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Flow generation by colloidal motors activated by external stimuli is an important issue
for active matter physics and several nanotechnological or biomedical applications.
For instance, flow recirculation generated by rotating magnetic self-assemblies allows
effective ‘pumping’ of a thrombolytic drug towards a blood clot along a blocked vessel.
However, the physics of the flow generation in this case remains still poorly explored.
This study is focused on the generation of a recirculation flow of a magnetic colloid
(aqueous suspension of iron oxide nanoparticles with partially screened electrostatic
repulsion) within a closed microfluidic channel via application of an external rotating
magnetic field. The colloid undergoes reversible phase separation manifested through
the appearance of micron-sized elongated aggregates. They synchronously rotate with
the magnetic field and can generate macroscopic flows only in the presence of gradients
of the aggregate concentration across the channel induced by superposition of a weak
magnetic field gradient to the homogeneous rotating field. We achieve recirculation
flows with a characteristic speed ∼5−8 μm s−1 at low magnetic field amplitude and
frequency (H0 ≈ 3−10 kA m−1, f = 5−15 Hz) at low nanoparticle volume fraction
ϕp = (1.6−3.2)× 10−3. The concentration and velocity profiles have been assessed
experimentally through particle tracking and particle image velocimetry, and have also
been computed using the hydrodynamic diffusion approach coupled with the momentum
balance equation with a magnetic torque term. The model correctly reproduces the shape
of the experimental concentration and velocity fields and explains complex behaviours of
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the average recirculation speed as a function of governing parameters (H0, f, ϕp, channel
size).

Key words: colloids, magnetic fluids, coupled diffusion and flow

1. Introduction

Colloidal particles able to move in a directional manner in a suspending liquid through
symmetry breaking under effects of different stimuli (chemical gradients, electric or
magnetic fields, heat, ultrasound, light, etc.) are referred to as colloidal motors (Chen,
Zhou & Wang 2019). Apart from their self-propelled motion, extensively reviewed in
the literature (see, for instance Wang et al. 2015; Brady 2011; Martínez-Pedrero &
Tierno 2018), they can sometimes induce a macroscopic flow of the whole colloidal
suspension. A few examples are electroviscous flow induced by bimetallic rod motors
moving in hydrogen peroxide solutions (Moran & Posner 2011); auto-electrophoresis local
electroosmotic flows induced in microchannels by Janus bimetallic particles (Chiang &
Velegol 2014); convective flow induced in a suspension of platinum-coated nanoparticles
subject to a catalytic reaction (Gregory & Ebbens 2018); substantial increase of the
flow rate of polymethyl methacrylate particle suspension flowing through a rectangular
duct thanks to Quincke rotation (Cebers, Lemaire & Lobry 2002); macroscopic spinning
motion of a magnetic nanoparticle colloid (ferrofluid) in a cylindrical vessel induced
by a rotating magnetic field (Rosensweig 1985); and strong vortex flows induced in a
suspension of magnetic microparticles by triaxial alternating magnetic fields (Martin &
Solis 2015).

The two last cases correspond to the two opposite particle size limits and exhibit
different mechanisms of the flow actuation. On the one hand, vortex flows induced by
magnetic micron-sized particles have promising potential applications in microfluidic
mixing, bioassays or heat transfer (Martin & Snezhko 2013). The microparticle
self-assembly and flow patterns are tuned by magnetic dipolar interactions forming the
particle chains that undergo complex dynamics under triaxial alternating fields including
spinning, bending, fragmentation and coalescence (Martin 2009). On the other hand, small
monodomain nanoparticles of a ferrofluid collectively spin under rotating magnetic field,
and the whole ferrofluid corotates with the applied field, except for a surface layer that
anti-corotates (Chaves et al. 2006). This effect is qualitatively captured by a pioneering
theoretical model of Zaitsev & Shliomis (1969) involving magnetization relaxation and
diffusion of the internal angular momentum. Since then, a number of theoretical and
experimental works have been devoted to the understanding of this phenomenon (see
for instance Tsebers 1975, Lebedev & Pshenichnikov 1991, Pshenichnikov, Lebedev &
Shliomis 2000) with most of the findings reviewed by Shliomis (2021). It seems that
the major reason for the spin-up phenomenon comes from heterogeneity of the ferrofluid
magnetization that can be induced by either concentration, field or temperature gradients.
The nanoparticle concentration gradients can arise either in the whole sample as a result
of an external gradient magnetic field or just in a very thin boundary layer near the vessel
wall due to excluded volume effects or wall hydrodynamic interactions. The temperature
gradients can arise as a result of shear heating effect in a rotating ferrofluid. Anyway,
the ferrofluid angular speed is approximately two orders of magnitude lower than the
magnetic field angular frequency, and the effect is usually observable in very concentrated
ferrofluids. However, some applications require the use of magnetic nanoparticles at
extremely low concentrations to generate the flow.
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Flow of magnetic colloid under rotating magnetic fields

One of these applications concerns the blood clot lysis in blocked vessels. The classical
treatment by intravenous injection of a thrombolytic drug appears to be rather inefficient
because of slow diffusive drug transport along a blocked vessel in the absence of flow
through this vessel (Clements 2016). It has been recently proposed to use magnetic
nanoparticles actuated by an external rotating magnetic field to induce a recirculation flow
in the blocked vessel (Creighton 2012; Cheng et al. 2014; Creighton et al. 2015). Indeed,
the nanoparticles must be able to self-assemble into elongated aggregates that must spin
with the rotating field. At some conditions, the aggregate rotation is expected to induce
recirculation flows ‘pumping’ the thrombolytic drug from non-obstructed vessels towards
the blood clot through the blocked vessel. Some preliminary in vitro studies show that the
induced flows may cause the mechanical erosion of the thrombus (Gabayno et al. 2015) or
enhance its chemical lysis through accelerated drug delivery (Cheng et al. 2014; Li et al.
2018), while in vivo tests confirm three times faster lysis of a blood clot formed in rabbit
jugular vein (Creighton 2012). Alternatively, magnetic aggregates have been shown to form
a dense swarm in artificial blood network under combined rotating and gradient magnetic
fields; this swarm is able to translate along the vessels with a speed as high as ∼0.5 cm s−1

that is very beneficial for drug delivery through the blocked vessels (Pernal et al. 2020;
Willis et al. 2020). In the same vein, a magnetic particle swarm can move at a speed up
to 8 mm s−1 under combined action of the rotating magnetic field and gravity that can be
used in tomographic imaging (Bente et al. 2021). In this last paper, the authors provide a
simple theoretical evaluation of the speed of this motion based on the hypothesis of zero
tangential stress on the surface of the swarm. Thus, it could be understood that a net surface
between a magnetic particle swarm and a surrounding physiological liquid is necessary to
generate motion. Particle concentration and magnetic field jumps are therefore expected on
this surface. Such a net phase separation could occur in a locally very concentrated colloid
allowing for millimetre-sized swarms with internal particle volume fraction reaching a few
percent.

In what concerns dilute magnetic colloids, kinetics of aggregation and collective
dynamics of aggregate rotation in the homogeneous rotating fields have been recently
studied in detail (Raboisson-Michel et al. 2020; Stikuts, Perzynski & Cebers 2020).
However, macroscopic flows have not been observed in homogeneous magnetic fields.
A number of recent theoretical studies predict reciprocal oscillatory flows along slit-like
or cylindrical channels in running non-homogeneous magnetic fields (Musickhin et al.
2020; Zubarev et al. 2021; Chirikov et al. 2022). However, steady-state recirculation
flows important for the target application likely do not arise in those configurations. It
seems therefore that literature data on ferrofluid spin-up and nanoparticle swarm actuation
suggest that the macroscopic flow can only be generated in a concentrated magnetic
colloid.

The main question addressed in the present paper is whether the macroscopic flow
can appear in a very dilute magnetic colloid (ϕp ∼ 0.1 vol% relevant for most in vivo
applications) with continuous variation of the particle concentration and without free
surfaces. We believe that the synergy of the physics relevant for the spin-up in a
non-aggregated ferrofluid (Shliomis 2021) and field-induced self-assembly observed in
magnetic swarm actuation (Bente et al. 2021) will make this task possible without
necessity for strong local nanoparticle concentrations. Our expectation is based on the
two following claims: (a) the self-assembled nanoparticle aggregates will provide a
very high magnetic torque inducing local vortex flows; (b) the heterogeneity of local
aggregate concentration will break the symmetry of the magnetic torque density of
the whole colloid and allow for macroscopic flows. The claim (a) is supported by the
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evaluation of the torque on the aggregate (of a length L) synchronously spinning with
the magnetic field at an angular frequency ω; Th ∼ η0L3ω as compared to the torque on
individual nanoparticle (of a diameter D); Th ∼ η0D3ω, with η0 being the suspending
liquid viscosity. The ratio of both torques scale as (L/D)3 at the same frequency and can
achieve the value of ∼1012 for L ∼ 100 μm and D ∼ 10 nm. In addition, the concentration
gradients (claim (b)) may be easily induced by relatively weak magnetic field gradients
superimposed onto the homogeneous rotating magnetic field. Following this idea, we
generate the flows in a closed rectangular microfluidic channel and measure the velocity
profile by the particle image velocimetry (PIV) technique and the aggregate concentration
profile by standard image processing. We also present a theoretical model allowing
prediction of the velocity and aggregate concentration profiles. Finally, we analyse, both
theoretically and experimentally, the intensity of the generated macroscopic flow as a
function of the control parameters, such as the magnetic field amplitude and frequency,
suspending liquid viscosity, aggregate size and volume fraction, and channel dimensions.
From the general perspective, the considered experimental system exhibits behaviours
reminiscent of self-assembling colloids and colloidal motors. From a practical approach,
the present paper provides important physical insight into potential application of magnetic
nanoparticles in blood clot lysis in general and brain stroke treatment in particular.

