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L»/2J n / „ _ A
The Oickson polynomial D, (x, a) of degree n is defined by Dn (x, a) = V"* : I I (—a)'x"~2i, where L J

a " - ' \ ' /
denotes the greatest integer function. In particular, we define Do (x, a) = 2 for all real x and a. By using
Dickson polynomials we present new types of generalized Stirling numbers of the first and second kinds.
Some basic properties of these numbers and a combinatorial application to the enumeration of functions on
finite sets in terms of their range values is also given.

1991 Mathematics subject classification: 05A10, 11B65, 11T06.

1. Introduction

The Stirling numbers s(n, k) and S(n,k) of the first and second kinds are usually
defined as follows. For n = 1,2,..., consider the falling factorial

) (1)

with (x)0 = 1. Let

>c\ n = 0 , 1 , . . . , (2)

)t,n = 0 , l , . . . , . (3)

*=o

k=0

The coefficients s (n, k) are Stirling numbers of the first kind and are used to express
falling factorials in terms of powers of x. Similarly the coefficients S (n, k) are called
Stirling numbers of the second kind and are used to express powers of x in terms of
falling factorials.

There are many properties of Stirling numbers as well as combinatorial applications,
see for example Berge [1, pp. 21-22, 37-42] or Straight [16, Chps. 1-2]. We also refer
to Charalambides and Singh [3] for a recent survey of properties of Stirling numbers as
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well as generalizations. See Broder [2], Comtet [4], Hsu [10], and Loeb [13] for other
generalizations of the Stirling numbers.

In this paper we will present two new kinds of generalized Stirling numbers, called
Dickson-Stirling numbers of the first and second kinds. Some basic properties of these
numbers and a combinatorial application will be investigated.

For any fixed real number a consider the Dickson polynomial Dn (x, a) of degree
n > 1 defined by

E
;=0 " ' \ ' /;=0

where LJ denotes the greatest integer function. In particular, we define D0(x, a) = 2
for all real x and a. As indicated in Lidl, Mullen and Turnwald [12], Dickson
polynomials enjoy many algebraic and number-theoretic properties. In addition, they
play very important roles in the theory of permutation polynomials over finite fields,
as well as having numerous applications in various areas including cryptography,
pseudoprimality testing, and the construction of irreducible polynomials and normal
bases over finite fields. Dickson polynomials are also related to determinants of
circulant matrices, see for example Lidl, Mullen and Turnwald [12, p. 178].

Analogous to (1), for a real number a let

(x\a)n = (x - a)(x - a- 1).. .(x - a- n+ I), (5)

with (x|a)0 = 1. Define s(n, k; a) and S(n, k; a), the Dickson-Stirling numbers of the first
and second kinds, by

= J2s(n,k;a)(Dk(x,a)-ck). n = 0,1 (6)J2
k=0

(7)
k=0

where c0 = 1 and ck = 0 for k > 1. Obviously s(0,0; a) = S(0, 0; a) = 1 and one may
also define s (n, k\a) — S in, k; a) — 0 for n <k.

Equations (6) and (7) indicate that the Dickson-Stirling numbers can be used to
convert between the generalized falling factorial with parameter a defined in (5) and
Dickson polynomials with parameter a defined in (4). In particular, when a = 0, we see
that Dn (x, 0) = x" for n > 1, Do (x, 0) - c0 = 1, and that (6) and (7) reduce to (2) and
(3), and so we obtain the usual Stirling numbers of the first and second kinds. When
a = —\, (6) and (7) are related to the Lucas polynomials Vn(x) (see Filipponi and
Horadam [7]) since in this case we have (x| - l)n = (x + l)n and thus

Dn(x, -1) = £ — ( x"-21 = Vn(x), (x + 1). = £ s ( n . k; -1) (Vk (x) - ck),
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and Vn(x) = E U S(n, k; - l ) (x + l)t for n > 1.
In Section 2 we develop a number of properties of Dickson-Stirling numbers and

in Section 3 we consider various combinatorial sums involving Dn (x, a) for x ranging
over an interval [m,,m2], with 0 < m, < m2. Finally in Section 4 we present an
application of Dickson-Stirling numbers to the problem of enumerating functions from
one finite set to another with various restrictions on the range of the function. This
application then reduces for a — 0 to the usual enumeration via Stirling numbers of
functions from one finite set to another.

