ON CERTAIN PROBLEMS IN THE THEORY OF SEQUENCES

BY
RADA HIGGINS

1. Introduction. We are well-acquainted with the theorem about sequences which states that, the existence of

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k} \tag{1}
\end{equation*}
$$

is sufficient to imply $\lim _{k \rightarrow \infty} a_{k}=0$. Partially out of a growing interest in the theory of regularly varying sequences ([1]), and probably as an interesting problem, in and of itself, some mathematicians have tried to find conditions weaker than (1) that would guarantee $\lim _{k \rightarrow \infty} a_{k}=0$. This was the subject of a previous paper (See [3]), in which I proved the following main theorem:
Theorem 1. Let $\left(a_{k}\right)$ be a sequence of complex numbers, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=[\lambda n]+1}^{n} a_{k} \tag{2}
\end{equation*}
$$

exists for $\lambda=\xi$ and $\lambda=1-\xi$, where ξ is an irrational number in $(0,1)$. Then $\lim _{k \rightarrow \infty} a_{k}=0$.

In this paper, we ask under what conditions on a set E of real numbers will the sequence $\left(a_{k}\right)$ converge to zero if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=n+1}^{[\lambda n]} a_{k} \tag{3}
\end{equation*}
$$

is equal to zero, for every fixed $\lambda \in E$?
Interestingly, (3) can hold for every $\lambda \in Z^{+}$, but the sequence (a_{k}) need not converge to zero. The counterexample which verifies this assertion is based on a construction of J. Galambos and E. Seneta ([2]). They define a sequence (b_{n}) as follows: For each $n \geq 2$, let $b_{n}=w(n)+(\log \log n)^{1 / 2}$, where $w(n)$ denotes the number of prime divisors of n.
Using the fact that there exists a subsequence $\left(p_{j_{n}}\right)$ of primes, such that $w\left(p_{j_{n}}-1\right) \sim \log \log p_{s_{n}}(n \rightarrow \infty)$, it is asserted in [2] that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} b_{p_{n}} \mid b_{p_{s_{n}}-1} \tag{4}
\end{equation*}
$$

Received by the editors May 7, 1973 and, in revised form, November 5, 1973.
is equal to zero. Moreover, for $k \geq 1$, it is shown that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} b_{n k} \mid b_{n} \tag{5}
\end{equation*}
$$

is equal to 1 .
From the above sequence $\left(b_{n}\right)$, it is easy to define a sequence $\left(a_{n}\right)$, such that (3) holds for every $n \in Z^{+}$and $\lim a_{n} \neq 0$. Define $\left(a_{n}\right)$ as follows: For each $n \geq 2$, let $a_{n}=\log \left(b_{n} \mid b_{n-1}\right)$.

Then, by (5), we see that

$$
\lim _{n \rightarrow \infty} \sum_{j=n+1}^{n k} a_{j}=\lim _{n \rightarrow \infty} \log \left(b_{n k} / b_{n}\right)=0
$$

On the other hand, by (4), we have

$$
\lim _{n \rightarrow \infty} a_{p_{j_{n}}}=\lim _{n \rightarrow \infty} \log \left(b_{{p_{j_{n}}}} / b_{p_{j_{n}}-1}\right)=-\infty
$$

Since $\left(a_{p_{f_{n}}}\right)$ is a subsequence of $\left(a_{n}\right)$, we have $\lim _{k \rightarrow \infty} a_{n} \neq 0$. Therefore, the sequence $\left(a_{n}\right)$ is a counterexample.

It is true, however, that if (3) holds for every λ in E, a 2 nd category subset of $(1, \infty)$, then $\lim _{k \rightarrow \infty} a_{n}$ does equal zero.

We can state this result more precisely as the following theorem:
Theorem 2. Let $\left(a_{k}\right)$ be a sequence of complex numbers, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=n+1}^{[\lambda n]} a_{k c}=\phi(\lambda) \tag{6}
\end{equation*}
$$

for every fixed λ in a 2 nd category subset E of $(1, \infty)$. If ϕ is continuous on E, then $\lim _{k \rightarrow \infty} a_{k}=0$.

