The Geometrical Interpretation of the Complete System of two Double Binary (2, 1) Forms.

By W. Saddler, M.A.

(Received 11th July 1924. Read 14th June 1924.)

$$
\begin{aligned}
\text { Let }{ }^{*} f=a_{x}^{2} u_{\xi}=b_{x}^{2} \beta_{\xi} & =\xi_{1}\left(a_{01} x_{1}^{2}+2 a_{11} x_{1} x_{2}+a_{21} x_{2}^{2}\right) \\
& +\hat{\xi}_{2}\left(a_{01} x_{1}^{2}+2 a_{12} x_{1} x_{21}+a_{2!} x_{2}^{2}\right)
\end{aligned}
$$

and $f^{\prime \prime}=a_{x}^{\prime 2} u_{\xi}^{\prime}=b_{x}^{\prime 2} \beta_{\xi}^{\prime} \xi$
denote two double binary ($2-1$) forms in (x, ξ). It is proposed to discuss the geometrical significance of their simultaneous covariant complete system, which is here quoted without proof. \dagger

When two quadrics which possess a common generator intersect, the remaining curve of intersection is in general a twisted cubic. Such a twisted cubic intersects each generator of one system in two points and the generators of the opposite system in one point. Let $x\left(=x_{1}: x_{2}\right)$ be the parameter of the one system, and let ξ be that of the opposite system. This leads to a chord ξ of the cubic joining two points P, Q of the curve and through each of the points P and Q will pass a generator x of the opposite system. Thus to each ξ correspond two x 's and to one x corresponds one ξ : namely the generator through the point of intersection of the cubic curve with x. There is thus a ($2-1$) correspondence between the x and ξ, and as our double binary ($2-1$) form is of such a nature we represent our double binary forms f and $f^{\prime \prime}$ as twisted cubics of the same kind on a quadric surface. We recall these facts: if $\theta_{x}{ }^{2}$ and $\phi_{x}{ }^{2}$ are binary quadratics then $\left(\theta_{\phi}\right) \theta_{x} \phi_{x}$ is simultaneously harmonic to both quadratics: and if $(\theta \phi)^{\prime 2}$ vanishes, $\theta_{x}^{\prime "}$ and $\phi_{x}{ }^{2}$ are harmonic pairs.

[^0]The complete list of the irreducible covariants is given for reference.