2. Dickson-Stirling numbers

For a polynomial /(x), let A denote the difference operator defined by A/(x) =
/ ( x + 1) -fix). By induction on k we have that A* (x/(x)) = xA*/(x) + kAk'lf(x + 1).
By using Newton interpolation, see Milne-Thomson [14, p. 57], we may write for
n> 1

From Lidl, Mullen and Turnwald [12, Lemma 2.3] the Dickson polynomials are known
to satisfy the recurrence

Dn+2 (x, a) = xDn+1 (x, a) - aDn (x, a), n = 0,1

with Do (x, a) — 2 and D, (x, a) = x. Combining these results we have for n > 1

(8)

,k;a) = ±Ak(xDn+](x,a))

Also

i

= aS(n+l,k;a)+-

- aS (n, k; a).

1

1

(k - 1)!

AkDn+i (a, a) + S(n+\,k- 1; a)
(k - 1)!

= (a + k) S (n + 1, k; a) + S (n + 1, k - 1, a).

Hence we have the following recurrence for the Dickson-Stirling numbers of the
second kind.

Proposition 1. For n = 0, 1,. . . and k— 1, 2 , . . .

S(n + 2, k; a) = (a + k)S(n + 1, k; a) + S(n+\,k- 1; a) - aS(n, k; a),
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where the initial conditions are

S(0,0; a) = 1 and S(n, 0; a) = Dn(a, a) for n > 0

S (n, n; a) = 1 for n > 0 an<f S (n, fc; a) = 0 for n < k.

Since S (n, fc; 0) = S (n, fc), we have the well-known result, see Straight [16, Thm.
2.4.1]:

Corollary 2. For n = 1, 2 , . . .

S(« + 2, fc) = fcS(n + 1, k) + S(n + 1, k - 1).

We next obtain a generating function for the Dickson-Stirling numbers S (n, k; a).
First, we recall that

2 X t (9)
w£ "v ' l-xt + at2

see Lidl, Mullen and Turnwald [12, Lemma 2.4]

Proposition 3. For k= 1,2,...

Also for fc = 0

§ s ( n > 0 : a K = T ^ F T ^ - (11)

Proof. Denote Fk (t) = £ ~ t S(n,k; a) f. We have

Fk(t) = *y[S(n- l . f c - l;a) + (a + k)S(n- l,k;a)-aS(n-2,k; a)]f
n=k

= tFk_t (t) + {a + k) tFk (0 - ai>Fk (t).

It follows that
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By successive applications of the above relations we get

Here Fo (t) may be determined as follows via (7) and (9),

(«, a) t"

2-at I-at1

l-at + at2 1 - at + at2'

This proves both (10) and (11). •

Clearly for a = 0 the proposition gives the generating function for the Stirling
numbers of the second kind

see Comtet [5, Ch. 5, Thm. C].
As above let Fk (t) denote the left hand side of (10) so that

Vt + atit

Upon solving the system a + /? = a + k and aft = a for a and /?, we find

<x=Ua + k + y/(a + kf-4a\ p = Ua + k-y/(a + k)2-4a\ ,

and hence 1 - (a + k) t + at2 = (1 - at) (1 - pi) and

t t

a - p \l - <xt \-Pt

; = i
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Thus

J [m=k-l

n-k+l

~ f n=k j=\

Comparing the coefficient of the term t" we obtain

i n-k+l

S(n, k; a) = J ^ (x} -P')S(n -j, k-\\ a), (a ^ ft.

When a = 0 this reduces to [5, Thm. B, (3d)]:

! n-k+l n

j=\ x=k

The following simple idea provides a relation between the Dickson-Stirling numbers
and the ordinary Stirling numbers of the second kind.

