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We investigate the interplay between large-scale patterns, so-called superstructures,
in the fluctuation fields of temperature θ and vertical velocity w in turbulent
Rayleigh–Bénard convection at large aspect ratios. Earlier studies suggested that
velocity superstructures were smaller than their thermal counterparts in the centre
of the domain. However, a scale-by-scale analysis of the correlation between the
two fields employing the linear coherence spectrum reveals that superstructures
of the same size exist in both fields, which are almost perfectly correlated. The
issue is further clarified by the observation that, in contrast to the temperature,
and unlike assumed previously, superstructures in the vertical-velocity field do not
result in a peak in the power spectrum of w. The origin of this difference is traced
back to the production terms of the θ and w variance. These results are confirmed
for a range of Rayleigh numbers Ra = 105–109; the superstructure size is seen to
increase monotonically with Ra. Furthermore, the scale distribution of the temperature
fluctuations in particular is pronouncedly bimodal. In addition to the large-scale peak
caused by the superstructures, there exists a strong small-scale peak. This ‘inner peak’
is most intense at a distance of δθ from the wall and is associated with structures
of size ≈10δθ , where δθ is the thermal boundary layer thickness. Finally, based on
the vertical coherence relative to a reference height of δθ , a self-similar structure is
identified in the velocity field (vertical and horizontal components) but not in the
temperature.

Key words: turbulent convection, plumes/thermals, Bénard convection

1. Introduction
A remarkable feature of turbulent flows is that, amid the inherent disorder in both

time and space, they frequently give rise to a surprisingly organized flow motion

† Email address for correspondence: d.j.krug@utwente.nl
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on very large scales. Such very-large-scale structures in the fully turbulent regime
have been reported, for example, for turbulent boundary layers (Hutchins & Marusic
2007a), plane Couette flow (Lee & Moser 2018) and Taylor–Couette turbulence
(Huisman et al. 2014). Here we focus on superstructures in turbulent Rayleigh–Bénard
convection (RBC), which is an idealized configuration that is widely used to study
thermal convection (Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010; Chillà &
Schumacher 2012; Verma 2018). The strength of the non-dimensional thermal driving
in RBC is given by the Rayleigh number Ra, while the dimensionless heat transfer
is characterized by the Nusselt number Nu.

Large-scale organization in convective flows is widespread. An astonishing example
is the formation of so-called cloud streets in the atmosphere that can extend
for hundreds of kilometres (e.g. Young et al. 2002). Studying related features in
RBC requires a cell with a large aspect ratio Γ . Naturally, this poses a challenge
to experiments and simulations. Experimentally (e.g. Fitzjarrald 1976; Sun et al.
2005a,b; Zhou et al. 2012; Du Puits, Resagk & Thess 2013; Hogg & Ahlers 2013;
Cierpka et al. 2019), it is very challenging to extract flow information beyond
global parameters or local measurements of turbulence statistics. On the other
hand, simulations for large aspect ratios are very costly if the thermal driving is
sufficiently strong to achieve a moderately or even a strongly turbulent state. The
first to tackle the problem numerically were Hartlep, Tilgner & Busse (2003), and
several related studies have since been presented in the literature (Parodi et al.
2004; Hartlep, Tilgner & Busse 2005; Shishkina & Wagner 2005, 2006, 2007;
Von Hardenberg et al. 2008; Bailon-Cuba, Emran & Schumacher 2010; Emran &
Schumacher 2015; Sakievich, Peet & Adrian 2016). Very recently, the available
ranges of large-aspect-ratio simulations have been extended significantly in Prandtl
number (Pr) by Pandey, Scheel & Schumacher (2018) and in Γ as well as in Ra by
Stevens et al. (2018).

From these papers, it has become clear that in RBC so-called superstructures exist
at higher Ra. These superstructures are significantly larger than the convection rolls
at onset (see e.g. Drazin & Reid (2004)) or as those in the weakly nonlinear regime
(Morris et al. 1993). It is widely observed that the superstructure size increases with
Ra (Fitzjarrald 1976; Hartlep et al. 2003; Pandey et al. 2018; Green et al. 2020),
while the Pr dependence appears to be more complicated. For the latter, Pandey et al.
(2018) report that at Ra = 105 the largest structures are found for Pr ≈ 7, but Pr
variations over a significant range at higher Ra have not been reported yet. Stevens
et al. (2018) showed that very large domain sizes up to Γ = 64 are necessary to fully
converge the size of the superstructures at Ra = 108. Finally, Von Hardenberg et al.
(2008) and Pandey et al. (2018) demonstrate that superstructures evolve on time scales
much longer than the free-fall time scale.

