0 as n —» oo, Fn, F e / / //ze« 

/ / A F ) ^ lim inf / (AF„). 
«—>CX) 

Proof. First we show that Kr, for any 0 < r < oo is a compact subset of 
Lç. Let {AFn} c ATr be an arbitrary sequence. By the Banach-Alaoglu 
Theorem {Fn} contains a subsequence {Fn} which is weakly convergent to 
F from A ~ Kr Remark D implies that there exists a measurable subset T0, 
m(T0) = 0, such that for any t e T\T0, £(/) e H^ and 

Since 

lÂ iyCO | ^ #V, 0 \\FJ g V ^ C /) 
for m a.e. /, and AT*2 (7, /) G L^ then by the Lebesgue Dominated 
Convergence Theorem, Aiy M> AF in L^, which proves that Kr is a 
compact subset of L^. 
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Proof of part (ii). By {Fn} let us denote a subsequence such that 

lim inf I^AF») = lim I^AF^). 
n n' 

Since 

\\AFn, - AF\\+ h-> 0 as n' -> oo, 

then there exists a subsequence {«"} c {«'} and a measurable subset T0, 
m(T0) = 0 such that for any t e r \ r 0 , £(0 is a q.m.f. and 

<«/), />> = A^FAO H> A ^ ( 0 = ( « 0 , ^> 

where (•, •) denotes the inner product in H. Let 

G = lin{^(0:/ e 7 \ r 0 } 

then G is a dense subset of H [7] and for any g e G 

<& fy) >-+<8> F) a s « " ^ o o . 

Since 

| | i> | | = sup{ <g, F„.):g e G, ||g|| = 1}, 

then for any g ^ G, \\g\\ = 1 

lim ||F„.|| i= lim <g, Fn„) = (g, F). 
n" n" 

This implies that 

lim \\Fn,\\ i= sup{ <g, F ) :g e G, ||g|| = 1} = | |F| | 

which proves part (ii), because 

lim inf HFJI = lim ||F„„|| g ||F||. 
n n" 

7. Remark. In the case that <£(/) satisfies additionally 

lim inf inf{c > 0:2<j>(ct) > <K0 } > 0 
t—*oo 

the space Z^ is locally bounded (i.e., contains a bounded neighbourhood 
of zero) and for certain /?, 0 < p ^ 1, there exists a /^-homogeneous 
F-norm 11-111 equivalent to the original ||-||^ [10]. 

8. PROPOSITION. Let JX be a mean-zero, non-degenerate Gaussian measure 
defined on (Z^, ^(L^) ) such that 

(i) <j>(t) is a convex function, 
or 

(ii) <£(VÔ *S equivalent to a (p(t) concave function and 

lim inf inf{c > 0:2<t>(ct) â <j>(t) } > 0. 
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Let a = inf{/ (JC):11JC||j = 1} where \\'\\x isp-homogeneous, 0 < p = 1, 
F-norm equivalent to ||*||^, then 0 < a < oo, and 

lim #~2log/x({*:|l#_1*lli > 0 ) = ~a-
R^oo 

Proof. Let € = R~2 and 5 = {xilM^ < 1}, then by Corollary 5 

ïïm~ ^ " 2 l o g / i ( { ^ : | l ^ " ^ l l i ^ 1}) 
R^oo 

= nSclogJ l l({x:| |£' /2x||1 ^ 1}) 
c-»0 

= IhS£l0giU(£~' /!5') 
e-»0 

S - i n f / ( * ) = -influx). 

lim .R - 2 log ju.( {JC:||JR^1JC|!I > 1}) 
R—>oo 

= lime log/^{jcrlltNli > 1}) 
*-*o 

= lime log ju(e~'/2^') 

â - i n f / „ (x ) = - i n f / ( * ) . 
i e » f IWI,>1 

Therefore 

- i n f IJx) =§ Jim_ R~2 log M {*:||/l~'JCH, > 1} ) 
NI, >1 #-*oo 

ë BE / i -Mogr t ^ r l l / i - ' j c l l , > 1}) 

^ - i n f / ( x ) . 
IWI,̂ l 

Since 

a = inf{/,/*):llxll, > l , x e Atf„} 

= inf{c2/M(x):|UI|, = 1, c > 1, x G A//,,} 

= infiJlpixy.WxWt = 1, c s 1, x G A / y 

= inf^OcMMI, i? 1, JC e Aff„} 

then 

lim R~2 log/x({^:|l^_1^lli > 1}) = -a. 
R-*oo 
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If a = 0, then there exists a sequence {Ffl} of q.m.f.'s such that 
IIA^FJI, > 1 and ||FJ| ^ \/n. This implies that 

| A ^ ( 0 | ^ K\t, t) \\Fn\\ ^ - KV2(t, t). 
n 

Since KVl(t, t) e L^, then by the Lebesgue Dominated Convergence 
Theorem | | A ^ | | ^ —» 0 as n —» oo, which implies that HA^FJIJ —» 0 
as « —-> oo contradicting the assumption that HA^FJIJ > 1, therefore 
0 < a < oo. 