Proposition 4. For given integers n and k with n > k> 1 and a real number a

n-H-k

{n. k; a) =

Proof. We have

i=0 ;=0

-

7

±

= 1 ^ ^ _ / n - i \ y

k \ ^ n - i \ i ) K
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from which Proposition 4 follows. •

Analogously using the fact that

we have with i+j = r,

s(». k a) = g E(-D' j£rt(
n~') 0

r=0 1=0 ^ 'r=0 1=0

More explicitly

From (6) and (7) we have

Dn (x, a)-cm = J^S (n, *; a) ( £ s (*, i; a) (D, (x, a) - c,)
i=o /

n, *; a) ( £

n, fe; a) ( £

= E (
i=0 \

= £ S (n, fe; a) ( £ s (fc, i; a) (D, (x, a) - c,)
k=0 \ i=0 /

)
*=0 /

which yields part (i) of the following result. Part (ii) follows analogously.

Proposition 5. For given non-negative integers n and i and a real number a,

(i)
k=0

(ii) ]T s(n, k; a)S(k, i; a) = 8*.
k=0

The a = 0 case of Proposition 5 for the ordinary Stirling numbers is of course well
known. Let A = (s (n, k; a)) and B = (S (n, k; a)) be matrices of size nx n. Then from
Proposition 5 we have AB — I — BA. If one of the sequences {fk (x)}t20 and {gk (x)}t>0 is
given, then clearly the reciprocal relation also holds, i.e.,

n

= ir S(n kd)f(x) 71 = 0 1
*=o t=o
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Dickson-Bell numbers may be defined by

The ordinary Bell number corresponds to the case a = 0. From the definition, we
have

n

s (n, k; a) B (k, a) = 1.
fc=0

Let Vn = n\ (1 -}i + j\ 1- (-1)" ^) denote the n-th derangement number. We now
show that the Dickson-Bell number B(n, — 1) may be expressed in terms of the
derangement numbers £>„. To this end we begin by noting that the Lucas number
Vn(J) = Dn(j, -1) for n > 1. Moreover since S(n,0; -1) = 0 (resp. 2), for n = 1 (resp. 0)
(mod 2), we have S(n, 0; — 1) — 25n, where Sn is the parity function which is 0 for
odd n and 1 for even n. Thus we have after some calculations,

Bin, -1) + 2(5n = J2 S(n, k; -1)
k=0

;=0 k=j

As a consequence

Using Newton's interpolation formula with divided differences, we may obtain a closed
formula for the Dickson-Stirling numbers of the second kind. If / (x) is a polynomial
of degree n > 1, then, as indicated for example in Milne-Thomson [14, Sect. 1.1],/(x)
can be expressed in the form

/(*)=/(oo) +
k=\

where [ao^ . . . a j are divided differences recursively defined by
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with [aoa,] = (/(a0) -/(<Xi))/(Oo - a,) and [a,,] =/(oo) . Also {x\a}k = (x - Oo)(x - a,). •.
(x — at_,). Alternatively using determinants we obtain:

. . . an] =
1 a,

1 a. C1 /(a.)

o S
1 a, . . . a?"'

Applying this with / ( x ) = Dn(x,a)(w > 1) and a, = a + i gives the following via
algebraic computations

S(n, k;a) = J2 Dn (a + i,a) f\ U - '")"'•
i=0 0<i<j<k

For a = 0 if we expand by cofactors along the first row we have

S(n,k) =

1 I*"1 1"

2 . . . 21

/c . . .

1

*"1 2"

fc"

1 I2 . . . 1*

2 22 . . . 2*

k k2 ... kk

1 . . . I*"1 1"

2 . . . 2*"1 2"

fc . . . fe'-1 k"

Proposition 6. Let p be an odd prime. Then for any integers a and k with 1 < k < p
we have S(j>, k; a) = 0 (modp), a — 0,1,2, In particular for a = 0 we have
S(p, k) = 0 (mod p).