2. Experimental methods

The magnetic colloid used in experiments was prepared as explained in detail in the
previous works (Raboisson-Michel et al. 2020; Talbot et al. 2021). Briefly, the magnetite
nanoparticles were synthesised by coprecipitation of iron salts in alkali media followed
by oxidation to maghemite and dispersion in a dilute sodium citrate solution, allowing
electro-steric stabilization of nanoparticles through citrate adsorption onto their surface.
The parent solution was then diluted into Milli-Q water with addition of 350 mM of
sodium chloride and pH adjustment to 5.5. Two nanoparticle volume fractions were
used in the dilute solutions: ϕp = 1.6 × 10−3 or 3.2 × 10−3 corresponding to 0.16 vol%
or 0.32 vol%. The main physicochemical parameters of this solution are provided by
Raboisson-Michel et al. (2020). The salt addition and pH adjustment allowed one to
decrease electro-steric repulsion between nanoparticles and reach some weak primary
aggregation revealed through the appearance of a weak second peak at dH2 = 120−140 nm
of the hydrodynamic size dH distribution, with the primary dominant peak located at
dH1 ≈ 20 nm. Such primary aggregation is necessary to induce the self-assembly (or
secondary aggregation) of primary aggregates into elongated micron-sized aggregates
once the magnetic field is applied. These elongated field-induced aggregates are expected
to be able to generate recirculation flows in a closed channel at some specific conditions,
discussed below. Nevertheless, in the absence of a magnetic field, the colloid did not
settle for at least one month but all the microfluidic experiments were conducted with
the freshly prepared samples in the time period 1–2 h after the preparation, during which
the hydrodynamic size distribution of nanoparticles remain stable. For visualization of
recirculation flows, flow tracers were added to the magnetic colloid. Concretely, 10 μL
of an aqueous solution of polystyrene beads (Polybead® microspheres from PolyScience,
USA; diameter 5 μm, weight concentration 2.7 %) were added to 5 mL of the magnetic
colloid with ϕp = 1.6 × 10−3 or 3.2 × 10−3. It was checked that this addition did not
influence the colloidal stability of magnetic nanoparticles and the resulting colloid-tracer
mixture showed similar behaviours under magnetic field as compared with the colloid
without tracers.
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Figure 1. Geometry of the experimental system for the generation of macroscopic recirculation flows. On the
right, an enlarged view of the microfluidic channel with definition of several physical parameters is shown.

The experimental set-up used for recirculation flow generation in the closed microfluidic
channel is shown schematically in figure 1 with a zoomed 3-D view of the microchannel
depicted on the right. The microchannel was fabricated by glueing a polydimethylsiloxane
(PDMS) lid with a parallelepipedal cavity to a glass slide, as detailed by Ezzaier
et al. (2018), Raboisson-Michel et al. (2020). The channel dimensions along x, y and
z directions (introduced in figure 1) are l = 10 000 ± 20 μm, h = 1000 ± 10 μm and
b = 232 ± 5 μm, respectively. For the sake of comparison, the channels of another width
h = 550 ± 10 μm at similar two other dimensions were also used. Flexible tubes (not
shown in figure 1) of an internal diameter 0.5 mm were introduced to the channel
extremities and played the role of the inlet and outlet.

The colloid-tracer mixture was injected into the microfluidic channel, the flexible tubes
were removed and the channel extremities were closed with glass caps. The channel was
then placed onto a rigid support in the centre O of a three-coils system with the channel’s
longitudinal axis aligned with the axis of symmetry of a pair of coils 2, as shown in
figure 1. The three-coil system allowed us to generate in the xy plain a circularly polarized
rotating but heterogeneous magnetic field in the vicinity of the centre O. This was possible
by applying a sinusoidal alternating electric current (AC) to each coil with a π/2 phase
lag between the coil 1 and a pair of coils 2 at an appropriately chosen amplitudes. The AC
generating system composed of a sound amplifier and audio channels of personal computer
driven by a MATLAB script is described in detail by Raboisson-Michel et al. (2020). The
resulting magnetic field distribution H1 and H2 of the coil 1 and the pair of coils 2 reads

H1x = H0x(x, y) cos(ωt), H1y = H0y(x, y) cos(ωt),
H2x = H0 sin(ωt), H2y = 0,

}
(2.1)

where t is the time, ω = 2πf is the angular frequency of the generated field in rad s−1,
f is the frequency in Hz, H0x(x, y), H0y(x, y) are respectively the x and y components of
the space dependent amplitude of the field generated by the coil 1, and H0 is the amplitude
of a homogeneous (within a few centimetres central region) magnetic field generated by
the coils 2. A circular field polarization is achieved in a few millimetre central region
(covering the whole microfluidic channel) if the amplitude of the field produced by the
first coil respects the following condition: H0x(0, 0) = 0, H0y(0, 0) = H0. The magnetic
field amplitude and frequency were varied in the intervals H0 = 3.2−9.5 kA m−1 and
f = 5−15 Hz. Different experimental parameters are summarized in table 1.

The generated rotating magnetic field is heterogeneous and exerts to the paramagnetic
aggregates a magnetic force proportional to the gradient of the field squared ∇(H2)
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Category Parameter name Value Standard deviation

Solvent Viscosity η0 (Pa × s) 10−3 —
Channel Width h (μm) 550; 1000 10

Thickness b (μm) 232 5
Length l (μm) 10 000 20

Magnetic field Frequency f (Hz) 5; 10; 15 —
Amplitude H0 (kA m−1) 3.2; 6.4; 9.5 —

Length-scale of field variation LH (mm) 27 —
Aggregates Length L (μm) 30 5

Diameter D (μm) 6 1
β-parameter 14 2

Magnetic susceptibilitya χ 22 5
Phase lagb θ (rad) ≤ 6.5 × 10−3 —

Mason numberb Ma ≤ 1.3 × 10−2 —
Volume fraction Φ0:
for ϕp = 1.6 × 10−3 4.0 × 10−4 1.0 × 10−4

for ϕp = 3.2 × 10−3 6.5 × 10−4 2.3 × 10−4

Length scale of concentration
variationc LΦ (μm) ∼100 —

Fitting parameters Gaussian fit:
ỹ0 0.90 0.05
δ 0.07 0.01

Hydrodynamic diffusion model:
C2 0.81 0.03
κ 0.10 0.01

Table 1. Values of different parameters intervening into velocity and concentration fields calculation
aExperimentally defined by Raboisson-Michel et al. (2020).

bEvaluated by (4.1a).
cEvaluated though the width of the Gaussian fit of the experimental concentration profile (§ 4.2).

(cf. (4.4)). The spatial distribution of ∇(H2)within the volume of the microfluidic channel
depends on the length scale of the magnetic field variation, which can be defined as

LH = H2
0(

∂H2
0y

∂y

)
x=y=0

. (2.2)

We get LH = 27 mm independently of the amplitude H0 of the applied rotating magnetic
field. This length scale is clearly much larger than the channel width h = 0.55−1 mm.
Thanks to the strong inequality LH � h, the gradient ∇(H2) has the dominant component
oriented along the y axis, while the x and z components are negligible in all points of
the microfluidic channel, as inferred from Maxwell magnetostatic equations. Furthermore,
with the LH � h inequality, the H2 magnitude can be expanded in series on the small
parameter y/LH keeping only the linear term. In this case, the gradient ∇(H2) can be
considered to be constant across the channel. The expressions for the instantaneous value
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of ∇(H2)t and the value ∇(H2) averaged over the period of the field rotation read

∇(H2)t =
(
∂H2

0y

∂y

)
x=y=0

cos2(ωt) = H2
0

LH
cos2(ωt)ey at x, y � LH, (2.3a)

∇(H2) = 1
2π

∫ 2π

0
∇(H2)t d(ωt) = 1

2

(
∂H2

0y

∂y

)
x=y=0

ey = 1
2

H2
0

LH
ey at x, y � LH,

(2.3b)

where ey is the unit vector along the y axis. Quantitatively, at the characteristic
magnetic field amplitude H0 = 6.4 kA m−1, the time-averaged gradient

∣∣〈∇(H2)〉∣∣ =
7.5 × 108 A2 m−3, which corresponds to |∇H| ≈ 60 kA m−2.

Once the magnetic field was on, the generated recirculation flows were visualized
from the top by the InfiniTube TM Standard Video/Machine Vision Microscope (Infinity,
USA) equipped with an Infinity IF-4 objective and attached to a fast speed camera Miro
C110 (Vision Research, Photon Lines Industry, USA) equipped with a complementary
metal–oxide–semiconductor (CMOS) detector. The snapshots were recorded at frame rates
specified in table 3 of Appendix A for 300 s elapsed from the moment of the field
application. A few experiments at 100 fps were done to check the homogeneity of the
aggregate rotation. The experiments were conducted six times to check the reproducibility.

The obtained image stack was processed using the PIVlab tool (Thielicke & Sonntag
2021) run on the MATLAB software and customized for our problematics (pre-processing
and analysis). In general, this tool uses the principles of PIV to analyse the velocity profiles
in the observed fluid. Standard PIV experiments are usually realized in obscure conditions
with local illumination by a laser sheet, which excites fluorescent or diffractive tracers.
The change of tracer positions in the flowing fluid is analysed through finding spatial
correlation between different parts of two consequent frames allowing one to find the
displacement field, and afterwards the velocity field of the fluid (Raffel et al. 2018). In our
case, we conducted experiments under global illumination coming from both a day light
and an LED source placed approximately 10 cm below the channel. As tracers, we used
non-fluorescent polystyrene beads that were small enough and had a rather poor optical
contrast to be distinctly seen through our microscope, but still enough to create some
‘texture’ in the images. Displacement and deformation of this texture were analysed by
the PIVlab tool in the same way as the motion of an ensemble of fluorescent tracers.
A few calibration experiments allowed us to validate the correctness of the velocity
determination using these tracers. The procedure of the velocity field determination and
averaging is detailed in Appendix A. The aforementioned PIV analysis does not allow
for distinguishing the aggregate motion from the suspending fluid motion. Thus, another
image processing procedure was developed based on the Fiji image calculator to determine
their size and concentration distributions, as described in detail in Appendix B.

