Microscopy

Coming Events

2018

EBSD 2018 - Electron Backscatter Diffraction Conference May 23–25, 2018 Ann Arbor, MI www.microbeamanalysis.org/topical-conferences/ ebsd-2018

Cell Symposium: Multifaceted Mitochondria June 4–6, 2018 San Diego, CA www.cell-symposia.com/mitochondria-2018

Atom Probe Tomography and Microscopy June 10–15, 2018

Gaithersburg, MD www.nist.gov/news-events/events/2018/06/ atom-probe-tomography-and-microscopy-2018-aptm-2018

Inter/Micro 2018

June 11–15, 2018 Chicago, IL www.mcri.org/v/101/InterMicro

EXRS2018 - European Conference on X-Ray Spectrometry June 24–29, 2018 Ljubljana, Slovenia https://exrs2018.ijs.si

Society for Ultrastructural Pathology Meeting (Ultrapath XIX) June 24–29, 2018 Newport, RI

WWW.ultrapath.org EMAG 2018: Applications of Electron Microscopy to Beam Sensitive Material

Warwick, UK http://emag2018.iopconfs.org/home

Microscopy & Microanalysis 2018

August 5–9, 2018 Baltimore, MD www.microscopy.org

2019

Microscopy & Microanalysis 2019 August 4–8, 2019 Portland, OR www.microscopy.org

2020

Microscopy & Microanalysis 2020 August 2–6, 2020 Milwaukee, WI www.microscopy.org

2021

Microscopy & Microanalysis 2021 August 1–5, 2021 Pittsburgh, PA www.microscopy.org

2022

Microscopy & Microanalysis 2022 July 31–August 4, 2022 Portland, OR www.microscopy.org

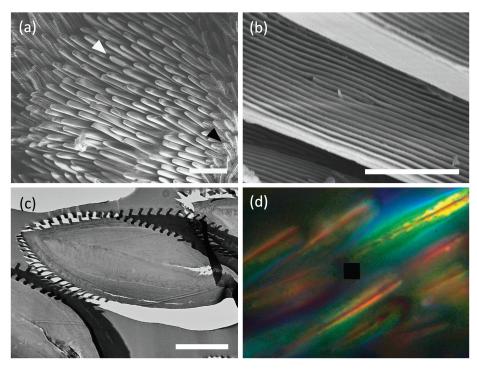
2023

Microscopy & Microanalysis 2023 July 24–28, 2023 Minneapolis, MN www.microscopy.org

More Meetings and Courses

Check the complete calendar near the back of this magazine.

Carmichael's Concise Review


Would You Expect to Find the Smallest Natural Rainbow on a Spider?

Stephen W. Carmichael Mayo Clinic, Rochester, MN 55905

carmichael.stephen@mayo.edu

Color produced by wavelength-dependent light scattering is a key component of visual communication in nature and plays a particularly important role in visual signaling by structurally colored animals during courtship. This is true in the avian peacock and its namesake, the male rainbow peacock spider. *Maratus* is a spider genus of the family Salticidae (jumping spiders), which are commonly referred to as peacock spiders. Recently an international, multi-disciplinary team headed by Bor-Kai Hsiung [1] used scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to determine what is responsible for the rainbowhued visible light signal from two species of these spiders, *M. robinsoni* and *M. chrysomelas*.

Both species have two types of visually distinct abdominal scales: rainbowiridescent scales and velvet black scales. SEM revealed that the black scales are brush-like and randomly oriented, whereas the iridescent scales are aligned in a more orderly fashion (Figure 1a). At higher magnification, SEM showed the

CrossMark

Figure 1: Male rainbow peacock spider *M. robinsoni*. (a) SEM image of iridescent scales (white arrowhead) and black scales (black arrowhead). Scale bar = $200 \ \mu m$. (b) SEM image showing periodic grating structures on the surfaces of the iridescent scales. Scale bar = $5 \ \mu m$. (c) TEM image showing regular binary-phase surface gratings on the surface of a scale with an airfoil profile. Scale bar = $5 \ \mu m$. (d) Visible light image showing that each iridescent scale (about $40 \ \mu m \times 10 \ \mu m$) hosts two microscopic rainbows (center black square is $4 \ \mu m \times 4 \ \mu m$). Images courtesy of Bor-Kai Hsiung.

COMING UP ON **50 YEARS** OF **DEVELOPMENT, MANUFACTURING, AND CUSTOMER SERVICE...**

...and still innovating

Free customer service

Sectioning tests with biological and material research specimens of all kinds. We send you the sections along with the surfaced sample, a report on the results obtained and a recommendation of a suitable knife. Complete discretion when working with proprietary samples.

Re-sharpening and reworking service

A re-sharpened Diatome diamond knife demonstrates the same high quality as a new knife. Even knives purchased in previous years can continue to be re-sharpened. The knives can be reworked into another type of knife for no extra charge, e.g. ultra to cryo or 45° to 35°.

