Canad. Math. Bull. Vol. 18 (2), 1975

ON CERTAIN PROBLEMS IN THE THEORY OF SEQUENCES

BY RADA HIGGINS

1. Introduction. We are well-acquainted with the theorem about sequences which states that, the existence of

$$\lim_{n \to \infty} \sum_{k=0}^{n} a_k \tag{1}$$

is sufficient to imply $\lim_{k\to\infty} a_k = 0$. Partially out of a growing interest in the theory of regularly varying sequences ([1]), and probably as an interesting problem, in and of itself, some mathematicians have tried to find conditions weaker than (1) that would guarantee $\lim_{k\to\infty} a_k = 0$. This was the subject of a previous paper (See [3]), in which I proved the following main theorem:

THEOREM 1. Let (a_k) be a sequence of complex numbers, such that

(2)
$$\lim_{n \to \infty} \sum_{k=[\lambda n]+1}^{n} a_{k}$$

exists for $\lambda = \xi$ and $\lambda = 1 - \xi$, where ξ is an irrational number in (0, 1). Then $\lim_{k \to \infty} a_k = 0$.

In this paper, we ask under what conditions on a set E of real numbers will the sequence (a_k) converge to zero if

(3)
$$\lim_{n\to\infty}\sum_{k=n+1}^{\lfloor\lambda n\rfloor}a_k$$

is equal to zero, for every fixed $\lambda \in E$?

Interestingly, (3) can hold for every $\lambda \in Z^+$, but the sequence (a_k) need not converge to zero. The counterexample which verifies this assertion is based on a construction of J. Galambos and E. Seneta ([2]). They define a sequence (b_n) as follows: For each $n \ge 2$, let $b_n = w(n) + (\log \log n)^{1/2}$, where w(n) denotes the number of prime divisors of n.

Using the fact that there exists a subsequence (p_{j_n}) of primes, such that $w(p_{j_n}-1) \sim \log \log p_{j_n}(n \rightarrow \infty)$, it is asserted in [2] that

(4)
$$\lim_{n \to \infty} b_{p_{j_n}} / b_{p_{j_n}-1}$$

Received by the editors May 7, 1973 and, in revised form, November 5, 1973.

is equal to zero. Moreover, for $k \ge 1$, it is shown that

is equal to 1.

From the above sequence (b_n) , it is easy to define a sequence (a_n) , such that (3) holds for every $n \in Z^+$ and $\lim a_n \neq 0$. Define (a_n) as follows: For each $n \ge 2$, let $a_n = \log(b_n/b_{n-1})$.

 $\lim_{n \to \infty} b_{nk}/b_n$

Then, by (5), we see that

$$\lim_{n\to\infty}\sum_{j=n+1}^{nk}a_j=\lim_{n\to\infty}\log(b_{nk}/b_n)=0.$$

On the other hand, by (4), we have

$$\lim_{n \to \infty} a_{p_{j_n}} = \lim_{n \to \infty} \log(b_{p_{j_n}}/b_{p_{j_n}-1}) = -\infty$$

Since $(a_{p_{j_n}})$ is a subsequence of (a_n) , we have $\lim_{k\to\infty} a_n \neq 0$. Therefore, the sequence (a_n) is a counterexample.

It is true, however, that if (3) holds for every λ in *E*, a 2nd category subset of $(1, \infty)$, then $\lim_{k\to\infty} a_n$ does equal zero.

We can state this result more precisely as the following theorem:

THEOREM 2. Let (a_k) be a sequence of complex numbers, such that

(6)
$$\lim_{n \to \infty} \sum_{k=n+1}^{\lfloor \lambda n \rfloor} a_k = \phi(\lambda)$$

for every fixed λ in a 2nd category subset E of $(1, \infty)$. If ϕ is continuous on E, then $\lim_{k\to\infty} a_k=0$.

The proof of Theorem 2 can be modified to deduce the following theorem as well:

THEOREM 3. Let (a_k) be a sequence of complex numbers, such that

(7)
$$\lim_{n \to \infty} \sum_{k=\lfloor \lambda n \rfloor + 1}^{n} a_{k} = \phi(\lambda)$$

for every fixed λ in a 2nd category subset E of (0, 1). If ϕ is continuous on E, then $\lim_{k\to\infty} a_k=0$.