There is no consensus yet on how to best extract and quantify the superstructures
in RBC. Researchers have relied on peaks in velocity and/or temperature power
spectra (Von Hardenberg et al. 2008; Pandey et al. 2018; Stevens et al. 2018),
velocity–temperature co-spectra (Fitzjarrald 1976; Hartlep et al. 2003; Green et al.
2020) or so-called integral length scales (Parodi et al. 2004; Stevens et al. 2018) to
determine the structure size. A puzzling and as yet unexplained observation is that
superstructures in the temperature (θ ) field are larger than in the vertical-velocity w
field (Pandey et al. 2018; Stevens et al. 2018) when the structure size is determined
based on the peaks in the power spectrum or the corresponding integral length
scale. Also, visually, the difference between the temperature and vertical-velocity
fields can easily be observed in the snapshots of the flow at mid-height, which are
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FIGURE 1. Snapshots of the temperature (a) and the vertical-velocity (b) field at mid-
height for a simulation in a Γ = 32 cell with Pr = 1 at Ra = 108. The diameter of the
circles in both panels indicates the superstructure size l̂= 6.3 (see table 1).

presented in figure 1. This figure reveals that the vertical-velocity field is dominated
by significantly smaller structures than the temperature field. Moreover, the correlation
between the two quantities appears much lower than one would naively expect, given
that the temperature fluctuations provide the driving of w. These observations seem
at odds with the notion that superstructures in RBC form large-scale convection rolls
for which temperature and velocity scales should be of the same size.

To address and clarify this issue along with related questions, we use the dataset
of Stevens et al. (2018) to assess energy distributions and coherence on a scale-by-
scale basis. Before presenting our results in § 3, we provide the relevant details on the
dataset of Stevens et al. (2018), together with the parameters of additional simulations
performed for this study, in § 2. We summarize our findings in § 4.

2. Dataset
We solve the Boussinesq equations with the second-order staggered finite difference

code AFiD. The code has been extensively validated and details of the numerical
methods can be found in Verzicco & Orlandi (1996), Stevens, Verzicco & Lohse
(2010), Stevens, Lohse & Verzicco (2011), van der Poel et al. (2015) and Zhu et al.
(2018). The governing equations in dimensionless form read:

∂u
∂t
+ u · ∇u=−∇p+

√
Pr
Ra
∇

2u+ θ ẑ, (2.1)

∇ · u= 0, (2.2)
∂θ

∂t
+ u · ∇θ =

1
√

RaPr
∇

2θ, (2.3)

where ẑ is the unit vector pointing in the opposite direction of gravity, u the
velocity vector normalized by the free-fall velocity

√
gα∆H, t the dimensionless time

normalized by
√

H/(gα∆), θ the temperature normalized by ∆, and p the pressure
normalized by gα∆/H. The control parameters of the system are Ra= αg∆H3/(νκ)
and Pr = ν/κ , where α is the thermal expansion coefficient, g the gravitational

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
54

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1054


887 A2-4 D. Krug, D. Lohse and R. J. A. M. Stevens

Ra Nx ×Ny ×Nz Nu Reh Rew Ret l̂ δθ = 1/(2Nu)

1× 105 2048× 2048× 64 4.35 55.7 40.3 68.7 4.4 0.115
4× 105 2048× 2048× 64 6.48 111.7 84.3 140.0 4.5 0.077
1× 106 3072× 3072× 96 8.34 176.0 131.6 219.8 4.9 0.060
4× 106 3072× 3072× 96 12.27 349.7 250.8 430.4 5.4 0.041
1× 107 4096× 4096× 128 15.85 547.1 380.1 666.2 5.9 0.032
1× 108 6144× 6144× 192 30.94 1660.3 1056.1 1967.8 6.3 0.016
1× 109 12 288× 12 288× 384 61.83 4879.2 2962.3 5708.1 6.6 0.008

TABLE 1. The columns from left to right indicate the Rayleigh number, the numerical
resolution in the horizontal and wall-normal directions (Nx×Ny×Nz), the Nusselt number,

and the horizontal (Reh =

√
〈v2

x + v
2
y 〉V
√

Ra/Pr), vertical (Rew =
√
〈w2〉V

√
Ra/Pr) and

total (Ret =

√
〈v2

x + v
2
y +w2〉V

√
Ra/Pr) Reynolds numbers. The length scale l̂ denotes the

superstructure scale based on the coherence spectrum γ 2
θw (plotted as triangles in figure 8b)

and δθ is the thermal boundary layer thickness.

acceleration, ∆ the temperature drop across the container, H the height of the fluid
domain, ν the kinematic viscosity, and κ the thermal diffusivity of the fluid.

