O-28 - SEROTONIN-1A RECEPTOR RELATED MORPHOGENIC SIGNALING IS ASSOCIATED WITH REGIONAL BRAIN VOLUMES AND NETWORK NEUROPLASTICITY C.Kraus¹, M.Savli¹, A.Hahn¹, P.Baldinger¹, A.Höflich¹, J.Ungersboeck², M.Mitterhauser², C.Windischberger³, W.Wadsak², S.Kasper¹, R.Lanzenberger¹ ¹Department of Psychiatry and Psychotherapy, ²Department of Nuclear Medicine, Medical University of Vienna, ³Center for Medical Physics and Biomedical Engineering, Medical University of Austria, Vienna, Austria **Introduction:** Dysfunctional neuroplasticity contributes to the pathogenesis of Alzheimer's disease, schizophrenia and depression. However, the underlying molecular mechanisms are not fully understood. Previous studies report neuromodulatory properties of the serotonin-1A (5-HT_{1A}) receptor, which is also altered in these disorders. This suggests $5-HT_{1A}$ mediated neuroplasticity as potential pathogenic factor. **Objectives:** The aim of this study was to demonstrate 5-HT $_{1A}$ mediated neuroplasticity in vivo. **Methods:** We used positron emission tomography to quantify 5-HT_{1A} receptor binding (BP_{ND}) together with structural magnetic resonance imaging in 35 healthy subjects (mean 26.6 ± 6.8 years; 17 women). Voxel-wise regression analysis was performed with gray matter volume (GMV) as dependent and 5-HT_{1A} BP_{ND} as independent variable. Additionally, regression analysis was calculated with whole brain GMV as dependent variable and 5-HT_{1A} BP_{ND} of the dorsal raphe nucleus (DRN) as independent variable. Control variables were age, sex and total GMV, respectively. **Results:** 5-HT_{1A} receptor density predicted GMV of the hippocampus, medial temporal cortex, inferior temporal cortex, medial occipital cortex and the pericalcarine region in each hemisphere (p< 0.05 false discovery rate corrected, R^2 : 0.308-0.503). These associations were independent from local numbers of neurons. Furthermore, 5-HT_{1A} receptor levels in the DRN predicted GMV of the anterior cingulate cortex (p=0.001, R^2 =0.656, uncorrected). **Conclusions:** These results demonstrate 5-HT_{1A} receptor mediated morphogenetic mechanisms in healthy human subjects' brains, which occur not only locally but also at the macro-network level. Finally, morphogenetic signaling investigated with multimodal neuroimaging could contribute to better understanding and diagnostic identification of gray matter loss in neuropsychiatric disorders.