2. Proof of Theorem 2. Throughout this argument, $A_n(\lambda)$ will denote

$$\sum_{n=+1}^{[\lambda n]} a_k$$

Let $\varepsilon > 0$. For every positive integer N, define the sets S_N as follows:

$$S_N = \left\{ \lambda: \text{ for all } n > N, |A_n(\lambda) - \phi(\lambda)| \le \frac{\varepsilon}{2} \right\}$$

Then, by hypothesis, $S = \bigcup_{N \in \mathbb{Z}^+} S_N$ is a 2nd category subset of $(1, \infty)$.

By Baire's Category Theorem, S cannot be the countable union of nowhere dense

https://doi.org/10.4153/CMB-1975-044-3 Published online by Cambridge University Press

[June

sets. Hence, there exists a positive integer N', such that $\operatorname{int}(\overline{S_{N'}}) \neq \emptyset$. Let α_0 be an irrational number in $\operatorname{int}(\overline{S_{N'}})$. Choose $\delta > 0$ so small that the interval $I = (\alpha_0 - \delta, \alpha_0 + \delta)$ is contained in $\overline{S_{N'}}$.

We assert that every irrational number $\alpha \in I$ is also an element of $S_{N'}$. To see this, let $\alpha \in I$ be irrational. Since $I \subset \overline{S_{N'}}$, there exists a sequence $(a_m) \subset S_{N'}$, such that $\lim_{m\to\infty} a_m = \alpha$. Let *n* be any integer greater than N'. Clearly, $\lim_{m\to\infty} a_m n = \alpha n$. Since the greatest integer function [] is discontinuous only at integers and αn is irrational, [] is continuous at αn . Hence, for *m* sufficiently large, we have $[a_m n] = [\alpha n]$. This implies

$$\begin{aligned} A_n(\alpha) - \phi(\alpha)| &= \lim_{m \to \infty} |A_n(a_m) - \phi(\alpha)| \\ &\leq \lim_{m \to \infty} (|A_n(a_m) - \phi(a_m)| + |\phi(a_m) - \phi(\alpha)|) \\ &\leq \frac{\varepsilon}{2} \end{aligned}$$

Therefore, $\alpha \in S_{N'}$.

Choose N'' so large that $\alpha_0/(N''-1)$ is less than δ . Let $\overline{N} = \max(N', N'')+1$. For $n > \overline{N}$, α_0 and $\alpha_0 + \varepsilon_n$ are irrational numbers in *I*, where $\varepsilon_n = \alpha_0/(n-1)$. Hence, α_0 and $\alpha_0 + \varepsilon_n$ are in $S_{N'}$. Therefore,

$$|A_n(\alpha_0) - \phi(\alpha_0)| \le \frac{\varepsilon}{2}$$

and

$$|A_{n-1}(\alpha_0+\varepsilon_n)-\phi(\alpha_0+\varepsilon_n)|\leq \frac{\varepsilon}{2}.$$

Since

$$|a_n| = |A_{n-1}(\alpha_0 + \varepsilon_n) - A_n(\alpha_0)|.$$

we have, by the triangular inequality,

$$|a_n| \leq |A_{n-1}(\alpha_0 + \varepsilon_n) - \phi(\alpha_0 + \varepsilon_n)| + |A_n(\alpha_0) - \phi(\alpha_0)| + |\phi(\alpha_0 + \varepsilon_n) - \phi(\alpha_0)|.$$

Therefore,

$$\limsup_{n\to\infty}|a_n|\leq\varepsilon.$$

which proves our theorem.

References

1. R. Bojanic and E. Seneta, A unified theory of regularly varying sequences, Mathematische Zeitschrift, to appear.

2. J. Galambos and E. Seneta, Regularly Varying Sequences (Technical Report 29, Series 2), Princeton University, 1973.

3. R. Higgins, A note on a problem in the theory of sequences, Elemente der Mathematik, to appear.

4. I. Niven and H. S. Zuckerman, On certain sequences, American Math. Monthly 76 (1969), 386-389.

DEPARTMENT OF MATHEMATICS THE OHIO STATE UNIVERSITY

1975]