f, f^{\prime}	$a_{x}{ }^{2} \alpha_{\xi}$.		
D, D^{\prime}	(ab) ($\alpha \beta$) $a_{x} b_{x}$	$=(f, f)_{11}$	§2
Δ, Δ^{\prime}	$(a b)^{2} \alpha_{\xi} \beta_{\xi}$	$=(f, f)_{20}$,
P, P^{\prime}	$-(a b)^{2}(a y) c_{x}^{2} \beta_{\xi}$	$=(f, D)_{10}-(f \Delta)_{0}$	0.
R, R^{\prime}	$(a b)^{2}(c d)^{2}(\alpha \gamma)(\beta \delta)$	$=(f, P)_{2_{11}}$	"
E	$\left(a a^{\prime}\right) a_{x} a_{x}^{\prime} \alpha_{\xi} \alpha^{\prime}{ }_{\xi}$	$=\left(f, f^{\prime}\right)_{10}$	"
F	(,$\left.\alpha^{\prime}\right)^{\prime} a_{x}{ }^{2} a_{x}^{\prime \prime}{ }^{\prime}$	$=\left(f, f^{\prime}\right)_{01}$	
D_{12}	(a $a a^{\prime}$) ($\alpha \alpha^{\prime}$) $a_{x} a_{x}{ }_{x}$	$=\left(f, f^{\prime}\right)_{11}$	§§ 2 \& 3
Δ_{12}	$\left(a a^{\prime}\right)^{2} \alpha_{\xi} \alpha_{\xi}^{\prime}$	$=\left(f, f^{\prime \prime}\right)_{20}$	§3
A	$\left(a a^{\prime}\right)^{2}\left(\alpha a^{\prime}\right)$	$=\left(f, f^{\prime}\right)_{21}$	
G, G^{\prime}	(aD') $a_{x} D_{x}^{\prime} \alpha_{\xi}$	$=\left(f, D^{\prime}\right)_{10}$	"
κ, κ^{\prime}	$\left(a D^{\prime}\right)^{2} \alpha_{\xi}$	$=\left(f, D^{\prime}\right)_{20}$	§ 2
H, H^{\prime}	$\left(a^{\prime} b^{\prime}\right)^{2}\left(\alpha \alpha^{\prime}\right) a_{x}^{2} \beta^{\prime} \xi$	$=\left(f, \Delta^{\prime}\right)_{01}$	§ 3
U	$\left(a D^{\prime}\right)(\alpha \beta) b_{x}^{2}$	$=\left(D, D^{\prime}\right)_{10}$,
R_{2}	$(a b)(\alpha \beta)\left(a D^{\prime}\right)\left(b D^{\prime}\right)$	$=\left(D, D^{\prime}\right)_{20}$	"
${ }^{2}$	$(a b)^{2}\left(\alpha \Delta^{\prime}\right) \beta_{\xi} \Delta^{\prime}{ }_{\xi}$	$=\left(\Delta, \Delta^{\prime}\right)_{01}$	"
R_{3}	$(a b)^{2}\left(a \Delta^{\prime}\right)\left(\beta \Delta^{\prime}\right)$	$=\left(\Delta, \Delta^{\prime}\right)_{02}$	"
τ, τ^{\prime}	$\left(a a^{\prime}\right)^{2}\left(\alpha^{\prime} \Delta^{\prime}\right) \alpha_{\xi} \Delta^{\prime}{ }_{\xi}$	$=\left(f, P^{\prime}\right)_{20}$	"
Q, Q^{\prime}	$a_{x}^{2} a_{x}^{\prime 2}(\alpha \Delta)\left(\alpha^{\prime} \Delta\right)$	$=\left(f, P^{\prime}\right)_{01}$	
M, M^{\prime}	$\left(a a^{\prime}\right)\left(a^{\prime} D^{\prime}\right)\left(a a^{\prime}\right) a_{x} D^{\prime}{ }_{x}$	$=\left(f, P^{\prime}\right)_{11}$	"
B, B^{\prime}	$\left(\alpha a^{\prime}\right)^{2}\left(\alpha \Delta^{\prime}\right)\left(\alpha^{\prime} \Delta^{\prime}\right)-\left(D_{12}, D^{\prime}\right)_{=0}$	$=\left(f, P^{\prime}\right)_{21}$	
ρ, ρ^{\prime}	$-(a b)^{2}(\alpha \gamma)\left(c D^{\prime}\right)^{2} \beta_{\xi}$	$=\left(P, D^{\prime}\right)_{10}$	"
R_{4}	$\left(a a^{\prime}\right)^{2}(\alpha \Delta)\left(\alpha^{\prime} \Delta^{\prime}\right)\left(\Delta \Delta^{\prime}\right)$	$=\left(P, P^{\prime}\right)_{21}$	
$\boldsymbol{X}, \boldsymbol{Y}$	$a_{x}^{2} b_{x}^{2}\left(\alpha \Delta^{\prime}\right)\left(\beta \Delta^{\prime}\right)$	$=\left(f^{2}, \Delta^{\prime}\right)_{02}$ (only 1 necessary)	
σ, σ^{\prime}	$(a b)^{2}\left(D a^{\prime}\right)^{2}\left(\alpha \alpha^{\prime}\right) \beta_{\xi}$	$=\left(D \Delta, f^{\prime}\right)_{21}$	"

The symbolic equivalent and transvectant are given for the first member : thus $\rho=-(a b)^{2}(a \gamma) c D^{\prime 2} \beta_{\xi}=\left(P, D^{\prime}\right)_{10}$.
$\S 2$. When ξ varies, the points P, Q where the generator cuts the cubic curve are pairs of points in involution. P is uniquely determined by Q, given ξ, and when Q moves to P, then P moves to Q.
$\Delta=(a b)^{2} \alpha_{\xi} B_{\xi}$. The values of x given by $f=0$ coincide if $\Delta=0$. Thus the double points D_{1}, D_{2} of the involution on the curve are given by Δ. The values of ξ satisfying $\Delta_{\xi}^{2}=0$ answer therefore to the two ξ tangent generators of the curve: (throughout we shall
consider these points as D_{1}, D_{2} and similar points for the second cubic as $D_{1}^{\prime}, D_{2}^{\prime}$). Since $(f, D)_{20}$ vanishes identically, ${ }^{*}$ the values of x satisfying $D_{x}^{2}=(a b)(\alpha \beta) u_{x} b_{x}$ answer to the two x generators through $D_{1} D_{2}$.
$P=p_{x}^{2} \pi_{\zeta}=(f, D)_{10}$ is an associated twisted cubic which is the locus of the harmonic conjugates of the pairs of points in which any ξ generator cuts $f=0$ and $D_{x}{ }^{2}=0$.
(1) The x generators through the intersection of f and P being given by $(f P)_{01}=\frac{1}{2} D^{2}=0$, we infer that P has double contact with f at the points $D_{1} D_{2}$ and no other intersection with f at all.
(2) Since $(f P)_{20} \equiv 0$ any ξ generator cuts f and P harmonically.