The boundary conditions on the top and bottom plates are no-slip for the velocity
and constant for the temperature. Periodic conditions in the horizontal directions are
used. In all our simulations, Pr is fixed to 1 and we analyse data for Γ = L/H = 32,
where H is the vertical distance between the plates and L the horizontal extension
of the domain. Length scales are normalized by H unless specified otherwise and we
set H = 1. Coordinates in the wall-parallel direction are denoted by x and y while
the z-axis points along the wall-normal direction. Horizontal velocity components are
denoted vx and vy, respectively. A high spatial resolution in the boundary layer and
bulk has been used to ensure that the resolution criteria set by Shishkina et al. (2010)
and Stevens et al. (2010) are fulfilled. Details about the simulations can be found
in table 1. The simulations for Ra= 108 and Ra= 109 have been reported before in
Stevens et al. (2018), while the simulations for 105 6 Ra 6 107 have been performed
for this study. The horizontal, vertical and total Reynolds numbers indicated in
table 1 represent the volume and time averages of Reh = (〈v

2
x + v

2
y 〉V)

1/2(Ra/Pr)1/2,
Rew = (〈w2

〉V)
1/2(Ra/Pr)1/2 and Ret = (〈v

2
x + v

2
y +w2

〉V)
1/2(Ra/Pr)1/2, respectively. In

the following, we decompose instantaneous quantities ψ̃ into mean and fluctuating
parts according to ψ̃ = Ψ + ψ , where Ψ = 〈ψ̃〉 with 〈·〉 denoting an average over a
wall-parallel plane and time.

3. Results
In presenting our results, we initially (§§ 3.1–3.3) restrict the discussion to a single

Rayleigh number (Ra = 108). A detailed discussion of the Ra dependence of our
findings is then provided in § 3.4.

3.1. Spectral distribution of energy and coherence of temperature and vertical
velocity

To evaluate the energy distribution across different scales, we first consider the
one-sided power spectra Φψψ(k), where ψ is a zero-mean quantity (velocity or
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FIGURE 2. Premultiplied temperature (a) and vertical-velocity (b) power spectra. The
premultiplied co-spectrum kΦθw (c) is normalized such that it integrates to the turbulent
heat flux. (d) Linear coherence spectrum γ 2

θw; see (3.2). The dashed and dotted vertical
lines indicate k= 1 and k= 34, respectively. The grey shaded area marks the approximate
range of superstructure scales k = 1 ± 0.4. The results presented here are computed for
Ra= 108. The colour of the curves indicates the wall distance according to the legend at
the foot of the figure.

temperature here) and k is the radial wavenumber k =
√

k2
x + k2

y . The spectra are
computed for horizontal planes and averaged in time. Results for θ and w at several
distances from the wall are presented in figure 2(a) and (b), respectively. Data are
presented in premultiplied form kΦψψ , such that the area under the curve equals the
variance when plotted on a logarithmic scale, according to

〈ψ2
〉 =

∫
∞

0
Φψψ dk=

∫
∞

0
kΦψψ d(log k). (3.1)

For reference, the wall-normal temperature and vertical-velocity variance profiles are
presented in figures 3(a) and 3(b), respectively. The symbols in these figures mark the
positions at which the spectra in figure 2 are computed.

First, we focus on the situation at mid-height (z/H = 0.5), which corresponds
to the location of the snapshots shown in figure 1. These results are represented
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FIGURE 3. Wall-normal temperature (a) and vertical-velocity (b) variance profiles for Ra=
108. (c) The corresponding normalized turbulent heat flux. Symbols denote the location of
the spectra plotted in figure 2 with corresponding colours.

by the red lines in figure 2. Figure 2(a) shows that the temperature spectrum
kΦθθ(z/H = 0.5) has a pronounced peak in the range k ≈ 1 ± 0.4 that corresponds
to the superstructures (marked by a grey band as a visual aid in the figure). This
peak contains approximately half of the temperature variance at z/H = 0.5, while
the remainder of the variance is spread out over a wide range of intermediate and
small scales, which individually carry relatively little energy. Figure 2(b) reveals that
the corresponding vertical-velocity spectrum kΦww(z/H = 0.5) spans approximately
the same range of scales as its temperature counterpart overall. However, its shape
is significantly different, as it is much more broadband and has a fairly wide peak
centred around k≈ 3.5. It is important to note, though, that there is significant energy
in the kΦww spectrum at the scales corresponding to the thermal superstructures,
which are marked by grey shading in all panels of figure 2. This implies that velocity
structures of the same size as the temperature superstructures indeed exist. Yet, their
contribution is overshadowed by stronger velocity fluctuations at smaller scales.