Proof. Let a, = a + i, i — 0, 1, 2 Using Newton's interpolation formula [14, p.
57] for / (x) = Dp(x, a), we may express S(p, k; a) in the form

Oo . . . at1 D (<Xo,a)

S(p,k;a) =
1 a, . . . a?"1 DJaua) I n o-

• 0<i<)<k

0

1 a, .. af"1

a* '

0,(00, a)-a, ,
D (a,, a ) - a ,

/
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From [12, p. 16], Dp (x, a) = x (mod p). Hence Dp (ocj, a) - a, = 0 (mod p). Moreover
all of the factors j — i in the product are less than p since k < p. Since S (p, k; a) is an
integer, as may be seen from Proposition 4, we can infer that S(p, k\ a) = 0 (modp),
which completes the proof. •

Next we obtain a result concerning the Dickson-Stirling numbers of the first kind.

Proposition 7. For given integers n, k with n > k > 1 and a real number a,

s(n+ 1, k; a) = s(n,k - 1; a)- (n + a)s(n,k; a) + as(n,k+ 1; a)

with initial conditions s(n, 0; a) = 0, (n > 0), s(n, n;a)=\, n> 0, and s(n, k; a) = 0, //
n < k.

Proof. From (6) we have

n+l

(x|a)n+1 = J2s(n + l> k< a)Dk{x, a) + s(n+ 1,0; a).

We have (x|a)n+1 = (x|a)nx - (x|a)n(a + n) so that the left hand side of the above
equation takes the form

(x|a)n+1 = Y^ s (n, k\ a) xDk (x, a) — (a 4- n) Y"] s ("> ^'< a ) ̂ * (x>a)
*=• w (12)

+ ( x - a - n ) s ( « , 0;a).

Using the recurrence (8) for the Dickson polynomials, we have for k > 1

xZ>, (x, a) = Dk+I (x, a) + aDk_x (x, a). (13)

Substituting (13) into (12) and by disregarding the term (x — a — n)s(n, 0; a) = 0, we
obtain

n n n

Y^ s (n, k; a) Dk+l (x, a) + a Y^ s («, fc; a) Dk_t (x, a) — (a + «) T^ s (n, fc; a) Dt (x, a)

n+l n—I n

= J^s(«, k- 1; a)Dk(x, a) + a^sQi, k + I; a)Dk(x, a) - (a + ri)^2 s(n,k;a)Dk(x,a),
fc=2 * = 0 <c=l

from which the proposition follows. •

We note however that as a recurrence on n, Proposition 7 is not useful as a
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computational tool because of the need to have values of s (n, m;a) for m = k - 1, fc,
and fc + 1. Although for a = 0 we do obtain the well known result s (n + 1, k) =
s(n,k- 1) — ns(n,k), for the ordinary Stirling numbers of the first kind, see Straight
[16, p. 285].

3. Summation rules

Throughout this section we consider Dn (x, a) for positive integer n. From (7) we
can write

() (14)
k=0 \ K /

If there is a function F (m, x) with a closed formula

£F(m,x)(X^fl)=G(m,fc), (15)
x=a

then by (14) we have

J ^ , x)Dn(x, a) - £fc!S(n, fc; a)G(m, fc). (16)

This is an extension of a summation rule for Stirling numbers of the second kind, see
Hsu [9]. We now give several examples of this idea in the setting of Dickson-Stirling
numbers of the second kind.

Example 1. Let F{m, x) = 1 and let G(m, fc) = £™=fl (
x;a) = (7+f1)- T hen by (16)

we have

( ) (17)

For a = 0 we have the well known formula:

Actually there are many known identities of the form (15) in which F(m, x) may
consist of a binomial coefficient or a product of binomial coefficients, see for example
Egorychev [6], Gould [8], and Riordan [15]. Consequently, we may find various special
summation formulas via (16). The following are three more examples.
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Example 2. Let F (m, x) = (m~*) where m and r are positive integers. Using the fact
that E ^ (V) (V) = te/). wehave by (15) and (16)

Example 3. For real a and /?, the following identity is known, see Gould [8, p. 52,
Formula (6.14)]:

Thus we obtain

k)\ m-k ) '

so that by (15) we then have

m-k

For a = 0 we have

Recall that Do (x, 0) — c0 = 1 = x° so that the above expression is also true for n = 0,
and we have

t* w U-v ~ V m )'
This is the well known Vandermonde convolution formula, see for example Straight
[16, p. 167].