Thus f and P are corresponding curves : the covariant D of I is chat of f multiplied by the Resultant R : similarly for the other covariants of P. Thus $(P, P)_{20}=\frac{1}{2} R \Delta$.
$R=(f, P)_{21}=(D, D)_{20}=(\Delta, \Delta)_{0,9}$ is the resultant of the two quadratics $a_{x}^{2} \alpha_{1}$ and $a_{x}^{2} \alpha_{2}$ and vanishes if f decomposes into an x generator and a (1,1) form, or a conic.
$F_{x}^{d}=\left(\dot{\alpha} \alpha^{\prime}\right) a_{x}{ }^{2} a_{x}^{\prime 2}=0$ gives the four x generators through the points of intersection of the two cubic curves. The four generators will be equianharmonic if $A^{2}+3\left(R_{3}-R_{2}\right)=0$. Reciprocally the corresponding ξ generators will be obtained by eliminating x from $a_{z}^{2} \alpha_{\xi}=0$ and $a_{x}^{\prime} \alpha^{\prime} \alpha_{\xi}=0$, and are given by

$$
\begin{gathered}
\left.(a b)^{2} \alpha_{\xi} \beta_{\xi} \cdot\left(a^{\prime} b^{\prime}\right)^{2} \alpha_{\xi}^{\prime} \beta_{\xi}^{\prime}-\left\{a a^{\prime}\right)^{2} \alpha_{\xi} \alpha_{\xi}^{\prime}\right\}^{2}=0 \text { or } \\
\Delta \cdot \Delta^{\prime}-\Delta_{12}^{2}=0 .
\end{gathered}
$$

$E=e_{x}^{3} \epsilon^{2} \xi^{2}=0=\left(a a^{\prime}\right) a_{x} a_{x}^{\prime} \alpha_{\xi} \alpha_{\xi}^{\prime}$. This is a two-two curve generated as the locus of the pairs of points harmonic to each of the two pairs in which any ξ generator cuts the two twisted cubics. It is the same for all pencils of twisted cubics which pass through the intersection of the two given ones, since

$$
\left(\lambda f+\mu f^{\prime \prime}, \lambda^{\prime} f+\mu^{\prime} f^{\prime}\right)_{10}=\left(\lambda \mu^{\prime}+\lambda^{\prime} \mu\right)\left(f, f^{\prime}\right)_{10}
$$

It passes through the four common points of the two cubics.

$$
\text { *(fD) } \begin{aligned}
\left(f 0=\left(a_{x}{ }^{2} a_{\xi},(b c)(\beta \gamma) b_{x} c_{x}\right)_{20}\right. & =-(a b)(b c)(c a)(\beta \gamma) a_{\xi} \\
& =-\frac{1}{3}(a b)(b c)(c a)\left\{(\beta \gamma) \alpha_{\xi}+(\gamma a) \beta_{\xi}+(a \beta) \gamma_{\xi}\right\} \equiv 0
\end{aligned}
$$

The x generators common to E and f are given by

The ξ generators common to E and f are obtained by elimination of x, and are thus $(f f)_{20} \cdot(E E)_{211}-\left\{\left(f^{\prime}\right)_{20}\right\}^{\prime 2}=0$ or $\Delta \cdot\left(\Delta \Delta^{\prime}-\Delta_{12}^{2}\right)=0$, since $(f E)_{20} \equiv 0$.

Thus E, whose branch quartic* is $\Delta \Delta^{\prime}-\Delta_{1 \frac{1}{2}}=0$, touches the four ξ generators through the common points of intersection of the two cubics and passes through the points corresponding to the double points of the involution on each of the cubics:- the points corresponding to (D, Δ) and ($\left.D^{\prime}, \Delta^{\prime}\right)$.

The intermediate covariant, Δ, of the pencil $a_{x}^{\prime 2} \mu_{\xi}+\lambda a_{x}^{\prime 2} \alpha_{j}^{\prime}=0$ is

$$
\text { or } \quad \Delta+2 \lambda \Delta_{12}+\lambda^{2} \Delta^{\prime}=0
$$

where $\Delta_{12}=0$ gives the two ξ generators which cut the two twisted cubics in a harmonic range.

Now when this quadratic in λ has equal roots $\Delta_{1}=\Delta \Delta^{\prime}=0$ giving, as before, the branch quartic of the two-two curve E.