3. Results of qualitative observations

In experiments, we injected a dilute magnetic colloid at nanoparticle volume fraction
ϕp = (1.6−3.2)× 10−3 and with embedded flow tracers into a microfluidic channel, and
applied an external rotating magnetic field with a dominant gradient oriented along the
y direction (figure 1, (2.3b)), as explained in § 2. Before the magnetic field application,
the colloid was homogeneous and did not show any micron-sized agglomerates visible in
the Infinity tube microscope at approximate space resolution of 1 μm. However, once the
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Figure 2. Snapshot of the microfluidic channel with the gradient rotating magnetic field spinning clockwise
in the x–y plane of the channel and the field gradient oriented along the y axis. The snapshot corresponds to
the following set of experimental parameters: H0 = 6.4 kA m−1, f = 5 Hz, ϕp = 3.2 × 10−3, h = 1000 μm.
The direction of aggregate translation is shown by the arrow. A supplementary movie showing the recirculation
flow is available at https://doi.org/10.1017/jfm.2024.48.

rotating field is on, the primary nanoparticle agglomerates (of a size dH2 = 120−140 nm)
are self-assembled into elongated secondary agglomerates with a rod-like shape. These
aggregates synchronously rotate with the magnetic field, as checked by recording in
a high-speed mode. On the one hand, the aggregate size progressively increases with
time until reaching a steady state average size that will be determined in § 4.2. The
kinetics of such self-assembly in rotating magnetic field has been studied in detail by
Raboisson-Michel et al. (2020). Briefly, the aggregates grow with time due to ‘absorption’
of neighbouring primary agglomerates and coalescence of neighbouring aggregates due to
magnetic dipolar interactions. On the other hand, the rotating aggregates migrate in the y
direction of the dominant field gradient, i.e. towards the channel’s back wall distinguished
in the top view snapshots as the upper horizontal line – see the channel snapshot in
figure 2. Once reaching the back wall, the aggregates do not stick to it but continue their
synchronous rotation with field in the vicinity of this wall, as checked in a high-speed
recording mode. Moreover, once close to the wall, the aggregates translate to the left along
the back wall continuing their spinning. Reversal of the direction of field rotation reverses
the sense of the aggregate translation. Such behaviour can be explained by hydrodynamic
interactions between the aggregates and the walls. The clockwise spinning propels the
ambient fluid layer adjacent to the wall in the rightward direction, so that the aggregates
exert a force on the wall in the same rightward direction. According to Newton’s 3rd law of
mechanics, the wall exerts on aggregates a force in an opposite direction propelling them
to the left. The situation is similar to the actuation of so-called surface walkers – chains of
superparamagnetic microspheres – tumbling along a solid surface under the action of the
rotating magnetic field (Sing et al. 2010).

From the early moments after the field application, we observe not only the aggregate
translation, but the motion of the ambient fluid manifested through displacement of the
fluid tracers – see supplementary movie available at https://doi.org/10.1017/jfm.2024.48.
The fluid motion visibly achieves a steady state that lasts up to at least 300 s (until the
end of the observation period). The characteristic time of the initial transient regime τ ∼
100 s seems to correspond to the largest time scale τ of the two following processes:
(a) field-induced aggregation and (b) aggregate migration towards the back wall. From
now, we will focus on the steady-state flow at t > 100 s. Visually, the ambient fluid is
convected by moving aggregates to the left in the back region of the channel, while it
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moves to the right in the front region. Thus, we do observe the fluid recirculation all
along the 200 s of the steady-state observation period. Intuitively, this recirculation can be
explained by zero total flux that must hold in the considered closed channel: if the back
fluid layer is ‘sucked’ to the left by rolling aggregates, the front layer must flow to the right
to compensate for the back flux. It is also instructive to notice that aggregate translational
motion appears sometimes rather chaotic; when the aggregates get close to each other, they
describe quite complicated trajectories that can slow down their overall translation to the
left and repel them further from the back wall – see supplementary movie. The aggregates
exhibit an irregular spacing with their neighbours and irregular distance from the back
wall, such that in average, they occupy approximately 40 % of the channel width in the
back region of the channel.

Noteworthy, changing the focal plane of the recorded images and taking into account the
depth of field of our optical system, we note that the aggregates are uniformly distributed
across the channel depth (z direction in figure 1), except for thin layer of a thickness
approximately 10 μm near the upper and the lower channel walls. This observation is
in contrast to the single plane arrangement of aggregates reported by Stikuts et al. (2020)
and Raboisson-Michel et al. (2020). However, in the last paper, the optical depth of field
was not considered that led to an erroneous conclusion.

Quantitative features of the observed recirculation flow are obtained through the PIV
analysis, as described in § 2, but we will first present theoretical calculations of the velocity
profiles (§ 4.1), then we secure different characteristics of the aggregates (intervening
into velocity calculation) from experimental snapshots (§ 4.2) or using a hydrodynamic
diffusion model (§ 4.3), then compare theoretical velocity profiles with experimental ones
obtained through the PIV analysis (§ 4.4) and analyse the effect of different governing
parameters on the intensity of the generated macroscopic flows (§ 4.5).

4. Theory and discussion

4.1. Momentum balance of the colloid
In this section, we seek the velocity profile of a recirculation flow generated in a magnetic
colloid situated in a closed rectangular channel and subject to non-uniform rotating
magnetic field. The problem geometry is shown on the right of figure 1 and in figure 2.
Recall that the channel dimensions along the x, y and z directions are denoted by l, h and b,
respectively. Let us consider a volume of a dilute magnetic colloid under magnetic field H
rotating in the xy-plane with a non-zero field gradient (the absolute value of the magnetic
field can in general vary along x, y and z). However, the field variation along the channel
dimensions is considered to be relatively small, such that the field conserves its circular
polarization in each point of the channel – the condition verified in our experiments
(§ 2). As shown in a previous work (Raboisson-Michel et al. 2020), the rotating
magnetic field creates micron-sized needle-like aggregates composed of several magnetic
nanoparticles. The volume fraction Φ of the aggregates is defined as the total volume
of aggregates divided by the suspension volume. We will suppose that all the aggregates
have the same size and a shape of a prolate ellipsoid of revolution characterized by the
length-to-diameter ratio (aspect ratio) r = L/D � 1. The aggregates rotate synchronously
with the field and exhibit a phase lag θ < π/4 between their orientation and the magnetic
field vector. This is checked in the limit of low Mason numbers, Ma < 1. The torque
balance on the synchronously rotating aggregate provides the following relationship
between θ and Ma established in the linear magnetization limit (Sandre et al. 1999;
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Raboisson-Michel et al. 2020):

sin(2θ) = Ma ≈ 8βη0ω(2 + χ)

3μ0H2
0χ

2
, (4.1a)

β = r2

ln(2r)− 1/2
, (4.1b)

where η0 is the suspending liquid (water) viscosity; χ = 22 ± 5 is the aggregate magnetic
susceptibility (table 1) obtained experimentally in the previous work (Raboisson-Michel
et al. 2020); μ0 = 4π × 10−7 H m−1 is the magnetic permeability of vacuum; and β is
a dimensionless rotational friction coefficient evaluated in high aspect ratio limit r � 1
(Brenner 1974). In our experimental conditions, we are in a very-low-Mason-number
limit Ma � 1, namely Ma ≤ 1.3 × 10−2, resulting in an extremely small phase lag
θ ≈ Ma/2 ≤ 6.5 × 10−3.

According to our observations, the rotating aggregates translate along the magnetic field
gradient and are mostly accumulated behind the middle plane y >∼ h/2 of the channel,
where the magnetic field is stronger (figure 2). In this § 4.1, we consider the motion of
the whole colloid, which is characterized by the macroscopic quantities averaged over the
whole volume of the colloid. Special attention must be paid to possible scale separation
problems. As revealed in § 4.2, the average aggregate size is L × D = 30 × 6 μm, so that
the size ratios of the aggregate size to the channel size are L/h ≈ 0.03−0.055 and D/b ≈
0.026. In the studies of the fibre suspension rheology, it was established that the finite
size of the fibres no longer affects the suspension viscosity or normal stresses at the ratios
L/h <∼ 0.2−0.33 (Zirnsak, Hur & Boger 1994; Snook 2015). Extrapolating these results
to the present system, we expect that the colloid can still be considered as a continuous
medium. The experimental time scale of the transient response related to the redistribution
of aggregate concentration is much larger than the rotation period of aggregates. In this
context, it is reasonable to consider the momentum balance equation averaged over the
rotation period. Neglecting gravity, this equation takes the following general form valid
for a suspension of elongated particles under magnetic field (Pokrovskiy 1978; Bashtovoi,
Berkovsky & Vislovich 1988; López-López et al. 2010):

ρ

(
∂v

∂t
+ (v · ∇)v

)
= div σ , (4.2a)

σik = −Pδik + 2η0γik + σ s
ik + σ a

ik + σM
ik , (4.2b)

σM
ik = −1

2μ0H2δik + HiBk, (4.2c)

σ a
ik = 1

2εiklKl, (4.2d)

Kl = μ0(M × H)l, (4.2e)

where ρ is the colloid density; v and P are respectively the colloid velocity and pressure
at a given point in the channel; σik are the components of the stress tensor σ , with σ s

ik and
σ a

ik being respectively symmetric and antisymmetric parts of the particle contribution to
the viscous stress tensor, and σM

ik being the Maxwell stress tensor; γik = (1/2)(∂vi/∂xk +
∂vk/∂xi) is the rate-of-strain tensor; δik and εikl are Delta-Kronecker and Levi-Civita
symbols, respectively; Hi and Bk are the i- or k-components of the magnetic field
intensity vector H and magnetic flux density vector B, respectively; H = |H |; and Kl
is the l-component of the volume density K of a magnetic torque experienced by the
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magnetic colloid of a magnetization M . The characteristic value of the particle stress σ s
ik

is of the order of σ s ∼ Φr2η0γ̇ with γ̇ being a characteristic shear rate. In the dilute limit,
Φr2 � 1 valid for our experiments, the particle stress σ s

ik becomes negligible as compared
with the solvent contribution, 2η0γik, to the viscous stress, and is further omitted. With
this in mind, and using the continuity equation, ∇ · v = 0, along with the magnetostatics
Maxwell equations, ∇ · B = 0, ∇ × H = 0, B = μ0(H + M), the momentum balance
equation (4.2a) becomes similar to that derived for the colloids of spherical magnetic
particles (Bashtovoi et al. 1988):

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇P + η0∇2v + F m, (4.3a)

F m = μ0(M · ∇)H + 1
2 (∇ × K), (4.3b)

except for the viscosity η0 which is replaced by the viscosity of the whole colloid by
Bashtovoi et al. (1988), the difference coming from the dilute limit considered in the
present work. In the last equation, F m stands for the volume density of the magnetic force,
whose expression can be simplified for our experimental conditions.