More insight into the correlation between the velocity and temperature structures is
obtained by analysing the one-sided co-spectrum Φθw=Re(〈F(θ)F(w)∗〉), where F(·)
indicates the Fourier transform in the horizontal plane and (·)∗ the complex conjugate.
Figure 2(c) shows that the temperature–velocity co-spectrum kΦθw at mid-height
features a pronounced large-scale peak at k≈ 1. This indicates that a correlation exists
between the large-scale structures in θ and w. Further, kΦθw(z/H=0.5) decreases with
increasing k, but scales smaller than the superstructure size nevertheless contribute
significantly to the turbulent heat transport. Aside from the degree of correlation
between θ and w, their magnitudes also factor into the co-spectrum at a given scale.
In order to focus on the correlation aspect only, we analyse the linear coherence
spectrum

γ 2
θw(k)=

|Φθw(k)|2

Φθθ(k)Φww(k)
. (3.2)

By definition, 0 6 γ 2
θw 6 1 and the coherence may be interpreted as the square of a

scale-dependent correlation coefficient. From figure 2(d) it is evident that γ 2
θw > 0.8

for almost the entire large-scale peak, with a maximum value of γ 2
θw = 0.95 at k= 1
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FIGURE 4. Same snapshots of temperature (a) and vertical velocity (b) at mid-height as
presented in figure 1, but this time filtered with a spectral low-pass filter with cut-off
wavenumber kcut = 2.5.

(marked by a dashed line in all panels of figure 2). The coherence quickly drops below
γ 2
θw= 0.5 for larger k. This explains why the overall correlation coefficient between θ

and w, which is essentially an average over the coherence spectrum, is smaller than
0.5 as reported in Stevens et al. (2018).

In order to demonstrate also visually how well the large scales of w and θ are
correlated, we present the snapshots from figure 1 again in figure 4, but this time with
the small-scale contributions removed. More specifically, we obtain the large-scale
fields θL and wL using a spectral low-pass filter where the cut-off wavenumber kcut =

2.5 is chosen based on the scale at which γ 2
θw(z/H = 0.5) drops below 0.5. Figure 4

convincingly shows that there is indeed a very good correspondence between patterns
at the superstructure scale in temperature and vertical-velocity fields, not only in size
but also in location.

To summarize, we have shown that patterns corresponding to the thermal
superstructures also exist in the vertical velocity. For the vertical velocity, though,
the contribution of the superstructures in the kΦww spectrum is subdominant in the
sense that it does not result in a spectral peak. This has previously led to the notion
that the superstructures in the velocity field are smaller than in the temperature field,
whereas it is really the size of the most energetic structures, as measured by the
spectral peak, that is different. We will revisit the reasons for the different spectral
distributions of θ and w in § 3.2, but we first discuss the height dependence of the
trends discussed so far.

Apart from the results at mid-height, figure 2 also contains data at seven different
wall-normal locations that span the full domain down to the thermal boundary layer
thickness δθ = 1/(2Nu). Remarkably, curves at all z-positions collapse around the peak
at k=1 for the temperature spectra in figure 2(a). This suggests that there is very little
evolution of the large-scale thermal structures along the vertical direction. Similarly,
also the coherence between θ and w (figure 2d) is almost independent of z at the
largest scales. In contrast, there is a pronounced increase in kΦww around k≈ 1 with
increasing distance away from the wall – a natural consequence of the impermeability
condition at the wall. It is this increase in kΦww that also drives a growth of the large-
scale peak of the co-spectrum as z increases, as shown in figure 2(c).
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What is striking about the kΦθθ spectra (figure 2a) is that at heights of the
order of δθ there exists a second strong peak in addition to the one caused by
the superstructures. This small-scale peak is located at k ≈ 34 (indicated by the
dotted lines in figure 2), which corresponds to a typical small-scale structure size
of approximately 11δθ . Upon comparison with figure 3(a), it becomes clear that
this peak carries the energy that leads to the maximum of 〈θ 2

〉 at z = δθ . A
similar small-scale peak is also observed for kΦww in figure 2(b), even though it
is located at slightly larger k in this case. For kΦww, this peak broadens towards
intermediate scales with increasing z and the increase of 〈w2

〉 with increasing z
(see figure 3b) is mostly associated with increasing energy content at intermediate
scales k≈ 10. It is further interesting to note that the spectral decomposition of kΦθw
shifts from small-scale-dominated (z / 3δθ ) over broadband (0.1H / z / 0.2H) to a
maximum at large scales for z ' 0.2H. At the same time, the overall heat transport
〈θw〉 stays approximately constant beyond z ≈ 2δθ (see figure 3c). In connection,
these observations appear consistent with the concept of merging plumes. This was
advocated by, for example, Parodi et al. (2004), who found that the structure size
increases going away from the wall while the flux remains constant.