The second branch quartic of this two two curve is $(E, E)_{02}=0$ or $D D^{\prime}-D_{12}^{2}=0$ where $D_{12}=\left(a a^{\prime}\right)\left(\alpha \alpha^{\prime}\right) a_{x} a_{x}^{\prime}$ which may be obtained by considering the intermediate covariant D of $f^{\prime}+\lambda f^{\prime}=0$, i.e. $D+2 \lambda D_{12}+\lambda^{2} D^{\prime}=0$.

The Linear Covariant $\kappa_{\xi}=\left(f^{\prime} D^{\prime}\right)_{20}=-\left(D_{12}, f^{\prime \prime}\right)_{20}=0$. $\kappa_{\xi}=0$ can be regarded as the ξ generator which cuts f and D^{\prime} harmonically, or better :-let the two x generators of the second cubic through $D_{1}^{\prime} D_{2}^{\prime}$ meet the first cubic in $D_{3} D_{4}$: the harmonic pair to $D_{1} D_{2} ; D_{3} D_{4}$ will be the points in which κ_{ξ} meets the first cubic: similarly for $\kappa_{\xi}^{\prime}=\left(f^{\prime} D\right)_{20}$. Again $\kappa_{\xi}=-\left(D_{12}, f^{\prime}\right)_{20}$ where $D_{12}=\left(a a^{\prime}\right)\left(\alpha \alpha^{\prime}\right) a_{x} a_{x}^{\prime}$. Let κ_{ξ} meet the second cubic in $D_{3}^{\prime \prime} D_{i 2}^{\prime \prime}$: and let P, Q be the pair of points where the two x generators corresponding to $D_{12}=0$ meet f^{\prime}. Then the common pair of harmonic points to $P Q ; D_{1}^{\prime} D_{2}^{\prime}$ will be the points $D_{1}^{\prime \prime} D_{2}^{\prime \prime}$.

§ 3. Polar Conic of a given x-Generator.

Fix a $\hat{\xi}$ generator and take the fourth harmonic to where an x generator (say y) meets this ξ with respect to the two points where the generator cuts the cubic: namely $a_{x} a_{y} \alpha_{\xi}=0$. Vary $\dot{\xi}$ - this

[^1]gives us a polar conic on the quadric corresponding to all points on y : a conic, since it is a (1,1) correspondence on the quadric between x and ξ

Similarly take the polar conic of y with respect to the second cubic, so that $a_{x}^{\prime} a_{y}^{\prime} x^{\prime} \xi=0$.

These two polar conics have their planes conjugate with respect to the quadric, if y satisfies $\left(a a^{\prime}\right)\left(\alpha \alpha^{\prime}\right) a_{y} a_{y}^{\prime}=0$, i.e. if y belongs to the covariant $D_{12}=0$.

It is to be noticed that two conics on the quadric $p_{x} \pi_{\xi}=0$ and $q_{x} \rho_{\xi}=0$ are conjugate to one another when the forms are apolar :-namely when $(p q)(\pi \rho)=0$.

Propertifs of the two-two Curve, $E_{x}^{2} \epsilon_{\xi}{ }^{2}=0$.
Its J covariant $(E, E)_{1_{1}}$ is another two-two form which may be shown to be $f . \kappa+f^{\prime} \kappa^{\prime}=0$.
J passes through the four points of intersection of f and f^{\prime} and also where κ cuts f^{\prime} and where κ^{\prime} cuts f. Again

$$
\left(E_{x}^{2} \epsilon^{2}, J\right)_{02}=U D_{12}+D^{\prime} \cdot M^{\prime}-D M-A D D^{\prime} \equiv 0,(\text { Syzygy } 34)
$$

proving that any ξ generator cuts E and J harmonically : similarly for any x generator.*

The x generators through the intersection of E and J obtained by eliminating ξ between these two equations, are given by
$\lambda . F^{\prime}\left(D D^{\prime}-D_{12}{ }^{2}\right)=0$ where λ is a constant factor, $A R_{2}-R_{4}$.
But $F=0$ gives the four \boldsymbol{x} generators through the intersection of E and f and $D D^{\prime}-D_{12}{ }^{2}=0$ is the branch quartic corresponding to the four x rays which touch E.

The second branch quartic of E has been shown to be

$$
\Delta \Delta^{\prime}-\Delta_{12}{ }^{2}=0
$$

which determines the ξ rays touching E at the points of intersection of E and f and, as shown above, of E and J.

Thus the curves E and J intersect at 8 points

$$
I_{1} I_{2} I_{3} I_{4} ; I_{1}{ }^{1} I_{2}{ }^{1} I_{3}{ }^{1} I_{4}{ }^{1}
$$

The x generators through the four I points touch E at these points ; similarly for the ξ generators.*

The condition that J breaks up into linear factors is the vanishing of the third degree invariant of E : i.e.

$$
(E J)_{22}=\frac{3}{2}\left(A R_{2}-2 R_{4}\right) .^{*}
$$

[^2]Now $\left(\kappa \kappa^{\prime}\right)_{01}=A R_{2}-2 R_{4}$. Thus when the two ξ generators corresponding to κ and κ^{\prime} coincide the J covariant of the two-two curve E breaks up into linear factors.