First, it is shown in Appendix C that in our experimental conditions (including linear
magnetization limit and the ratio LH/LΦ � 1 between the length scales of the magnetic
and concentration field variations), the magnetic force density (4.3b) reduces to

F m ≈ 1
2ΦΓμ0∇(H2)+ 1

2(∇ × K), (4.4)

where Γ is given by (C6b) in function of the phase lag θ and the magnetic susceptibility
χ of aggregates.

Second, we suppose that a characteristic shear rate of the induced shear flow is much
smaller than the rotational frequency of the aggregates, γ̇ � ω. This hypothesis, valid in
the considered dilute regime, Φr2 � 1, will be justified a posteriori once the velocity
profile is calculated and the aggregate concentration determined (§ 4.5). With such a
condition, the shear contribution to the hydrodynamic torque T h experienced by an
aggregate can be neglected and the torque balance in the inertialess limit will give us

K ≈ −nT h = 2η0βΦω, (4.5)

with ω being a vector magnitude of the field angular frequency, n = Φ/Va being the
number density of aggregates, each having a volume Va and β is given by (4.1b).

Third, in the low-Reynolds-number limit, valid for our experiments, the convective
term (v · ∇)v can be neglected in the left-hand side of (4.3a). Finally, according to
our observations, we consider only the steady-state regime at t >∼ 100 s, meaning that
the aggregate volume fraction Φ and the fluid velocity v do not evolve with time. This
last assumption will be revised in § 4.4 based on the results of the aggregate speed
measurements. Applying the above conditions, (4.3) takes the following form:

−∇P + η0∇2v + 1
2ΦΓμ0∇(H2)+ η0β(∇Φ × ω) = 0. (4.6)

Tracking back to our experimental geometry, we can provide further simplifications.
First, the angular speed ω has the only non-zero z-component: ωz = −ω corresponding to
the clockwise rotation in the xy-plane. Second, the channel length is much larger than
two other dimensions, l � b, h (figure 1), and considering the flow field far from the
left and right borders of the channel, we can impose the single non-zero x-component
of the velocity, vx = v(y, z) respecting the continuity equation, ∇ · v = 0. Third, in the
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experimental configuration of electromagnets, the ∇(H2) term has the only non-zero
component along the y axis. Recall that the momentum balance equation is averaged over
the aggregate rotation period, so that ∇(H2) term is given by the right-hand side of (2.3b).

These approximations allow us to rewrite (4.6) in the following component form:

∂P
∂x

= η0

(
∂2v

∂y2 + ∂2v

∂z2

)
− βη0ω

∂Φ

∂y
, (4.7a)

∂P
∂y

= 1
2
ΦΓμ0

∂H2

∂y
+ βη0ω

∂Φ

∂x
, (4.7b)

∂P
∂z

= 0. (4.7c)

The image processing of our experimental snapshots (§ 3, Appendix B) shows that, once
averaged over time, the aggregate concentration does not depend on x and on z coordinates.
Thus, the last term in right-hand side of (4.7c) can be omitted. Since the term ∂H2/∂y is
almost independent of x, y, z in the present experimental conditions (cf. (2.3b)), integration
of (4.7b), (4.7c) gives P = ΦΓμ0H2

0y/(4LH)+ G(x), where G(x) is an unknown function
of x. With this in mind, the left-hand side of (4.7a), ∂P/∂x = dG(x)/dx can only depend
on x, while the right-hand side can only depend on y and z. With such a condition, (4.7a)
can only hold if both its sides are independent of x, y and z, or rather ∂P/∂x = C, with
C being some unknown constant. Let us now introduce the following scaling factors for
several physical magnitudes: [v] = βωΦ0h for the velocity, [Φ] = Φ0 – for the aggregate
volume fraction and [y] = h, [z] = b for the space coordinates, with Φ0 being the average
aggregate volume fraction in the suspension (before the aggregates migrate to the back
region of the channel). The respective scaled quantities (hereinafter denoted by the tilde
symbol) are obtained by dividing their dimensional counterparts by the scaling factors.
Thus, (4.7a) can be rewritten in the following dimensionless form:

∂2ṽ

∂ ỹ2 + γ 2 ∂
2ṽ

∂ z̃2 = 2C1 + ∂Φ̃

∂ ỹ
, (4.8a)

∫ 1

0
Φ̃(ỹ) dỹ = 1, (4.8b)

where γ = h/b and C1 = Ch/(2βη0ωΦ0) is a dimensionless unknown constant having
a meaning of the dimensionless pressure gradient. Equation (4.8b) is nothing but the
particle conservation condition. Equation (4.8a) is subjected to the non-slip boundary
condition and a condition of zero flow rate across the channel that should be respected
for the considered closed channel:

ṽ(0, z̃) = ṽ(1, z̃) = ṽ(ỹ, 0) = ṽ(ỹ, 1) = 0, (4.9a)∫ 1

0
dz̃
∫ 1

0
ṽ(ỹ, z̃) dỹ = 0. (4.9b)

Analytical solution of the boundary value problem (4.8a), (4.9a), (4.9b) is obtained
by the Fourier series expansion method similar to that originally used by Boussinesq
in 1868 for calculations of the velocity profile in a rectangular duct – see for instance
Cornish (1928). Alternatively, noticing that (4.8a) has a mathematical structure of Poisson
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equation, the solution can be obtained by the Green function method. The final expression
for the velocity profile in terms of infinite series reads

ṽ(ỹ, z̃) =
∞∑

n=1

DnGn(z̃) sin(nπỹ), (4.10a)

Gn(z̃) = sinh(nπz̃/γ )+ sinh(nπ(1 − z̃)/γ )
sinh(nπ/γ )

− 1, (4.10b)

Dn = 4[1 − (−1)n]

(nπ)3
C1 − 2Kn

nπ
, (4.10c)

Kn =
∫ 1

0
cos(nπỹ)Φ̃(ỹ) dỹ, (4.10d)

C1 = 1
4

∞∑
n=1

KnMn[1 − (−1)n]/(nπ)2

∞∑
n=1

Mn[1 − (−1)n]/(nπ)4
, (4.10e)

Mn = 2γ
tanh[nπ/(2γ )]

nπ
− 1, (4.10f )

where analytical expressions for the coefficients Kn (4.10d) are provided in Appendix D
based on the concentration profile Φ̃(ỹ) determined experimentally in § 4.2 and
theoretically in § 4.3.

The average dimensionless velocity across the channel thickness b is obtained by
integration of (4.10a) over z̃:

〈ṽ〉(ỹ) =
∫ 1

0
ṽ(ỹ, z̃) dz̃ =

∞∑
n=1

DnMn sin(nπỹ), (4.11)

with expressions for Dn and Mn provided in (4.10c) and (4.10f ), respectively.
Having obtained exact solution for the velocity profile, let us first analyse some

limiting cases. First, in the case of homogeneous aggregate volume fraction Φ̃(ỹ) = 1
or Φ = const. = Φ0, we obtain zero velocity everywhere in the channel. This result
directly follows from (4.6), in which the last term on the right-hand side vanishes, and
applying curl operator to the other three terms, one obtains ∇ × (∇2v) = 0 – a linear
equation with a unique solution v = 0 satisfying the boundary conditions (4.9). This
points to the necessity of a heterogeneous concentration profile (∇Φ /= 0) for generation of
recirculation flows, in agreement with the basic claims of the present paper (cf. § 1), as also
suggested in the literature on ferrofluid spin-up (Shliomis 2021). Second, in a thick channel
limit respecting the strong inequality h � b � l, the velocity is almost independent of the
z̃ coordinate (except for the regions in a close proximity to the bottom and top channel
walls, z̃ = 0 or 1), and (4.10a), (4.11) reduce to

ṽ(ỹ) = 〈ṽ〉(ỹ) ≈ I1(ỹ)+ 3(2I2 − 1)ỹ2 + 2(1 − 3I2)ỹ, at γ = h/b � 1, (4.12a)

I1(ỹ) =
∫ ỹ

0
Φ̃(ỹ) dỹ, I2 =

∫ 1

0
I1(ỹ) dỹ. (4.12b)
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This approximate solution can be obtained by direct integration of (4.8a) neglecting the
second term on the left-hand side.

Recall that dimensional flow velocity can be obtained by multiplying the dimensionless
velocity ((4.10a) or (4.11)) by the scaling factor [v]:

v(y, z) = βωΦ0hṽ(ỹ, z̃), (4.13a)

〈v〉(y) = βωΦ0h〈ṽ〉(ỹ), (4.13b)

with ỹ = y/h and z̃ = z/b.
Note that a similar scaling behaviour has been obtained by Bente et al. (2021) for the

velocity of the magnetic particle swarm under a coupled action of a rotating magnetic field
and gravity. However, as mentioned in § 1, the results are obtained by considering zero
tangential stress on the surface between the magnetic swarm and an ambient fluid, so that
existence of such net surface seems to be necessary (at least from theoretical perspective)
to generate the swarm motion. Such a surface is absent in our present study.