3.2. Production of temperature and vertical-velocity fluctuations
In order to uncover the origin of the different spectral distributions of temperature and
vertical velocity that became apparent in figure 2(a,b), we now study the variance
production terms of the respective variance budgets. These production terms are
(Deardorff & Willis 1967; Kerr 2001; Togni, Cimarelli & De Angelis 2015)

Sθ =−2〈θw〉
dΘ
dz

(3.3)

for 〈θ 2
〉 and

Sw = 〈θw〉 (3.4)

for 〈w2
〉. A trivial but nevertheless important implication that arises from comparing

(3.3) and (3.4) is that 〈θw〉 generates w variance directly, while temperature variance
is only produced in the presence of a mean gradient dΘ/dz. Consequently, Sθ > 0 is
restricted to the thermal boundary layer (z / δθ ) since a significant mean temperature
gradient exists only there. This close to the wall 〈θw〉 is predominantly a small-scale
quantity as evidenced by kΦθw(z= δθ) in figure 2(c), such that Sθ is localized not only
in space but also in scale. On the contrary, 〈θw〉 is almost independent of z outside of
the thermal boundary layer; see figure 3(c). Hence, also Sw is widely distributed across
the bulk of the flow. To better understand the spectral distribution of Sw, we present
the data from figure 2(c) in cumulative form in figure 5. This figure reveals that, even
at z/H= 0.5, the large-scale peak of Φθw only contributes approximately 30 % of the
total flux 〈θw〉. In the central region of the flow, the bulk of the 〈w2

〉 production
occurs at intermediate scales (say 2/ k/ 10). This coincides with the scales at which
kΦww peaks at these wall distances; see figure 2(b). This further explains why the
superstructure contribution is not reflected as a spectral peak in the kΦww spectrum.

While the analysis of the production terms provides essential insight into the reasons
for the different spectral decompositions of 〈θ 2

〉 and 〈w2
〉, other aspects cannot be

addressed on this basis alone. Specifically, understanding the apparently very efficient
organization of small-scale temperature fluctuations into thermal superstructures
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0 Φθw dk′ for Ra= 108. The corresponding co-spectra
kΦθw are shown in figure 2(c). The normalization is chosen such that the spectra add up
to the relative contribution of turbulent transport to Nu at each wall height.

requires the analysis of inter-scale energy transfer. Such an undertaking is beyond
the scope of the present work. We note, however, that an inverse (i.e. from smaller
to larger scales) energy transfer is indeed observed in certain regions of the flow for
both velocity and temperature when horizontally averaged budgets are considered (see
e.g. Togni et al. 2015; Green et al. 2020).

3.3. Wall-normal coherence of superstructures
So far, we have only considered the correlation between vertical velocity and
temperature at a given wall-normal location. Another important aspect is the
wall-normal coherence of superstructures. There exists qualitative evidence from
comparing snapshots at different heights (Stevens et al. 2018) all the way down to
the skin friction field (Pandey et al. 2018) that an imprint of the large-scale structures
is visible in the boundary layers. To corroborate these findings in a more systematic
and quantitative manner, we again turn to the linear coherence spectrum. However,
this time we do not evaluate coherence between different fields, but now we evaluate
the same fields at different heights z and zR according to

γ 2
ψψ(zR; z, k)=

|〈F(ψ(zR))F(ψ(z))∗〉|2

Φψψ(zR, k)Φψψ(z; k)
. (3.5)

We fix the reference height at zR = δθ . Consequently, γ 2
ψψ(zR = δθ ; z, k) is a measure

of how correlated structures in field ψ at scale k and height z are with fluctuations
of the same scale at boundary layer height of the same field.

Results are presented for temperature and vertical velocity in figures 6(a) and 6(b),
respectively. By definition, the result at z = δθ is the correlation with the reference
itself and therefore γ 2

ψψ(zR = δθ ; δθ , k) = 1 trivially. In the superstructure peak
(k = 1 ± 0.4, marked by grey shading in figure 6) γ 2

ψψ(zR = δθ ; z, k) is close to
one, even at mid-height. This holds for both temperature and vertical velocity and
implies a very strong degree of spatial coherence for the largest structures in both
fields. Differences between θ and w only occur at smaller scales. Beyond z= 2δθ the
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FIGURE 6. Spatial coherence spectra of temperature (a) and vertical velocity (b) with the
reference plane at zR = δθ . The data from panels (a) and (b) are plotted again in (c) and
(d), respectively, as a function of zk instead of k. All results shown are for Ra= 108.

spatial coherence of θ decreases very quickly as a function of k, but has a limited
z dependence. In contrast, curves for γ 2

ww in figure 6(b) show significant variation
with z, with the decline occurring at progressively smaller k with increasing z. Apart
from quantifying the correlation, γ 2