Apolarity of f and f^{\prime}.
If $A=\left(a a^{\prime}\right)^{2}\left(\alpha \alpha^{\prime}\right)$, then A vanishes when f and f^{\prime} are apolar. Two interpretations may be given as follows.

If the polar conic corresponding to y with respect to f is conjugate to the polar conic of z with respect to f^{\prime}, then

$$
\left(a a^{\prime}\right)\left(\alpha \alpha^{\prime}\right) a_{y} a_{x}^{\prime}=0 .
$$

If the reciprocal relation also holds then

$$
\left(a a^{\prime}\right)\left(\alpha \alpha^{\prime}\right) a_{z} a_{y}^{\prime}=0 .
$$

Thus $\left(a a^{\prime}\right)\left(\alpha \alpha^{\prime}\right)\left\{a_{z} a_{z}^{\prime}-a_{z} a_{y}^{\prime}\right\}=0$
or

$$
\left(a a^{\prime}\right)^{2}\left(\alpha \alpha^{\prime}\right)(y z)=0 \quad(y z) \neq 0
$$

thus

$$
\left(a a^{\prime}\right)^{2}\left(\alpha \alpha^{\prime}\right)=A=0 .
$$

Again, the two ξ generators which are cut harmonically by the cubics f and P^{\prime} are given by $\tau_{\xi}^{2}=0=\left(a a^{\prime}\right)^{2}\left(\alpha^{\prime} \Delta^{\prime}\right) \alpha_{\xi} \Delta_{\xi}^{\prime}$.

These two generators will be harmonic to the pair given by $\Delta_{12}=0$ if ($\tau \xi^{2}, \Delta_{12 \xi} \xi_{02}$ vanishes.
But $\left(r_{\xi}{ }^{2}, \Delta_{12 \xi^{2}}\right)_{02}=\frac{1}{2}\left(a a^{\prime}\right)^{2}\left(\alpha^{\prime} \Delta^{\prime}\right)\left(b b^{\prime}\right)^{2}\left\{(\alpha \beta)\left(\Delta^{\prime} \beta^{\prime}\right)+\left(\alpha \beta^{\prime}\right)\left(\Delta^{\prime} \beta\right)\right\}$

$$
\begin{aligned}
& =\frac{1}{2}\left(a a^{\prime}\right)^{2}\left(\alpha^{\prime} \Delta^{\prime}\right)\left(b b^{\prime}\right)^{2}\left(\alpha \Delta^{\prime}\right)\left(\beta \beta^{\prime}\right) \\
& +\left(a a^{\prime}\right)^{2}\left(b b^{\prime}\right)^{2}\left(\alpha^{\prime} \Delta^{\prime}\right)(\alpha \beta)\left(\Delta^{\prime} \beta^{\prime}\right) \\
& =-\frac{1}{2} A \cdot\left(f p^{\prime}\right)_{21}+R_{p}
\end{aligned}
$$

where R_{p} vanishes identically on interchanging a and b and also a^{\prime} and $b^{\prime} .=-\frac{1}{2} A\left(f p^{\prime}\right)_{2_{1}}=-\frac{1}{2} A . B$.

Thus, if B does not vanish the two cubics will be apolar when the two generators corresponding to Δ_{12} are harmonic to the two given by $\tau \xi^{2}$:

Similarly the apolarity of

$$
P \text { and } G^{\prime}\left(=\left(a^{\prime} D\right) a_{x}^{\prime} D_{x}^{\prime} \alpha_{\xi}^{\prime}\right)=\frac{1}{2} A R=0,
$$

$$
P^{\prime} \text { and } G\left(=\left(a D^{\prime}\right) a_{x} D_{x} \alpha \xi\right)=\frac{1}{2} A R^{\prime}=0,
$$

$$
P \text { and } H^{\prime}\left(=\left(\alpha^{\prime} \Delta\right) a_{x}^{\prime}{ }^{2} \Delta \xi\right)=-\frac{1}{2} A R=0 .
$$

$G_{x}^{2} \gamma_{\xi}=0=\left(f, D^{\prime}\right)_{10}=-\left(\Delta_{12}, f^{\prime}\right)_{01}$.
This is the two-one curve which is the locus of the common harmonic conjugates of the pair of points in which any ξ generator cuts the cubic f and the pair of generators $D_{x}^{\prime}{ }^{2}=0$.