To get numerical values of the velocity, we need to define the factor β depending on the
aggregate aspect ratio r (4.1b), the average aggregate volume fraction Φ0, as well as the
aggregate concentration profile Φ̃(ỹ) intervening into (4.10d). In the present study, the first
two quantities (β and Φ0) are drawn from the experiments, while the concentration profile
is both measured (§ 4.2) and evaluated by hydrodynamic diffusion approach (§ 4.3).

4.2. Aggregate size and concentration profile: experiments
The experimental distribution of aggregate lengths L, obtained through image processing
as detailed in § 2, is shown in figure 3(a) for the following set of experimental
parameters: f = 5 Hz, H0 = 6.4 kA m−1, h = 1000 μm, ϕp = 1.6 × 10−3. The distributions
of aggregate diameters D and β parameters (4.1b) were also measured. The average
value and standard deviation for these three quantities is equal to L = 30 ± 6 μm, D =
6 ± 1 μm and β = 14 ± 2. Surprisingly, these quantities remained unchanged (within
the experimental errors) in the range of our experimental parameters f = 5–15 Hz,
H0 = 3–9.5 kA m−1, h = 550–1000 μm, ϕp = (1.6−3.2)× 10−3. This is in contradiction
to the theoretical models (Melle & Martin 2003; Raboisson-Michel et al. 2020)
predicting hydrodynamic rupture of aggregates leading to a decrease of their aspect
ratio according to the scaling law r ∝ ω−1/2. However, in our previous experiments with
homogeneous rotating magnetic field, we have already observed a very small variation
of the aggregate length with the field frequency (cf. figure 6 of Raboisson-Michel
et al. 2020). Such an effect can be tentatively explained by thermodynamic arguments,
but first, we need to clearly define different volume fractions involved in the further
analysis.

The volume fraction of individual nanoparticles (without adsorbed sodium citrate layer)
is denoted by ϕp and is a well-defined quantity in our colloids (ϕp = (1.6−3.2)× 10−3).
As mentioned in § 2, the individual nanoparticles are assembled into primary aggregates
due to weakly attractive colloidal interactions in the absence of the magnetic field.
However, only a small fraction of individual nanoparticles forms these aggregates, as
revealed by hydrodynamic size distribution measurements. The volume fraction of primary
aggregates ϕ0 is defined as the volume occupied by the primary aggregates divided by the
colloid volume. This quantity cannot be easily measured in experiments. It is supposed to
vary linearly with the volume fraction ϕp of individual nanoparticles. When the magnetic
field is applied, the primary aggregates are self-assembled into the elongated secondary
aggregates. Again, only a fraction of the primary aggregates forms the secondary ones.
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Figure 3. (a) Experimental histograms of the aggregate length distribution. (b) Experimental and calculated
profiles of the aggregate volume fraction across the channel y-dimension. Both graphs correspond to the
following set of experimental parameters: f = 5 Hz, H0 = 6.4 kA m−1, h = 1000 μm, ϕp = 1.6 × 10−3.

The remaining number of primary aggregates is characterized by the volume fraction ϕ,
which decreases with time.

Tracking back to the explanation of the aggregate length independence of f, H0, h, ϕp,
we notice that there exist two limitations for the aggregate maximal volume. On one hand,
in the absence of the aggregate growth by absorption of neighbouring nanoparticles by
the field-induced aggregates, the maximal aggregate volume is limited by hydrodynamic
forces coming from either flow fields of neighbouring aggregates or short-ranged
hydrodynamic interactions at collisions with neighbouring aggregates. This volume is
expected to scale as Vmax1 ∝ D3[μ0H2/(η0ω)]1/2 (Raboisson-Michel et al. 2020). On
the other hand, in the absence of coalescence/fragmentation, the aggregate growth stops
when the supersaturation Δ = ϕ − ϕ′ of the colloid (excess concentration of primary
aggregates ϕ with respect to the concentration at the aggregation threshold ϕ′) goes to
zero. This corresponds to the maximal aggregate volume (Raboisson-Michel et al. 2020):
Vmax2 = Δ0/(ϕ

′′n), where ϕ′′ ≈ const. ≈ 0.3 is the nanoparticle concentration inside the
aggregates, n is the number density of the secondary aggregates and Δ0 = ϕ0 − ϕ′ is the
initial supersaturation of primary aggregates. The Vmax2 value could be nearly independent
of the parameters ω, H and ϕp provided that the initial supersaturation Δ0 is independent
of ω (Raboisson-Michel et al. 2020), and assuming that the number density n is linear
with ϕ0 (and ϕp), and at small aggregation threshold, ϕ′ � ϕ0, the ratio Δ0/n is nearly
independent of ϕ0 (ϕp) and H. In the present situation, when both aggregate growth,
coalescence and fragmentation are observed, the final aggregate volume is expected to be
situated between Vmax1 and Vmax2. It is possible that in our experimental conditions, the
maximal aggregate volume is closer to the Vmax2 value, which is independent of ω, H, ϕp
and h parameters. To get a grounded confirmation of this scenario, we need to reconsider
the kinetics of field-induced phase assembly under rotating fields accounting for growth,
coalescence and fragmentation events.

The experimental average value of the aggregate volume fraction is evaluated
to be Φ0 = (4.0 ± 1.0)× 10−4 for ϕp = 1.6 × 10−3 and Φ0 = (6.5 ± 2.3)× 10−4 for
ϕp = 3.2 × 10−3 independently of the field frequency ω, amplitude H and channel height
h. High statistical errors of Φ0 do not allow precise determination of the effect of
nanoparticle concentration ϕp on the concentration of the secondary aggregates Φ0.
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However, we can discern a global tendency of increasing Φ0 with increasing ϕp.
Qualitatively, this behaviour is consistent with the above evaluation of the maximal
volume Vmax2 and of the initial supersaturation Δ0 = ϕ0 − ϕ′ ≈ ϕ0 resulting in Φ0 =
nVmax2 ≈ ϕ0/ϕ

′′. The ensemble of the experimental values determined in this section are
summarized in table 1 along with their standard deviations.

The experimental aggregate concentration profileΦ(y) across the channel was obtained
through image processing (§ 2, Appendix B) and it was normalized by the average value
Φ0, namely Φ̃(ỹ) = Φ(y = ỹh)/Φ0. The experimental profile Φ̃(ỹ) is represented by dots
in figure 3(b), while the error bars correspond to the standard deviation between six
measurement series. As observed on the snapshot of figure 2, the concentration profile
is non-uniform: the aggregate volume fraction remains near zero in the front part of the
channel at ỹ <∼ 0.6; it shows an abrupt increase at 0.6 <∼ ỹ <∼ 0.9 followed by a decrease near
the back wall at 0.9 <∼ ỹ ≤ 1. This last decrease is related to geometrical constraints. In fact,
when spinning under a rotating field, the aggregates cannot penetrate the back wall, so that
the distance between their geometrical centres and the back wall cannot be smaller than
the aggregate half-length. This creates a kind of depletion layer near the back wall with
a smaller aggregate volume fraction. For calculations of the velocity profile, we fitted the
experimental concentration profile with a Gaussian function (red solid line in figure 3b),
as follows:

Φ̃(ỹ) = A exp

(
−(ỹ − ỹ0)

2

(2δ)2

)
, (4.14a)

A =
[
δ
√

π

(
erf
(

1 − ỹ0

2δ

)
+ erf

(
ỹ0

2δ

))]−1

, (4.14b)

where erf( . . .) stands for the error function; the value of the normalization constant A
is chosen to respect the particle conservation condition (4.8b); and the fitting parameters
ỹ0 = 0.9 and δ = 0.07 (reported in table 1) represent the position of the Gaussian peak
and the distribution width, respectively. Note finally that the Gaussian fit (4.14) allows
evaluation of the experimental length-scale of the concentration variation: LΦ = √

2δh ≈
100 μm for the channel width h = 1000 μm.

4.3. Aggregate concentration profile: hydrodynamic diffusion model
Let us now try to evaluate the concentration profile independently from experimental data.
From the first glance, this profile comes from the balance between the magnetic force
pushing the aggregates toward the back wall and hydrodynamic interaction repulsing the
aggregates from the back wall that have been extensively studied by different authors
(see for example Hsu & Ganatos 1994; Mitchell & Spagnolie 2015; Zheng et al. 2022).
The aggregate position y can be evaluated by balancing both these forces. Using the full
hydrodynamic resistance matrix of an ellipsoid translating and spinning along a solid wall
(calculated by boundary integral method by Hsu & Ganatos (1989, 1994)), we evaluate
that the extremity of the aggregates (when they are oriented normal to the back wall) is
separated from the back wall by a small distance hw � L, recalling that L ≈ 30 μm is the
average aggregate length. This means that we should find all the aggregates confined near
the back wall within a thin layer of a thickness ∼L taking 3 % of the channel width. This
is not consistent with the measured concentration profile which spreads over a 400 μm
thick layer taking approximately 40 % of the channel width (0.6 <∼ ỹ ≤ 1, cf. figure 3b).
Such a discrepancy cannot be explained by the polydispersity of the aggregate length
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because the number of aggregates of the length L > 100 μm is only approximately 3 %
(figure 3a). However, it is often observed in experiments that the geometric centre of an
aggregate gets spinning around a neighbouring larger aggregate, as already mentioned
in § 3. This overall motion of the aggregates can be imagined as a combination of a
regular leftward translation along the back wall and a stochastic reciprocal translation
in the x and y directions, as a result of hydrodynamic interactions with neighbouring
aggregates. The stochastic part of this motion is responsible for spreading of the aggregate
positions across the channel, leading to spreading of the concentration profile. It is thus
convenient to mimic this process by hydrodynamic diffusion, as often suggested for
colliding spherical particles in concentrated suspensions (see for instance Nicolai et al.
(1995)). The hydrodynamic diffusion has also been suggested in the mathematical model
of magnetically assisted delivery of thrombolytics (Clements 2016). However, the nature
of this diffusion was not specified, and the diffusivity was not evaluated, which may have
biased conclusions on the aggregate angular speed effect on generated macroscopic flow.