Example 4. The following identity is known from Gould [8, p. 54, Formula
(6.28)]:

5 (:)'©-(:) £:.*)•
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This implies that

m \2(x-<*\_[m\(2m-k\
-a){ k ) - \ k ) \ m )•

As a consequence we may obtain

^. - ) = E«(-.*;-)(k)( m
In the special case when a — — 1 we have

where P̂  (x) is the Lucas polynomial of degree n defined at the end of Section 1.

4. A combinatorial application

In this section we very briefly present a combinatorial application of equation (7),
and also of the Dickson-Stirling numbers S (n, k; a) of the second kind. For n > 1 and
m > 1, we begin by letting Zn = {1, 2 , . . . , n) and similarly Zm = {1, 2 , . . . , m). Then as
discovered by Stirling, both sides of equation (3) with x = m count the number of
functions from Zn to Zm. We now generalize this result by considering the integer
parameter a in (7), again with x = m. By range or value set of a function / we mean
theset{ / (c) |ceZ n }.

In what follows, a is always assumed to be a non-negative integer less than m. For
n > 1, we have from (7) and (4)

Dn (m, a) - S (n, 0; a) = Dn (m, a) - Dn (a, a)

Here the coefficient ^ ("k
k)> a s given by "Kaplansky's Cycle Theorem", just represents

the number of ways of selecting k objects, with no two consecutive, from n objects
arranged in a cycle, see Kaplansky [11]. We will now sketch a proof of the following
result using Dickson-Stirling numbers of the second kind. The idea is very similar to
that applied to the equation (3) with x — m.

Proposition 8. Let m > 1, n > 1 and 0 < a < m be integers. Then
Dn (m, a) — S(n, 0; a) counts the number of functions f:Zn->Zm that take at least one
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integer of the set {a + 1, a + 2, . . . , m), and such that no integer ofZa occurs consecutively
as an image in the cyclic sequence f (1), / (2) , . . . , / («) , / ( I ) .

Proof. The proof essentially follows from (7) with x = m and the fact that for each
\ <k<n, the term S(n, k; a)(m\a)k counts the number of functions/: Zn ->• Zm whose
range consists of exactly k distinct integers of the set {a + 1, a + 2,..., m) and has the
property that no range value < a occurs consecutively within the cyclic sequence
/ ( I ) , / ( 2 ) , . . . , / ( n ) , / ( l ) . Thus upon summing from k — \ to k = n in (7), the
proposition follows since we are thus counting all functions with this property. •

An alternative proof can be obtained by using (18) and the Principle of Inclusion-
Exclusion.

Since for a = 0, there are no elements < a in the range of any function / , we
immediately get the trivial case £>„ (jn, 0) = m" that counts the number of functions
/ : Zn -* Zm.

In Proposition 8 the most important values of a are of course those where
0 < a < m. It may be worth mentioning several related cases which arise from the
above proof.

1. If a = 0 and k — n,S (n, n; 0) (m)n = m (m — 1)... (m — n + 1) counts the number of
injective functions from Zn to Zm.

2. If a = 0 and 1 < k < n, S (n, k; 0)(m)fc counts the number of functions from Zn to
Zm with range of cardinality exactly k.

3. If 0 < a < m and 1 < k < n, S(n, k; a){m\a)k counts the number of functions from
Zn to Zm that take exactly k distinct values in Zm\Za and such that no range value
< a occurs consecutively in the cyclic sequence/(1),/(2),..., /(n), / ( I ) .

4. If 0 < a < m and k = n, S (n, n; a) (m\a)n = {m — a) (m — a — 1). . . (m — a — n + 1)
counts the number of functions from Zn to Zm that take n distinct image values in

zm\za.
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