ψψ(zR = δθ) also provides information about the
self-similarity of structures that are connected or ‘attached’ to the thermal boundary
layer. This is of interest, since previous authors (e.g. Ahlers, Bodenschatz & He
2014; He et al. 2014) have referred to the attached-eddy framework (Townsend
1976; Perry & Chong 1982; Marusic & Monty 2019), which assumes the existence
of self-similar wall-attached structures, in the interpretation of their results. For the
coherence spectrum, self-similarity implies that curves of γ 2

ψψ(zR= δθ) should collapse
if plotted against zk, that is, if the scale is normalized by the distance from the wall
(see Baars, Hutchins & Marusic 2017; Krug et al. 2019). We test this for temperature
and vertical velocity in figure 6(c,d). Clearly, self-similarity is not observed for the
temperature (figure 6c). However, figure 6(d) shows that the data for w indeed
collapse to a reasonable degree for 3δθ / z / 0.3H.

To check if self-similarity scaling in this range is a property of the velocity
field in general, we additionally present results for γ 2

vv(zR = δθ), where v is the
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FIGURE 7. Spatial coherence spectra of horizontal velocity v as a function of (a) k and
(b) zk. The reference height is zR = δθ and Ra= 108.

horizontal velocity component, in figure 7. The vertical coherence of v also exhibits
the same superstructure peak as observed for the other quantities, which can be
seen in figure 7(a). Only its magnitude decreases with increasing z and is close to
zero at mid-height. This is consistent with the roll structures not having a horizontal
component at z/H ≈ 0.5 and also the spectral energy Φvv(k = 1 ± 0.4) (not shown)
is minimal there. As figure 7(b) shows, γ 2

vv(zR= δθ) displays the same collapse when
plotted versus zk and in the same range of z as previously observed for w. This means
that for the velocity fields in a significant part of the domain (at least 3δθ / z/ 0.3H)
structures attached to the boundary layer display self-similar behaviour. The same
trends are observed at different Ra but are not shown here for brevity.

3.4. Rayleigh-number trends
As a final point, we study the Ra dependence of the properties discussed in § 3.1.
To this end, we present results for γ 2

θw evaluated at mid-height for 105 6 Ra 6 109

in figure 8(a). The magnitude and the shape of the large-scale peak are nearly
independent of Ra. However, the peak location shifts towards smaller k with increasing
Ra. The corresponding increase in the large-scale structure is quantified in figure 8(b),
where the triangles indicate the structure size (l̂ = 2π/k̂) corresponding to the peak
in the coherence. Here, the peak location k̂ is obtained from fitting a parabola to
three points centred around the peak of γ 2

θw and the results are also listed in table 1.
Evidently, l̂ is significantly larger than the wavelength of the structure at the onset
of convection, which is ≈2 (e.g. Drazin & Reid 2004). Additionally, length scales
corresponding to the spectral peak in Φθθ (circles), Φww (filled squares) and kΦww
(open squares) are included in figure 8(b) and the corresponding spectra are shown
in figure 8(c,d). The spectral peak from the temperature spectrum corresponds to
slightly larger length scales compared to the results based on γ 2

θw, but the differences
are quite small. Owing to its broadband nature, the spectral peaks for the vertical
velocity are found at different locations in the regular and premultiplied spectra. The
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FIGURE 8. (a) Coherence spectrum at mid-height for 105 6 Ra 6 109; see panel (b) for
the colour code. Stars indicate the wavenumber corresponding to 10η at the respective Ra.
(b) Wavelength l̂ of the spectral peaks of γ 2

θw (triangles), Φθθ (circles), Φww (filled squares),
kΦww (open squares) and kΦθw (black dots). The corresponding spectra kΦθθ and kΦww
are shown in panels (c) and (d) with symbols marking the peak locations as described
for panel (b). The inset in panel (b) additionally shows the aspect-ratio dependence of l̂
based on γ 2

θw at Ra= 108; see the Appendix for details.

maximum of Φww only agrees with the results based on coherence and temperature
at Ra = 105. For higher Ra fluctuations at intermediate length scales dominate the
velocity spectrum. Therefore, the use of the velocity spectra leads to significantly
lower estimates for l̂ than the temperature spectra at higher Ra, as mentioned in
§ 3.1.