LEMMA 1. Le/ (T, ̂ , m) be a measurable space with a o-finite measure m, 
and L^(T, ̂  m) an Or liez space, then for any fi > 0 

Dp = {/( /) : /( /) e L^, m( {*:/(*) > 1} ) > fi) 

z's a/7 o/?e« set in L.. 

Proof. It is enough to prove that for some fi > 0 

Dcp = {fit):fit) e L^, m( {*:/(/) > 1} ) fk 0} 

is a closed set in L,. 
^ e t {fn} c ^/? an<^ fn ^ / m Af> a s n ~* °°> t n e n there exists a 

subsequence {AI^} such that/„ (/) —» / ( / ) m a.e. By Egoroff s theorem [4], 
there exists an increasing sequence of measurable subsets {Ef} such that 
the sequence {fn } converges uniformly on each Ei / = 1, 2, . . . , and 

m ( 7 V U £ , ) = 0 . 

Let 

T„ = [t:fit)> 1 + ^ J , 

then 7^ is an increasing sequence of subsets and 

oo 

5 = {f.fit) > 1} = U T„. 
n = 1 

Therefore 

m(S) = lim m(Tn) 
n 

and we finish the proof by showing that m(Tn) â fi for each A?. 
Let n be an arbitrary but fixed, then 

V/ 3 W/ V nk > ntyt Œ Et f(t) - - <fn(t). 
n k 
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This implies that 

[v.f(t) > l + - } n Ei c n {t-.f (0 > 1} n E, = A, 

Since {£",} is an increasing sequence of sets then {nt} is a non-decreasing 
sequence implying that {A;} is an increasing sequence of sets. Since 

m ( r \ .U £ , ) = 0, 

then 

m({t:f(t)>l+±})=m(ui {':/(')> 1 +;;} n *,.) 
/ o o \ 

^ ml U A A = lim m{Ai). 

Since 

m(^z) = ra( n {t:fn(t) > 1} n £,) ^ /? for each /, 

then 

™( I t:f(t) > 1 + - M ^ j8 for each n, 

which proves the lemma. 

LEMMA 2. Let (T, J^ m) be a measurable space with a o-finite measure m, 
and L^(T, J^ m) an Or liez space, then for any ft > 0 the L ̂ -closure of Dp, 
Dp is contained in Dp where 

D% = { / ( 0 = / ( 0 e L^, 

V£ = 1,2 m(|/:/(0 > 1 — ^ J ) = ^ j 

Proof. Let {/„ } c D and /„ —» / in L^ as « —» oo, then /„ —» / in 
measure m as « —» oo, i.e., 

VfcV£3/iAi« V « > nfci€ m( [ r : | / „ ( 0 - / (*) | ê | } ) < £ 

which implies that 

m({t:f„(t)> l , l / „ (0 - / (0 l<^}) >/*-£. 

Therefore 
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m ( I t\f(t) > l - - } j > j 8 - € for each k and e 

and 

™( { t:f(t) > 1 - - 1 J ^ P for each k, 

which proves t h a t / e Dp. 

LEMMA. 3. Let (L., ^?(LA /x) be an Or liez space with a mean-zero, 
non-degenerate Gaussian measure /x and a rate function I J')'. 

I | I A - l - l l 2 

/ / * ) = 21 -U~{x\\l ifx e AHp 

oo ifx £ KH . 

Let 

ap = in f^C*) :* e Dp], 

*fi = inf{/M(jc):x e 5 ^ } , 

^ = inf^Cx) :* e £>£}, 

//ze« 0 < a^ ^ âp = a p. If the coy ariance function K(s, t) of a measurable 
stochastic process £ = {£(0:* e ^ } inducing the measure /i w swe/z //za/1 

(*) Vj8 > 0 m( {s:m( {* :AXs, 0 > 0} ) > 0} ) > 0 

then ap < oo for every (3 > 0. 