Any ξ generator naturally cuts f and G harmonically, since $(f, G)_{20}$ identically vanishes.

The x generators through the point of intersection of f and G are $-\left(a a^{\prime}\right)^{2}\left(\alpha^{\prime} \beta^{\prime}\right)(\alpha \beta) b_{x}^{2} b_{x}^{\prime 2}=0=D . D^{\prime}$, and the ξ generators corresponding are got by eliminating x between

$$
a_{x}{ }^{2} \alpha_{\xi}=0=f \text { and }\left(a D^{\prime}\right) a_{x} D_{x}^{\prime} \alpha_{\xi}=G=0 \text { and are } \Delta\left\{R^{\prime} \Delta-\kappa_{\xi}{ }^{2}\right\}=0 .
$$

Thus G passes through the common points of f and P and has two x generators $D_{x}^{\prime 2}=0$ common with f^{\prime} and P^{\prime} : Similarly for G^{\prime}. G will be apolar to f if $R_{2}=\left(D D^{\prime}\right)^{2}$ vanishes, which is the condition that the x generators corresponding to D and D^{\prime} may be harmonic.
$H_{x}^{2} \eta_{\xi}=\left(a \Delta^{\prime}\right) a_{x}^{2} \Delta_{\xi}^{\prime}=\left(f \Delta^{\prime}\right)_{01}$. Let a ξ generator cut the first cubic in $A_{1} A_{2}$: the line harmonic to $A_{1} A_{2}$ with respect to $\Delta_{\xi}^{\prime}{ }^{2}$ will be cut by the two x generators through $A_{1} A_{2}$ in points which lie on a new cubic $H_{x}{ }^{2} \eta_{\xi}=0$.
$H_{x}^{*} \eta_{\xi}=0$ passes through the points where the two lines given by Δ meet f : the x generators through the points of intersection of $I I$ and f, being given by $\left(a \Delta^{\prime}\right)\left(a^{\prime} \Delta^{\prime}\right) a_{x}{ }^{2} a_{x}^{\prime 2}=0$, form the covariant $Q=0$ and are thus the same lines as pass through the intersection of f and P^{\prime}.

Similarly the x generators through f^{\prime} and P are the same as those through f and H^{\prime} and are given by $Q_{x}^{\prime{ }_{x}}=0$.

$$
\begin{gathered}
I L_{x}^{2} \eta_{\xi}=0 \text { will be apolar to } f^{\prime}=0 \text { if }\left(a_{x}^{\prime} \alpha_{\xi}^{\prime},\left(\alpha \Delta^{\prime}\right) a_{x}^{2} \Delta_{\xi}^{\prime}\right)=0, \\
\text { or }\left(a a^{\prime}\right)^{2}\left(\alpha \Delta^{\prime}\right)\left(\alpha^{\prime} \Delta^{\prime}\right)=0=\left(f P^{\prime}\right)_{21}=B .
\end{gathered}
$$

But if B vanish $\tau_{\xi}{ }^{2}=0$ will be harmonic to $\Delta_{12} \xi^{2}=0$

$$
\text { or } D_{x}^{\prime}{ }_{x}^{2}=0 \ldots \ldots \ldots \ldots \ldots \ldots \text { to } D_{12 x}{ }^{2}=0 \text {. }
$$

Thus when f^{\prime} and P^{\prime} are apolar so are H and f^{\prime}, and τ is harmonic to Δ_{12}.

Again, $\tau=\left(f P^{\prime}\right)_{20}=0$ will be harmonic to $\Delta_{\xi}{ }^{2}=0$ when $\left(\tau_{\xi}{ }^{2}, \Delta_{\xi}{ }^{2}\right)_{02}=0=R_{4}=\left(P, P^{\prime}\right)_{31}$ so when P is apolar to P^{\prime}, τ will be harmonic to Δ and τ^{\prime} will be harmonic to Δ^{\prime}.

Just as we have $\kappa_{\xi}=\left(f D^{\prime}\right)_{20}$ so we have $\rho \xi=\left(p_{z}^{2} \pi_{\xi}, D_{z}^{\prime 2}\right)_{20}$ and our linear covariant corresponding to $\rho_{\xi}=0$ can be identified with a ξ generator cutting across the curve $p_{x}{ }^{2} \pi_{\xi}=0$ in a similar manner to that corresponding to $\kappa_{\xi}=0$ and $f=0$: now the x generators through κ and P are the same as those through ρ and f : both are
given by $\left(\kappa_{\xi}, p_{x}^{2} \pi_{\xi}\right)_{0_{1}}=R D^{\prime}-R_{2} D=0$, while exactly the same pair are given by κ^{\prime} and $G^{\prime}=0$. Thus the x generators through the intersection of