The dependence of the superstructure size on the aspect ratio Γ of the periodic
domain was already discussed in Stevens et al. (2018). From their results, it appears
that the superstructure size based on the peak in Φθθ increases monotonically (albeit
slowly for Γ > 16) with increasing Γ . The inset of figure 8(b) shows that l̂ based on
γ 2
θw decreases slightly if Γ is increased from 16 to 64. This difference is not rooted

in the fact that a different metric is employed here, but is caused by an error in the
computation of the spectra presented in Stevens et al. (2018). We plot the recomputed
spectra in the Appendix and these show that the temperature spectral peak indeed
exhibits the same trend as the one observed for γ 2

θw.
The concept of a convection roll, i.e. a thermally driven velocity structure, suggests

a definition of the superstructure size in RBC as the scale where the correlation
between temperature and velocity fields is maximum. We therefore argue that
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conceptually the most straightforward way to define the superstructure size is via
the coherence spectrum. It should be noted that the coherence peak is not necessarily
coincident with the peak of the co-spectrum due to the different distributions of
Φθθ and Φww. In practice, however, the peaks of γ 2

θw and kΦθw coincide within
measurement accuracy for the cases presented here (see figure 8b). This seems to
be a consequence of the sharp drop-off of γ 2

θw and Φθθ with increasing k which
outweighs the increase in Φww. The situation may change, however, e.g. for different
Pr numbers. Some caution is therefore advised in this matter. For a case in point,
we note that the small-scale peak in kΦθw at z= δθ (figure 2c) is without counterpart
in γ 2

θw (figure 2c). This indicates that the peak in turbulent transport is predominantly
driven by magnitude, not coherence. The peaks of the Φww and the kΦww spectra
may be misleading as indicators for superstructure size since the velocity spectra are
dominated by motions at intermediate length scales.

As an aside, we discuss the increase of γ 2
θw that is seen to occur at high k

in figure 8(a). This increase at small scales occurs for lower values of k and is
stronger for lower Ra. A comparison with figure 8(c,d) reveals that there is only
minimal energy at these small scales. These observations are consistent with the
notion that the higher values of γ 2

θw mark the transition to a viscous-dominated
regime. In the viscous regime, the correlation between θ and w is high because
the balance is predominantly between buoyancy and viscous forces. This is similar
to the situation at the onset of convection, where the correlation between velocity
and temperature fluctuations is very high (Bodenschatz, Pesch & Ahlers 2000). To
lend support to this understanding, we added the length scale 10η as a reference
scale for the viscous regime in figure 8. Here, η = (ν3/〈ε〉V)

1/4 is the Kolmogorov
length scale and 〈ε〉V is the volume-averaged dissipation rate obtained from the
identity 〈ε〉V = (Nu− 1)/

√
RaPr. It is seen in figure 8(a) that the scale at which the

high-wavenumber increase of γ 2
θw occurs roughly coincides with 10η for Ra> 106, just

as expected from the above. The agreement is less good for the (marginally turbulent)
cases at even lower Ra, where the increase in γ 2

θw starts at scales significantly larger
than 10η.

The Ra dependence of the near-wall characteristics of the temperature field are
displayed in figure 9 in which kΦθθ is plotted at z = δθ for each Ra. This figure
shows that the small-scale peak contributes an increasingly larger part of the total
energy with increasing Ra. At the same time, the scale separation between the small
scales and the large-scale superstructures increases with increasing thermal driving. We
define the length scale of the small-scale structures as l̂δ = 2π/k̂δ, where k̂δ is the
location of the high-k peak. Figure 9(b) shows that l̂δ is approximately constant for
105 6Ra6 109, when normalized with the boundary layer thickness δθ . The magnitude
of the ratio l̂δ/δθ differs slightly depending on the quantity considered. The most
energetic small-scale structures for the temperature are approximately 11.5δθ , for w
it is approximately 8.5δθ , and kΦθw peaks at approximately 10δθ .

4. Conclusion
Contrary to what prior analysis (Pandey et al. 2018; Stevens et al. 2018) appeared

to suggest, we found that superstructures of approximately the same size exist in
the temperature and vertical-velocity fields in large-aspect-ratio Rayleigh–Bénard flow.
These result in a very significant large-scale peak in the linear coherence spectrum of
θ and w that signifies almost perfect correlation at the large length scales. Unlike the
case for θ , we find that the superstructures in w do not correspond to a spectral peak
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FIGURE 9. (a) Premultiplied temperature power spectra kΦθθ at z= δθ for 105 6Ra6 109.
Symbols mark the location of the small-scale peak determined as the maximum of kΦθθ (k)
for k> 2. Note that, at the lower Ra, this peak does not correspond to a global maximum
of kΦθθ . (b) Length scale l̂δ associated with the small-scale peak of kΦθθ (circles), kΦww
(squares) and kΦθw (triangles) normalized with the thermal boundary layer thickness δθ .
The dashed line is at 11.5 for reference.

in the power spectrum of w. This difference has previously led to the above-mentioned
confusion regarding potentially different sizes of the largest structures in θ and w.
The fact that the most energetic motions, as measured by the peak in the spectra,
occur at intermediate scales for w, but at the superstructure scale for θ , can be
explained by differences in the production terms of the respective variance budgets.
In particular, temperature production is confined to the boundary layer and small
scales, while buoyancy forcing acts at intermediate scales and throughout the entire
bulk of the flow. Furthermore, we find that the superstructure scale increases with Ra
for 105 6 Ra 6 109, i.e. the full range investigated here, when the structure size is
based on the coherence spectrum as suggested. It should be noted that integral length
scales of temperature and turbulent kinetic energy as used in Stevens et al. (2018)
do not accurately capture this growth, which shows the importance of selecting the
appropriate metric to quantify superstructures in RBC.