Proof If a$ = 0 then there exists a sequence {Ai^} c Z)^ such that 
\\Fn\\ < 1/ft and for almost every t 

\AFn(t)\ ^K\t,t)\\Fn\\ <-K\,t). 
n 

This implies that for each k 

\t:\F„(t) > 1 - i J c {*:^V 0 > 1 - ^} , 

and for each k and n 

m({t:K\t, t) > (l ~^)«}) = £• 

Let k be an arbitrary but fixed and 

A„ = [t:K\t,t)> (l ~l)n} 
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for every n, since Kv\t, t) e L^ then there exists a > 0 such that 

m(An)<t>ya{\ - -)n) ^ J 4>(aKv\t, t))m(dt) < oo 

which implies that m(An) < oo for every n. 
Since {An} is a decreasing sequence then 

/ °° \ lim m(An) = m\ n An\ and 

« ( £ A.) â /J 

implying that 

m( {*:*>, /) = 00} ) ^ j8 

which is impossible. Therefore 0 < a* ^ âp ^ ^ . 
Let £ = {£(0:^ G T} be a measurable stochastic process such as in A, 

inducing the measure /x with the covariance function K(s, t) satisfying (*). 
There exists a measurable subset T0, m(T0) = 0 such that for every 
s e T\T0, £(s) is a q.m.f. Let /? > 0 be an arbitrary but fixed, then there 
exists a q.m.f. £(s) such that 

m{ {t:Aè(s)(t) > 0} ) > j8. 

Let 

^ = {;:A^)(0>^}, 

{fM(s)(t) > 0} = u ^w. 

Since {An} is an increasing sequence, then there exists n such that 
m(An) > fi implying that for a q.m.f. 

F = n£(j), m( {/:AF(0 > 1} ) > 0 and ap ^ ^\\F\\2. 

9. THEOREM. Let £ = {£(0:* e T) be a mean-zero Gaussian stochastic 
process with almost all sample paths in an Orlicz space L^ such that 

(i) <i>(t) is a convex function, 
or 

(ii) <KVÔ *S equivalent to $(/) concave function. Let for any fi > 0 

Dp = {/(/):/(/) e L+, m( {t:f(t) > ! } ) > / ? } , 
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ap = in f^Cx) :* <= Dp}, ap = i n f ^ x ) : * e Dp], 

then 

-ap ^ jim_ a~2 log P( {u:m( {*:£(*, w) > a} ) > /?} ) 
a—»oo 

g Ûm a - 2 log P( {co:m( {r.&t, a) > a} ) > £} ) S â̂ ,. 
a^oo 

If T is a metric space with the measure m such that for any open set 
U, m(U) > 0, the covariance function K(s, t) of the process 
£ = {è(t):t G T} is continuous and for each /? > 0 

m( {s:m( {t:K(s, t) > 0} ) > £} ) > 0 

then 0 < ao < oo and 

lim a - 2 log P( {co:m( {/:£(/, <o) > a} ) > £} ) = - ^ . 
a—>oo 

Proof. Let /x denote Gaussian measure generated by the stochastic 
process £ = {£(t)\t e T). By Lemma 1 Dp is an open set. Since 

itaD) = i>( {co:m( {*:#/, <o) > «} ) > £} ) 

and fx(aD) ^ fi(aD) then by Corollary 5 

— ap = lim a log /x(aZ)) ^ lim a log/x(a/)) ^ — a^. 
a—»oo a—>oo 

Under the additional assumptions by Lemma 3,0 < âp ^ ap < oo. Since 
the covariance function K(s, t) is continuous the space A/ / consists of 
continuous functions. 

To finish the proof of the theorem, by Lemma 3 it is sufficient to show 
that ap = ap. Let F be an arbitrary q.m.f. such that for each k 

m ({/:VW>1 -£})*/>. 
Let 

Gk ( I + - L ) J 
V k-\f 

then for any /c 

m ( { / : A ^ ( 0 > 1}) ^ j8. 

Since for any open set U, m(U) > Q, and for each k A^Gk(t) is a 
continuous function, then for any k and « 

m( I t: 1 - - < Afik(t) < 1 } j > 0. 
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Let 

then 

m({t:AiHnk(t)> \})>fi. 

Since for each n, k Hnk e Dp, \\Hnk\\ M> ||F|| when n —> oo, k —> oo this 
implies that 

inf{/M(x):x <E Dfi, x e A / y = inf{/M(x):x ^ D% x ^ AHJ 

and ap = ap = âp. 

10. COROLLARY. Le/ (T, ^ m) be a real line with Borel o-algebra & and 
Lebesgue measure m. Let £ = {è(t):t e T} be a mean-zero Gaussian 
stochastic process, continuous in probability with almost all its sample paths 
in Lp = L (T, J^ ra), 0 < p < oo, such that for any ft > 0 

m( {s:m( {t:K{s, t) > 0} ) > £} ) > 0 

//z£/7 /or <2«y /? > 0 //zere exists 0 < ÛO < oo swc/z //z<2/ 

lim a~2 log P( {co:ra( {/:£(/, w) > a} ) > /?} ) = - Û ^ . 
a—*oo 
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