In the present case, the associated translational diffusivity can be evaluated through the
mean free path approach applied to two-dimensional motion of aggregates (Pitaevskii &
Lifshitz 2012): D = (1/2)Uλ, where U is the average velocity of stochastic motion and
λ is the mean free path. In our case, the trajectory of the aggregate centre changes each
time when the target aggregate is ‘trapped’ into the vortex flow field of a neighbouring
aggregate and starts spinning around the latter. Thus, the mean free path λ is a distance the
target aggregate travels from the moment it is ‘left free’ from one aggregate and ‘trapped’
by another aggregate. Our observations show that in the back part of the channel, the large
aggregates are situated close to each other and the small aggregates spin around the large
ones (of a length L) with a linear velocity U ≈ ωL/2 traveling a distance λ ∼ L between
two large aggregates. This results to the following scaling for the diffusivity:

D = ωL2

4C2
, (4.15)

where the average aggregate length can be chosen for the characteristic length L and C2
is an unknown constant supposed to be of the order of unity and intentionally introduced
into the denominator for further utility.

We need now to write down the mass conservation and momentum equations for the
solid phase (field-induced aggregates) of the colloid using the general framework of
Drew & Lahey (1993), Nott & Brady (1994) and Morris & Boulay (1999) applied to the
inertialess limit and incorporating hydrodynamic diffusion:

∂Φ

∂t
+ ∇ · j = 0, (4.16a)

j = Φu − D∇Φ, (4.16b)

0 = ∇ · σ s + nF h + F m, (4.16c)

where j is the volume flux density of aggregates, u is the average migration velocity of the
aggregates, n is their number fraction, σ s is the symmetric part to the particle contribution
to the viscous stress tensor, F h is the hydrodynamic drag force that the suspending liquid
exerts on the aggregates, and F m is the magnetic body force averaged over the whole
suspension volume and provided by (4.4). The term ∇ · σ s has already been shown
negligible with respect to η0∇2v, and since η0∇2v is of the same order of magnitude
as F m (cf. (4.3a)), the term ∇ · σ s can also be omitted in (4.16b). As already stated, the
hydrodynamic interactions between aggregates and the back wall cannot solely provide a
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correct estimation of the concentration profile. Moreover, tracking of aggregate angular
motion with a high-speed camera shows that the aggregate angular speed does not change
(within experimental precision) during the rotation period and is always equal to the field
angular frequency, even for the aggregates whose end passes very close to the channel wall.
This is possibly a consequence of the low Mason number Ma � 1 (table 1) depreciating
hydrodynamic interactions even in close proximity to the wall. So, we can suppose that
the wall interaction is at least not decisive in the current problem. In this context, as a
first approximation, we can use an expression for the hydrodynamic drag force for the
aggregates in an unbounded liquid neglecting wall interactions: F h = −ξ · (u − v), where
ξ is the tensor of hydrodynamic friction coefficients of aggregates and v is the suspension
velocity defined by the momentum equation (4.3a). Equations can be further simplified if
we recall that the concentration profile is steady state and all the physical magnitudes are
independent of x. This leads us to jx = 0, djy/dy = 0 in (4.16a), and with non-penetration
condition at the front and back walls, we get zero aggregate flux across the channel:

jy = Φuy − DdΦ
dy

= 0. (4.17)

Combining (4.4) and (4.16c), we get the expression for the aggregate migration speed u
and its y component uy:

u = v + b · F m, (4.18a)

uy = vy − byx

n
βη0ω

dΦ
dy

+ byy
1
2

VaΓ μ0
∂H2

∂y
, (4.18b)

where Va = πD2L/6 is the aggregate volume, b is the hydrodynamic mobility tensor
with the components byx = (b‖ − b⊥) cos(ωt − θ) sin(ωt − θ), byy = b‖ cos2(ωt − θ)+
b⊥ sin2(ωt − θ) expressed through the mobilities b‖, b⊥ parallel and perpendicular to the
aggregate major axis. The last magnitudes are evaluated in high aspect ratio limit r � 1
(Brenner 1974):

b‖,⊥ = 2
η0Lξ‖,⊥

, ξ‖ = 4π

ln(2r)− 1/2
, ξ⊥ = 8π

ln(2r)+ 1/2
. (4.19a–c)

Equation (4.18) still represents instantaneous value of the migration speed, provided that
the expression (4.4) is valid not only for time-averaged value of F m but also for its
instantaneous value with the field gradient ∂H2/∂y given by (2.3a). However, the first
term in (4.18a) vanishes because the y component vy of the instantaneous velocity field of
the whole colloid is zero thanks to the inertialess limit and specific boundary conditions
((4.9a), (4.9b)). In addition, averaging of (4.18b) over the rotation period of the aggregates
cancels the second term on the right-hand side and finally gives

uy = πΓ ψ
μ0H2

0D2

48η0LH
, (4.20a)

ψ = 2 + cos(2θ)
ξ‖

+ 2 − cos(2θ)
ξ⊥

, (4.20b)

where Γ is given by (C6b) and the length scale LH ≈ 27 mm of the magnetic field
variation was defined in § 2 (cf. (2.2)). Substituting (4.20a) into (4.17) and integrating,
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we get the following expression for the concentration profile:

Φ̃(ỹ) = C3 exp(αỹ), (4.21a)

α = uyh
D = C2πΓ ψ

μ0H2
0h

12η0ωr2LH
, (4.21b)

where C3 is an integration constant.
We can see that (4.21) simply reflects Boltzmann statistical distribution corresponding

to the balance between diffusive and magnetophoretic fluxes. As a consequence, it gives a
monotonous increase of the aggregate concentration across the channel with the maximal
concentration on the channel back wall. In reality, the geometric centres of the aggregates
cannot approach the back channel wall to a distance closer than their half-length. Thus, as
already stated in § 4.2, we expect a depletion layer poor of aggregates near the back wall.
However, due to polydispersity of the aggregate length, abrupt changes of the aggregate
concentration across the depletion layer are not expected. The characteristic thickness of
this layer Ld is possibly defined by the length of the largest aggregates and can be taken
as an adjustable parameter. A similar depletion layer (not allowing the aggregates to cross
the wall) should in principle exist near the front wall. For the sake of simplicity, we can
suppose that the concentration profile linearly decreases to zero within both depletion
layers and is given by (4.21a) outside these layers:

Φ̃(ỹ) = C3 ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp(ακ)
κ

ỹ, at 0 ≤ ỹ < κ,

exp(αỹ), at κ ≤ ỹ < 1 − κ,

exp(α(1 − κ))

κ
(1 − ỹ), at 1 − κ < ỹ ≤ 1,

(4.22a)

C3 =
[

exp(ακ)
(
κ

2
− 1
α

)
+ exp(α(1 − κ))

(
κ

2
+ 1
α

)]−1

, (4.22b)

where κ = Ld/h and we have used the aggregate conservation condition (4.8b) to get the
expression for the constant C3. The upper, middle and lower expressions of (4.22a) stand
for the front depletion layer, the main middle layer of the channel and the back depletion
layer, respectively.

The experimental concentration profile was fitted by (4.22a). The fitted curve is
presented by a blue solid line in figure 3(b). We observe a rather good agreement between
experiments and theory at reasonable values of the adjustable parameters: C2 = 0.81
(C2 = O(1) was expected) and Ld = 100 μm, resulting in κ = 0.1, which corresponds to
the tail of the aggregate length distribution (figure 3a). The sharp peak at ỹ = 1 − κ = 0.9
of the theoretical concentration profile comes from the depletion layer approximation
imposing an abrupt change of the exponentially growing concentration outside the layer
to linearly decreasing concentration inside the layer. However, such a sharp profile is not
shocking and seems to be well compared to the experimental shape. Furthermore, (4.21a),
(4.21b) allow us to define the expression for the length scale of the concentration variation:

LΦ = h
α

= 12η0ωr2

C2πΓ ψμ0H2
0

LH ≈ 36
7C2

LHMa ∼ LHMa, (4.23)

where the Masson number is defined by (4.1a), and the pre-factor 36/(7C2) = O(1) is
a result of the approximations r � 1, χ � 1 and θ,Ma � 1. Note that the later strong
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inequality allows using the values of Γ and ψ parameters ((C6b) and (4.20b)) at θ = 0,
namely

Γ ≈ χ,ψ ≈ 3
ξ‖

+ 1
ξ⊥

at Ma, θ � 1. (4.24)

At the given magnetic field frequency and amplitude, f = 5 Hz, H0 = 6.4 kA m−1, the
Mason number is Ma ≈ 1.1 × 10−3, so with LH ≈ 27 mm, we get LΦ ≈ 190 μm, which
is consistent with the measured concentration profile (figure 3b) and with experimentally
evaluated length scale LΦ ≈ 100 μm (§ 4.2). Anyway, both experimental and theoretical
evaluation of the concentration variation length scale clearly show that it is much
lower than the field variation length scale, LΦ � LH , which is the consequence of
the low-Mason-number limit Ma � 1, as inferred from (4.23). Recall that such scale
separation is important for simplification of the magnetic force expression to (4.4) (cf.
Appendix C).