$$
\begin{array}{llll}
1 & \rho_{\xi}=0 & \text { and } & a_{x}^{2} \alpha_{\xi}=0 \\
2 & \kappa_{\xi}=0 & , & p_{x}^{2} \pi_{\xi}^{2}=0 \\
3 & \kappa_{\xi}^{\prime}=0 & \prime, & G_{x}^{\prime 2} \gamma_{\xi}^{\prime}=0
\end{array}
$$

are all given by $R D^{\prime}-R_{2} D=0$,
and of $\quad 1 \quad \rho_{\xi}^{\prime}=0$ and $a_{x}^{\prime}{ }^{2} \alpha_{\xi}^{\prime}=0$

$$
2 \quad \kappa_{\xi}^{\prime} \xi=0 \quad \Longrightarrow \quad p_{x}^{\prime}{ }^{2} \pi_{\xi}^{\prime} \xi=0
$$

$$
3 \quad \kappa_{\xi}=0 \quad, \quad G_{x}^{2} \gamma_{\xi}=0
$$

by $R^{\prime} D-R_{2} D^{\prime}=0$.
These being linear combinations of D and D^{\prime}, it follows that $U_{x}^{2}=0=\left(D D^{\prime}\right) D_{x} D_{x}^{\prime}$ will be harmonic to such generators.
e.g., $\rho_{\xi}=\left(p_{x}{ }^{2} \pi_{\xi}, D_{x}^{\prime}{ }^{2}\right)_{20}$
$=(a D)\left(a D^{\prime}\right)\left(D D^{\prime}\right) \alpha_{\xi}:$
$\left(a_{x}{ }^{2} \alpha_{\xi}, \rho_{\xi}\right)_{01}=(\alpha \beta)(b D)\left(b D^{\prime}\right)\left(D D^{\prime}\right) a_{x}^{2}$
$=\left(D D^{\prime}\right)(a D)\left(b D^{\prime}\right)(\alpha \beta)-(a b)\left(b D^{\prime}\right)\left(D D^{\prime}\right)(\alpha \beta) \ldots$
$=\frac{1}{2}(\alpha \beta)(a b) \ldots\left(D D^{\prime}\right)^{2}-\left(D_{1} D^{\prime}\right)\left(D D^{\prime}\right) D_{x} D_{1 z}$
$=\frac{1}{2} D \cdot R_{2}-\frac{1}{2}\left\{2\left(D D^{\prime}\right)^{2} D_{1 x}^{2}-\left(D D_{1}\right)^{2} D_{x}^{\prime 2}\right\}$
$=\frac{1}{2} R D^{\prime}-\frac{1}{2} D \cdot R_{2}$
The two x generators corresponding to $\left(D D^{\prime}\right) D_{x} D_{x}{ }^{\prime}=U_{x}{ }^{2}=0$ are the two generators through the intersection of κ_{ξ} and f or through κ_{ξ}^{\prime} and f^{\prime} since $\left(D D^{\prime}\right)_{10}=\left(\kappa_{\xi}, f^{\prime}\right)_{01}=\left(\kappa^{\prime}, f^{\prime}\right)_{01}$

$$
\begin{aligned}
\left(\kappa_{\xi}, f\right)_{01}=\left\{\left(a D^{\prime}\right)^{2} \alpha_{\xi}, b_{x}^{2} \beta_{\xi}\right\}_{01} & =(\alpha \beta)\left(a D^{\prime}\right)^{2} b_{x}^{2} \\
& =\frac{1}{2}(\alpha \beta)\left\{\left(a D^{\prime}\right)^{2} b_{x}^{2}-\left(b D^{\prime}\right)^{2} a_{x}^{2}\right\} \\
& =(\alpha \beta)\left(b D^{\prime}\right)(a b) a_{x} D_{x}^{\prime} \\
& =\left(D D^{\prime}\right) D_{x} D_{x}^{\prime} .
\end{aligned}
$$

Suppose $\kappa_{\xi}=0$ is produced to meet the second cubic $f^{\prime}=0$ in the points $A_{3} A_{4}$: the x generators through these points are given by

$$
\begin{array}{ll}
& \left(a D^{\prime}\right)^{2}\left(\alpha \alpha^{\prime}\right) a_{x}^{\prime} x^{2}=0 \\
\text { or } & \left(a a^{\prime}\right)\left(a^{\prime} D^{\prime}\right)\left(\alpha \alpha^{\prime}\right) D_{x}^{\prime} a_{x}+A \cdot D_{x}^{\prime}{ }^{2}=0 \\
\text { or } & M_{x}^{2}+A \cdot D_{x}^{\prime}=0 .
\end{array}
$$