In agreement with previous observations of superstructure footprints in the boundary
layer region, we find an almost perfect spatial correlation of the superstructure scales
from the boundary layer height δθ up to mid-height, for both θ and w. Also, the
temperature spectra, as well as γ 2

θw, are seen to collapse at different heights. Hence,
there is no noticeable dependence of the superstructure scale on z, effectively ruling
out a significant growth of the thermal structures due to horizontal transport while
they are travelling upward as was suggested by Pandey et al. (2018). The decrease
of spatial correlation (quantified by the linear coherence spectrum) at intermediate
scales when increasing the distance to the reference height δθ is observed to follow
a self-similar trend for w and the horizontal component v, but not for θ . The reason
for this difference remains unclear but warrants further investigation.

Moreover, we find that the energy distribution of the temperature field is bimodal.
Besides the z-independent large-scale contribution of the superstructures, premultiplied
spectra reveal the existence of a pronounced small-scale peak at boundary layer height.
The two peaks are separated by a spectral gap that increases with Ra, which is also
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visible in the co-spectra of θ and w. However, kΦww displays a small-scale peak
only near the wall and is broadband otherwise. For the temperature fluctuations, the
small-scale peak carries the energy that leads to the maximum of 〈θ 2

〉 at z = δθ
(see e.g. Wang, He & Tong (2016)). The length scale of the associated structures
is approximately lδ ≈ 10δθ . It is interesting to note that the situation described here
bears a close resemblance to findings in turbulent boundary layers. There, an ‘inner
peak’ is observed that is fixed at 15 viscous units (lvisc) away from the wall and
with typical streamwise length scales of approximately 1000lvisc (Hutchins & Marusic
2007b). The scale separation between the ‘inner peak’ and the large-scale structures
is, however, significantly stronger in RBC. This appears to suggest distinctly different
processes, as was already pointed out in Pandey et al. (2018) in a different context,
and raises questions about their interaction. A better understanding of these aspects
will be very insightful for modelling approaches.
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Appendix. Aspect-ratio dependence of the superstructure size
The aspect-ratio dependence of the superstructures has been studied in Stevens

et al. (2018) before. However, there was a bug in the radial averaging of the spectra,
which led to a faulty spectral distribution, especially at the largest scales. In figure 10,
we present results at Ra = 108 for aspect ratios varying between 3 and 64. Up to
Γ = 8 there is no clear peak, as the highest values are attained for the smallest k
for all quantities displayed. Distinct large-scale peaks emerge for Γ > 16 for kΦθθ

(figure 10a), kΦθw (figure 10c) and γ 2
θw (figure 10d). The locations of these peaks

(again obtained by fitting a parabola over three points) are shown in figure 10. Results
based on kΦθθ and γ 2

θw decrease monotonically with increasing Γ , while l̂ based on
the co-spectrum increases between Γ = 16 and Γ = 32. The peaks in kΦww, and
remarkably these spectra in general, exhibit only a minor sensitivity to Γ . The peaks
of the velocity spectra remain, however, at intermediate scales significantly smaller
than the superstructure size.

The conclusion of Stevens et al. (2018) that very large domains are needed to fully
converge the superstructure size remains valid, even though, at least for the values
checked here, the trend is opposite (decreasing size) to what was previously believed.
The scale l̂ still varies by approximately 10 % between the cases with Γ = 32 and
Γ = 64. The more basic requirement is, however, that Γ ' 16 because only then is
the large-scale peak actually resolved.
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FIGURE 10. Premultiplied temperature (a) and vertical-velocity (b) power spectra. The
premultiplied co-spectrum kΦθw (c) is normalized such that it integrates to the turbulent
heat flux. (d) Linear coherence spectrum γ 2

θw. Symbols indicate the peak values for the
three largest Γ . The inset shows l̂ based on coherence (coloured triangles) and co-spectra
(grey triangles), as well as on temperature (circles) and velocity (squares) power spectra.
The dashed vertical line indicates k= 1 and the grey shaded area marks the approximate
range of superstructure scales k= 1± 0.4 (same as in figure 2). All results presented here
are computed for Ra= 108 at mid-height; the legend in (a) applies to all panels.
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