The proof of Theorem 2 can be modified to deduce the following theorem as well:

Theorem 3. Let $\left(a_{k}\right)$ be a sequence of complex numbers, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=[\lambda n]+1}^{n} a_{k}=\phi(\lambda) \tag{7}
\end{equation*}
$$

for every fixed λ in a 2 nd category subset E of $(0,1)$. If ϕ is continuous on E, then $\lim _{k \rightarrow \infty} a_{k}=0$.
2. Proof of Theorem 2. Throughout this argument, $A_{n}(\lambda)$ will denote

$$
\sum_{k=n+1}^{[\lambda n]} a_{k}
$$

Let $\varepsilon>0$. For every positive integer N, define the sets S_{N} as follows:

$$
S_{N}=\left\{\lambda: \text { for all } n>N,\left|A_{n}(\lambda)-\phi(\lambda)\right| \leq \frac{\varepsilon}{2}\right\}
$$

Then, by hypothesis, $S=\cup_{N \in Z^{+}} S_{N}$ is a 2 nd category subset of $(1, \infty)$.
By Baire's Category Theorem, S cannot be the countable union of nowhere dense
sets. Hence, there exists a positive integer N^{\prime}, such that $\operatorname{int}\left(\overline{S_{N^{\prime}}}\right) \neq \varnothing$. Let α_{0} be an irrational number in $\operatorname{int}\left(\overline{S_{N^{\prime}}}\right)$. Choose $\delta>0$ so small that the interval $I=$ $\left(\alpha_{0}-\delta, \alpha_{0}+\delta\right)$ is contained in $\overline{S_{N^{\prime}}}$.

We assert that every irrational number $\alpha \in I$ is also an element of $S_{N^{\prime}}$. To see this, let $\alpha \in I$ be irrational. Since $I \subset \overline{S_{N^{\prime}}}$, there exists a sequence $\left(a_{m}\right) \subset S_{N^{\prime}}$, such that $\lim _{m \rightarrow \infty} a_{m}=\alpha$. Let n be any integer greater than N^{\prime}. Clearly, $\lim _{m \rightarrow \infty} a_{m} n=\alpha n$. Since the greatest integer function [] is discontinuous only at integers and αn is irrational, [] is continuous at αn. Hence, for m sufficiently large, we have $\left[a_{m} n\right]=[\alpha n]$. This implies

$$
\begin{aligned}
\left|A_{n}(\alpha)-\phi(\alpha)\right| & =\lim _{m \rightarrow \infty}\left|A_{n}\left(a_{m}\right)-\phi(\alpha)\right| \\
& \leq \lim _{m \rightarrow \infty}\left(\left|A_{n}\left(a_{m}\right)-\phi\left(a_{m}\right)\right|+\left|\phi\left(a_{m}\right)-\phi(\alpha)\right|\right) \\
& \leq \frac{\varepsilon}{2}
\end{aligned}
$$

Therefore, $\alpha \in S_{N^{\prime}}$.
Choose $N^{\prime \prime}$ so large that $\alpha_{0} /\left(N^{\prime \prime}-1\right)$ is less than δ. Let $\bar{N}=\max \left(N^{\prime}, N^{\prime \prime}\right)+1$. For $n>\bar{N}, \alpha_{0}$ and $\alpha_{0}+\varepsilon_{n}$ are irrational numbers in I, where $\varepsilon_{n}=\alpha_{0} /(n-1)$. Hence, α_{0} and $\alpha_{0}+\varepsilon_{n}$ are in $S_{N^{\prime}}$. Therefore,

$$
\left|A_{n}\left(\alpha_{0}\right)-\phi\left(\alpha_{0}\right)\right| \leq \frac{\varepsilon}{2}
$$

and

$$
\left|A_{n-1}\left(\alpha_{0}+\varepsilon_{n}\right)-\phi\left(\alpha_{0}+\varepsilon_{n}\right)\right| \leq \frac{\varepsilon}{2} .
$$

Since

$$
\left|a_{n}\right|=\left|A_{n-1}\left(\alpha_{0}+\varepsilon_{n}\right)-A_{n}\left(\alpha_{0}\right)\right| .
$$

we have, by the triangular inequality,

$$
\left|a_{n}\right| \leq\left|A_{n-1}\left(\alpha_{0}+\varepsilon_{n}\right)-\phi\left(\alpha_{0}+\varepsilon_{n}\right)\right|+\left|A_{n}\left(\alpha_{0}\right)-\phi\left(\alpha_{0}\right)\right|+\left|\phi\left(\alpha_{0}+\varepsilon_{n}\right)-\phi\left(\alpha_{0}\right)\right| .
$$

Therefore,

$$
\lim \sup _{n \rightarrow \infty}\left|a_{n}\right| \leq \varepsilon .
$$

which proves our theorem.

References

[^0]
[^0]: 1. R. Bojanic and E. Seneta, A unified theory of regularly varying sequences, Mathematische Zeitschrift, to appear.
 2. J. Galambos and E. Seneta, Regularly Varying Sequences (Technical Report 29, Series 2), Princeton University, 1973.
 3. R. Higgins, A note on a problem in the theory of sequences, Elemente der Mathematik, to appear.
 4. I. Niven and H. S. Zuckerman, On certain sequences, American Math. Monthly 76 (1969), 386-389.
 Department of Mathematics
 The Ohio State University