Producing these lines through A_{3} and A_{4} to meet f again in $\Lambda_{5} A_{5}$ and taking the pair of points harmonic to $A_{5} A_{6}, D_{1} D_{2}$ we get $\left(a D^{\prime}\right)^{2}\left(\alpha \alpha^{\prime}\right)\left(a^{\prime} b\right)^{2} \alpha_{\xi}^{\prime}=0$

$$
\text { or } \quad A \kappa_{\xi}-\rho_{\xi}^{\prime}=0 \text {. }
$$

Similarly we can construct $A \kappa_{\xi}^{\prime}-\rho_{\xi}=0$.

These lines can be taken to represent the linear covariants instead of $\rho_{\xi}^{\prime}=0, \rho_{\xi}=0$; so for $M_{x}{ }^{2}=0$ and $M_{x}^{\prime}{ }^{2}=0$. Again $M_{x}^{2}=\left(f P^{\prime}\right)_{12}=0$ can be regarded as the two x generators whose polar conics on the quadric with respect to f and P^{\prime} are conjugate : or since $\left(f P^{\prime}\right)_{11}=\left(a a^{\prime}\right)\left(\alpha \Delta^{\prime}\right)\left(\alpha^{\prime} \Delta^{\prime}\right) a_{x} a_{x}^{\prime}=\left\{\left(a a^{\prime}\right) a_{x} a_{x}^{\prime} \alpha_{\xi} \alpha_{\xi}^{\prime}, \Delta_{\xi}^{\prime}\right\}_{02}$ as the two generators whose corresponding ξ generators of the twotwo curve $E_{x}{ }^{2} \epsilon_{\xi}{ }^{2}=0$ are harmonic to the pair $\Delta_{\xi}^{\prime}{ }^{2}=0$.

Most of the covariants can be interpreted in a similar manner. Thus $X_{x}{ }^{4}=a_{x}{ }^{2} b_{x}{ }^{2}\left(\alpha \Delta^{\prime}\right)\left(\beta \Delta^{\prime}\right)=0$ will give the four x generators through the points of intersection of $\Delta_{\xi}^{\prime}{ }^{2}=0$ with f : or the lines through the intersection of $H_{x}{ }^{2} \eta_{\xi}=0$ and f since

$$
\begin{aligned}
a_{x}^{2} b_{x}^{2}\left(\alpha \Delta^{\prime}\right)\left(\beta \Delta^{\prime}\right) & =-\left\{a_{x}^{2}\left(\alpha \Delta^{\prime}\right) \Delta^{\prime} \xi, b_{x}^{2} \beta_{\xi}\right\}_{01} \\
& =+\{f, H\}_{01}
\end{aligned}
$$

The (2,1) covariant $p_{x}{ }^{2} \pi_{\xi}$ of $a_{x}{ }^{2} \alpha_{\xi}+\lambda a_{x}^{\prime}{ }^{2} \alpha^{\prime}{ }_{\xi}$ is

$$
P+\lambda\left(A f+2 G^{\prime}+H^{\prime}\right)+\lambda^{2}\left(H+2 G-A f^{\prime}\right)+\lambda^{3} P^{\prime}=0=P_{f+\lambda f^{\prime}}
$$

while the invariant R of the form is

$$
\begin{aligned}
& \left(a_{x}^{2} \alpha_{\xi}+\lambda a_{x}^{\prime}{ }^{2} \alpha_{\xi}^{\prime}, P_{f+\lambda f^{\prime}}\right)_{21} \\
= & R+4 \lambda B^{\prime}+2 \lambda^{2}\left(2 R_{2}+R_{3}-A^{2}\right)+4 \lambda^{3} B+\lambda^{4} R^{\prime} \\
= & R_{f+\lambda f^{\prime}}
\end{aligned}
$$

There are thus four members of the pencil which degenerate into a linear form in ξ and a conic: the values of λ will satisfy the equation $R_{f+\lambda f^{\prime}}=0$.

[^0]: * H. W. Turnbull. Proceedings of Royal Society of Edinburgh, Vul. XLIII., 1923, pp. 44.

 Kasner. Transactions of American Mathematical Sociely, Vol. I., 1900.
 Peano. Battaglini Giorn. di. Math., XX., 1882.
 \dagger Saddlek. Proceedings of Royal Society of Edinburgh, Vol. XLV., 1924.

[^1]: *Turnbull. Proc. Royal Soc. Edinburgh, Vol. XLIV. (1923-4) p. 36.

[^2]: *Turnbill, loc. cit., pp. 36, 34.