Exchange service

Whenever you exchange a knife we offer you a new Diatome knife at an advantageous price.

DiATOME U.S.

P.O. Box 550 • 1560 Industry Rd. • Hatfield, Pa 19440 Tel: (215) 412-8390 • Fax: (215) 412-8450 email: info@emsdiasum.com or stacie@ems-secure.com www.emsdiasum.com

Diatome diamond knives

ultra 45° • cryo • histo • ultra 35° histo jumbo • STATIC LINE II • cryo immuno ultra sonic • ultra AFM & cryo AFM

> **NEW!... trimtools 20, 45, and 90** Finally, one trimming tool for all of your trimming needs, be it at room or crvo temperatures.

the highest quality... the most precise sectioning... incomparable durability

DIATOME

CN0350

Û.

a 45°

C HAT IN NO

iridescent scales have parallel grating structures on each individual scale. The gratings were more regularly spaced on the scales of M. robinsoni (Figure 1b). It is probably not a coincidence that the iridescence is more intense on this species. TEM of the transverse section of the iridescent scales revealed a complex structure that had the profile of an airfoil. The surfaces of airfoil-shaped scales are covered by prominent binary-phase grating structures (Figure 1c). The grating configuration of each scale on the M. robinsoni disperses the visible spectrum over a small angle, such that at short distances the entire visible spectrum is resolved, and a static microscopic rainbow pattern distinctly emerges (Figure 1d). Based on the SEM/TEM images, Hsiung et al. hypothesized that the acute angle-sensitive rainbow-iridescence of these male spiders results from the interaction of the surface nanograting and microscopic airfoil-shape of the scales. The investigators also used analytical and finiteelement optical simulation to identify the mechanism of color production.

Since controlling light through photonic micro- and nano-structures is vitally important in human technology (such as communications, security, computing, etc.), Hsiung et al. attempted to fabricate structures with the properties exhibited by these spiders. They used two-photon nanolitholography, which is essentially miniaturized 3D printing, to closely replicate the optical properties of the spiders.

To appreciate the role of these properties in peacock spider courtship, it is helpful to visualize the small size of these spiders. They are about 2.5 mm in length, which is about the thickness of a nickel coin. The male wiggles his abdomen in the presence of a potential mate thereby displaying the full rainbow—which must be one of the smallest found in nature. It is the first rainbow-iridescent signal in nature to be identified and is likely a direct product of sexual selection through female choice.

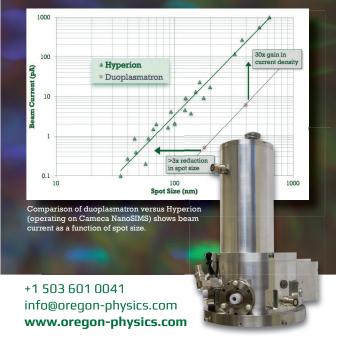
Whereas these observations are interesting, the more important contribution of this study is the inspiration this natural structure provides for manufacturing a structure to mimic it. This powerful bioinspired approach could allow engineers to design and develop optical devices, especially spectrometers that far exceed the capability of any current device. Such improvements would have significant impact on fields ranging from life sciences and biotechnology to materials science and engineering. [2]

References

- B-K Hsiung et al., *Nat Commun* 2278 (2017), DOI 10.1038/ s41467-017-02451-x.
- [2] The author gratefully acknowledges Dr. Bor-Kai Hsiung for reviewing this article.

High Brightness Beams • FIB Accessories • Analytical Service

Upgrade Your Ions


Hyperion[™] Dual Polarity Ion Sources are now available as direct upgrades from Oregon Physics for FEI FIB 200, PHI Adept 1010, and Cameca NanoSIMS, IMS F series, and 12XX series instruments.

Upgrade your ion source to benefit from:

- Longer source lifetime
- Better image resolution
- Improved depth profiling (SIMS)
- Higher currents for milling (FIB)

Oregon Physics' Hyperion ion sources are designed to bolt-on to your existing optical system for easy implementation.

How will Hyperion improve your research? Learn more at Oregon-Physics.com or call us to discuss your requirements.

https://doi.org/10.1017/S155

QUANTAX EBSD - Featuring OPTIMUS[™] TKD, ARGUS[™], ESPRIT QUBE and PicoIndenters[®]

6⁻Flash_{FS}

Unique Solutions for EBSD and TKD

e⁻Flash^{HD}

- Fastest simultaneous EBSD/EDS analysis
- OPTIMUS™ EBSD and TKD with one detector
- Unique ARGUS[™] FSE/BSE imaging system
- ESPRIT QUBE for advanced 3D analysis of EBSD/EDS data
- NEW Quantitative in-situ nanomechanical testing with Hysitron SEM PicoIndenters®

₩ www.bruker.com/quantax-ebsd

Innovation with Integrity

EBSD