4.4. Velocity profiles: experiments and comparison with the theory
Let us now focus on the velocity profiles of the recirculation flow in the closed
microchannel, recalling that experimental and theoretical profiles describe the effective
velocities of the whole colloid without a distinguishing of aggregate motion from the
suspending fluid motion. An example of the velocity vector field obtained experimentally
from the PIV analysis for a moment of time t = 60 s elapsed from the moment of the
magnetic field application is shown in figure 4. It is clear from this figure that the velocity
field is in general strongly perturbed by the presence of rotating aggregates. One clearly
observes clockwise flow vortexes within the area swapped by the aggregate clockwise
rotation. Interference between the vortexes created by neighbouring aggregates gives a
rather complicated flow pattern. However, one clearly distinguishes a regular rightward
flow in the channel’s front layer free of aggregates. As already discussed in § 3, this
rightward flow arises to compensate the leftward one induced by the aggregate translation
along the back wall.

To smooth the effects of the flow irregularities introduced by rotating aggregates,
the longitudinal (x-) component of the velocity profiles was averaged over either the
observation window length l or observation period T, with the respective average
magnitudes 〈vx(y, t)〉l or 〈vx(x, y)〉T , defined in Appendix A, with the time t being
counted from the beginning of the steady-state regime, thus 100 s after the moment
of the magnetic field application. The experimental colourmaps of the 〈vx(y, t)〉l-
and 〈vx(x, y)〉T -dependencies are shown in figure 5(a,b), respectively. First, we clearly
observe a recirculation flow in both these figures: the back layer (upper half of the
colourmaps) exhibits the leftward flow with negative longitudinal speeds and the front
layer (lower half of the colourmaps) shows a rightward flow with positive speeds.
Second, a few white-coloured vertical bands sometimes appear in the spatiotemporal
colourmap 〈vx(y, t)〉l (figure 5a). These bands correspond to near zero velocity and
point out a go-and-stop (or rather fast and slow) sequence of the recirculation flow.
This sequence visually corresponds to the fluctuation of the aggregate amount (or
rather instantaneous volume fraction Φ0(t)) in the observation window: smaller Φ0
results in slower recirculation, higher Φ0 results in stronger flows, in agreement with
(4.13). However, excluding these fluctuations from consideration, we can claim that the
steady-state velocity profile globally holds for the whole analysed period of 200 s starting
from the beginning of the steady-state regime until the end of the experiment. Third, the
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200 µm

Figure 4. Velocity vector field deduced from the PIV analysis taken at a moment of time t = 60 s and for
the following set of experimental parameters: f = 5 Hz, H = 6.4 kA m−1, h = 1000 μm, ϕp = 1.6 × 10−3.
The coloured arrows stand for the velocity vectors whose x and y components enter (green arrows) the
10 × 5 px frame−1 window (cf. Appendix A) or lie outside this window (brown arrows). White thin rods
stand for the position of aggregates, within which the instantaneous velocity profile cannot be established.
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Figure 5. (a) Spatiotemporal 〈vx(y, t)〉l and (b) 2-D spatial 〈vx(x, y)〉T experimental velocity maps averaged
over one of six movies for the following set of experimental parameters: f = 5 Hz, H = 6.4 kA m−1,
h = 1000 μm, ϕp = 1.6 × 10−3. The red and blue colours stand respectively for the rightward and leftward
flows.

spatial colourmap 〈vx(x, y)〉T in figure 5(b) shows that the velocity field averaged over
time is globally independent of the longitudinal coordinate with some fluctuations likely
appearing as a result of a relatively small number of aggregates per observation window
increasing the dispersion of the statistical averaging. An independence of the velocity
profile on x is likely ensured thanks to the fact that the observation window is centred with
respect to the channel centre and it is a few times shorter than the channel full length, such
that the fringing effects from the left and the right borders of the channel are not perceived.

Finally, let us consider the velocity profiles 〈vx(y)〉l,T ≡ 〈v〉(y) averaged over time and
length of the observation window, as detailed in Appendix A. Such averaging allows
smoothing longitudinal and temporal fluctuations, and focusing on the net effect of
the rotating magnetic field on generated recirculation flows. The experimental averaged
velocity profiles 〈v〉(y) are compared with the calculated profiles in figure 6 using either
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Figure 6. Experimental (symbols with error bars) and theoretical (solid lines) velocity profiles 〈vx( ỹ)〉l,T ≡
〈v〉( ỹ) averaged over time and length of the observation window and presented for the following set of
experimental parameters: f = 5 Hz, H = 6.4 kA m−1, h = 1000 μm, ϕp = 1.6 × 10−3. The calculated velocity
profiles correspond to either (a) Gaussian fit of the concentration profile (4.14) or (b) the concentration profile
evaluated by the hydrodynamic diffusion approach (4.22). The shaded regions in panels (a) and (b) encompass
the region of the model validity.

Gaussian fit of the experimental concentration field ((4.14), figure 6a) or theoretical
concentration field evaluated through hydrodynamic diffusion approach ((4.22), figure 6b).
Analytical expressions for the coefficients Kn (4.10d) intervening into the velocity profile
(4.10a) are provided in Appendix D for both cases of the concentration profiles. Points
correspond to the data averaged over six experimental runs. Solid lines correspond
to the upper and the lower limits of the calculated profile which were obtained as
vup = v(1 + ε) and vlow = v(1 − ε), where v = 〈v〉(y) is the velocity profile calculated
using (4.11), (4.13b) using the average experimental values of β, Φ0, h, and ε ≈
((�β/β)2 + (�Φ0/Φ0)

2 + (�h/h)2)1/2 is the relative velocity error evaluated using
experimental standard deviations �β, �Φ0, �h of β, Φ0, h (cf. table 1).

As inferred from this figure, both experimental and theoretical velocity profiles reflect
recirculation flows. In the close vicinity to the back wall, 0.9 <∼ ỹ < 1, a distinguishable
rightward flow is observed in experiments and confirmed by the model. This flow is likely
associated to the propulsion of the fluid layer to the right along the wall by the upper end
of the aggregates spinning in the clockwise direction. In the region still situated in the
back part of the channel but further from the wall, 0.5 <∼ ỹ <∼ 0.9, a leftward intense flow
is observed and could be assigned to the propulsion of the liquid layer to the left by lower
ends of the aggregates. The flux generated by the upper ends of the aggregates is smaller
because of the proximity with the wall imposing non-slip condition. The front layer of the
channel, 0 < ỹ <∼ 0.5 exhibits an intense rightward flow. As pointed out before, this layer
is almost free of aggregates (cf. figure 3b) and the rightward flow arises to compensate the
leftward one in the back layer. By integration of the experimental velocity profile, we have
checked that the zero total flux condition is satisfied at a maximal error of 1 % (with respect
to the rightward or leftward flux). Note that experimental data mostly fit into the confidence
interval of the theoretical model (shaded region between the two solid lines in figure 6a,b)
except for the middle plane layer in figure 6(a) and an upper layer in figure 6(b). Recall that
calculation of the velocity profile is free of adjustable parameters once the concentration
profile is defined. This could be an argument for the validity of basic assumptions used in
our model. If we compare theoretical predictions of the velocity profile, the concentration
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field predicted by the hydrodynamic diffusion approach overestimates the rightward flux
near the back wall at 0.9 <∼ ỹ < 1 (figure 6b) possibly because of a sharp concentration
peak observed at ỹ = 0.9 (blue line in figure 3b). Such a sharp peak is absent in the
Gaussian fitted concentration profile (red line in figure 3b) and the rightward flux near
the back wall is quite well reproduced at the price of a higher leftward flux observed in
figure 6(a).

4.5. Parametric study of the recirculation intensity
It is now important to inspect the effect of different experimental parameters ( f, H0, h, ϕp)
on the recirculation flow. Note that in our experimental system, the effect of the magnetic
field gradient is fully represented by H0 and LH parameters (2.2), with the length scale
LH ≈ 27 mm of the magnetic field variation being fixed by the size of the Helmholtz coils.
For the sake of comparison, it is instructive to define an integral parameter (not depending
on the position y within the channel) characterizing the intensity of the recirculation. We
choose for this purpose the absolute velocity averaged across the channel:

q = 1
h

∫ h

0
|〈v〉(y)| dy = βωΦ0h

∫ 1

0
|〈ṽ〉(ỹ)| dỹ, (4.25)

where the middle part of (4.25) applies to the experimental data and the right-hand part
to the theoretical velocity profile. The integral of the theoretical velocity profile over the
channel width is evaluated numerically. As in the case of the velocity profile 〈v〉(y), the
theoretical evaluation of the magnitude q is subjected to errors related to experimental
parameters β, Φ0, h. Thus, we define a medium experimental value q using average
values of β, Φ0, h and the confidential interval qlow ≤ q ≤ qup, with qup = q(1 + ε) and
qlow = q(1 − ε), with the relative error ε being defined in § 4.4.

Before analysing parametric behaviours of the average absolute velocity q, let us
establish the scaling law for this magnitude based on (4.7a). The two terms on
the right-hand side of that equation scale as η0|∇2v| ∼ η0v/L2

v and βη0ω|∂Φ/∂y| ∼
βη0ωΦ0/LΦ , which, making use of (4.23) for LΦ and (4.1b) for β, finally gives

q ∼ v ∼ βωΦ0L2
v

L�
= F(ω,H0)

Φ0Γ ψμ0H2
0

η0LH(b−2 + h−2)
, (4.26)

where L2
v ≈ 2/(b−2 + h−2) is the square of the velocity variation length scale taken equal

to that for a channel with an elliptic cross-section. We see that using the expression (4.23)
for the length scale LΦ of the concentration variation rules out the field angular frequency
ω from (4.26). However, the frequency is not ruled out from the exact expression (4.25) for
q, because it intervenes in the parameter α (4.21b) which affects the velocity in a nonlinear
way. Because of similar reasons, the magnetic field dependence of q is not mandatorily
quadratic. To stress the fact that the scaling law (4.26) does not reflect precisely the ω and
H0 behaviours, we intentionally add a pre-factor F(ω,H0) to the right-hand side of (4.26).

The scaling (4.26) also allows checking the low shear rate hypothesis supposed in the
present model (§ 4.1). Using the middle part of (4.26), the shear rate in the xy-plane
scales as γ̇ = |dv/dy| ∼ βΦ0ωL2

v/(LΦh). Using experimental value LΦ ≈ 100 μm (§ 4.2)
and other values presented in table 1, we get γ̇ ≈ (6 × 10−3 − 1.5 × 10−2)ω. Thus, the
supposed limit γ̇ � ω holds in our experiments.
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Figure 7. Experimental and theoretical dependencies of average absolute velocity on the frequency of the
rotating magnetic field of different amplitudes H0 and for fixed nanoparticle concentration ϕp = 1.6 × 10−3

and fixed channel width h = 1000 μm. Points correspond to experiments. Medium calculated values of q are
plotted as solid lines in panel (a). The confidence intervals of the model are represented by shaded regions in
panel (b). These regions follow the same colourmap as the experimental symbols.

The average absolute velocity q is plotted against the field frequency f in figure 7(a,b) for
different magnetic field amplitudes H0 but for fixed magnetic nanoparticle concentration
ϕp = 1.6 × 10−3 and fixed channel width h = 1000 μm. The medium values q( f ) are
plotted as solid lines in figure 7(a), while confidential intervals are presented as shaded
regions in figure 7(b) respecting the same colourmap as that of the experimental points.
It is quite difficult to discern an unambiguous tendency provided that the experimental
error bars are very large, and the theoretical confidential intervals overlap to some extent.
Globally, we could presume an increasing dependency of the recirculation intensity on
the magnetic field amplitude. This behaviour can be qualitatively explained by sharpening
of the concentration profile with increasing magnetic field (and consequently magnetic
field gradient). This leads to coarsening of the length scale LΦ , which leads to stronger
recirculation in accordance with the scaling law (4.26). The effect of the field frequency
could be somewhat more complicated. First, in the limit of nearly constant aggregate
length revealed in experiments (§ 4.2), the parameter β ∼ (L/D)2 is not affected by
the frequency, so the multiplier before the integral on the right-hand part of (4.25)
is linear with the frequency. Second, the hydrodynamic diffusion is more intense at
higher angular frequency of aggregates (4.15), and the aggregate concentration profile
becomes more homogeneous with increasing frequency. This should increase the length
scale LΦ and decrease the intensity of the recirculation, according to the middle term
of (4.26). Third, with the increasing frequency, the phase lag θ between the field and
aggregate orientations increases. This decreases the aggregate magnetization according
to (C6a) and the parameter Γ (C6b). This also decreases the average hydrodynamic
mobility expressed through the parameter ψ (4.20b). The product Γ ψ in (4.26) leads
therefore to a decrease of q with ω. However, as already stated in § 4.3, in the present
limit of very low Mason numbers, Ma � 1, the variation of Γ ψ with θ is negligible
(of the order of θ2), so that this third effect can be ruled out for our experimental
conditions. The competition between both first effects defines the final shape of the q( f )
dependencies at the fixed magnetic field. The model predicts a plateau for intermediate
frequencies, at least at H0 = 6.4 and 9.5 kA m−1, which is consistent with the scaling
law (4.26). The experiments seem to follow a similar tendency, even though it is hardly
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ϕp at h (μm) at
h = 1000 μm Φ0 (Experiment) q (μm s−1) ϕp = 1.6 × 10−3 q (μm s−1)

Experiment Model Experiment Model

1.6 × 10−3 (4.0 ± 1.0)× 10−4 4.3 ± 1.5 4.4 ± 1.9 540 ± 50 3.1 ± 1.5 3.0 ± 1.3
3.2 × 10−3 (6.5 ± 2.3)× 10−4 5.4 ± 2.0 7.2 ± 3.1 1000 ± 50 4.3 ± 1.5 4.4 ± 1.9

Table 2. Experimental and theoretical values of the average absolute velocity for two different ϕp and h
values. For all the data in this table, H0 = 9.5 kA m−1 and f = 5 Hz.

distinguished because of the error bars overlap. In what concerns agreement between
theory and experiments, most of the experimental points enter (at least by their error
bars) to the confidence interval of the model. However, larger frequency and magnet
field intervals (not accessible in the current experimental set-up) should be studied in the
future.

In what concerns the effect of the particle concentration and the channel width, a
few collected data (with 5 runs for each set of parameters) are summarized in table 2.
Globally, the experiments suggest an increase of the average absolute velocity with the
volume fraction of nanoparticles in agreement with the model: doubling the nanoparticle
concentration ϕp increases the volume fraction Φ0 of the secondary field-induced
aggregates, as inferred from experiments (§ 4.2) – see also the second column of table 2 for
experimental Φ0 values. This leads to an increase of recirculation intensity in proportion
to Φ0, as suggested by (4.26). It should be stressed however that the increase of Φ0 and q
with ϕp is weaker than linear. The recirculation intensity q also seems to show a weaker
than linear increase with the channel height h, both in experiments and in theory, which is
qualitatively captured by the scaling law (4.26). Indeed, when approaching the thin channel
limit, b/h � 1, the viscous dissipation is mostly governed by the channel thickness b,
while h is ruled out from the length scale Lv and from the scaling for q. In any event,
the experimental and theoretical confidential intervals of the data for different h values
overlap. Nevertheless, the conclusions on ϕp and h effects on recirculation intensity should
be taken with care because of overlapping error bars.

Based on these comparisons, we can claim that the model reproduces at least
semi-quantitatively the major experimental trends. From the application perspective, it
could be interesting to project these results to the clot dissolution application. First, we
need to stress that the segment of the vascular network between the inlet to the blocked
vessel and the blood clot is the most difficult and the most important pathway for the
transport of the thrombolytic drug. For this reason, the speed of a few μm/s of a flow
generated in an initially blocked vessel is believed to be high enough for efficient drug
delivery (Clements 2016). We note that the average recirculation speeds q = 5−8 μm
s−1 achieved in our experiments are approximately an order of magnitude higher than an
effective speed (∼0.8 μm s−1) of the diffusive transport of the streptokinase thrombolytic
drug through the blocked blood vessels (Clements 2016). Of course, the comparison
should be carried out for equivalent channel sizes and fluid viscosities. In the absence of
experimental data, the extrapolation can be done using our theoretical model. To achieve
the same recirculation speed of approximately q = 5 μm s−1 in a blood vessel of h × b =
1 × 1 mm size by changing the aqueous solvent (η0 ∼ 10−3 Pa s) with human blood
(η0 ∼ 7 × 10−2 Pa s), one needs to apply the magnetic field amplitude of approximately
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H0 ∼ 50 kA m−1 at the same other conditions ( f = 5 Hz, ϕp = 1.6 × 10−3, L ≈ 30 μm,
D ≈ 6 μm). The characteristic time τp of the drug ‘pumping’ within the occluded vessel
is τp ∼ Lc/q, where Lc ∼ 200−500 μm is a typical distance between the inlet of the
occluded vessel and the clot (inferred from MRI images in Nishimura et al. 2010, Nguyen
et al. 2011). Taking the ‘worst’ value Lc = 500 μm, we obtain the maximum time of the
convective delivery of molecules towards the clot of the order of τp ∼ 100 s. However,
the characteristic delivery time of the thrombolytic drug (tissue plasminogen activator,
t-PA) by pure diffusion from the inlet of the occluded vessel towards the clot is τD ∼
L2

c/Dt - PA ∼ 1 h, where Dt - PA ∼ 6.7 × 10−11 m2 s−1 is the t-PA diffusivity. This time
appears to be higher than the convective delivery time τp. This (possibly very optimistic)
estimation provides some physical grounds for explanation for accelerated lysis of a blood
clot formed in a rabbit jugular vein using magnetic colloids and rotating magnetic fields
(Creighton 2012). More detailed studies coupling the hydrodynamic effects with the blood
clot dissolution are required for a deeper understanding of this technique.

Another important feature of the observed recirculation flow is the duration of the
steady-state regime, which starts at the time t >∼ 100 s from the moment of magnetic field
application. As already mentioned, because of the heating of electromagnets, we were
unable to determine with confidence the end of the steady state in experiments; we know
that it lasts for at least 200 s from its beginning. However, we observe that the aggregates
migrating to the left along the back wall do not come back but are accumulated near the
left end of the channel once they arrive there. We can anticipate the end of the recirculation
flow when most of the aggregates have moved to the left end, which is expected to occur
at the time scale τ ∼ l/va ∼ 130 s, where va ≈ 15 μm s−1 is the average aggregate speed
evaluated by image processing. This time is likely underestimated because ‘disappearance’
of some aggregates can be in principle compensated by the appearance and growth of
other aggregates. Indeed, previous study has revealed that, in the absence of macroscopic
flows, the aggregates stop to appear when the supersaturation is still high, and this is likely
because of strong repulsive dipolar interactions between them significantly hampering the
evolution to the equilibrium state (Ezzaier et al. 2017). Removing the aggregates from the
major part of the channel can likely trigger a new nucleation/aggregate growth sequence.
However, longer experimental observations with careful observation of the aggregate fate
are required to confirm or reject this hypothesis.

5. Conclusion

This study is focused on the generation of the recirculation flows of a dilute magnetic
colloid within a closed microfluidic channel via application of an external rotating
magnetic field. The magnetic colloid consists of iron oxide magnetic nanoparticles
dispersed at a volume fraction ϕp = 1.6 × 10−3 or 3.2 × 10−3 in an aqueous sodium
citrate solution and slightly destabilized by partial screening of electrostatic repulsion
between nanoparticles. Upon magnetic field application, the colloid undergoes reversible
phase separation manifested through the appearance and growth of the micron-sized
elongated bulk aggregates. In the low-Mason-number limit respected in our experiments,
these aggregates synchronously rotate with the magnetic field and can generate
macroscopic flows under certain conditions. The main results of the present work can
be summarized as follows.

1. In a closed channel, macroscopic recirculation appears as a result of the combination
between synchronous rotation of aggregates and heterogeneity of their concentration
profile across the channel. The required concentration gradient is easily obtained

981 A11-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

48
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.48


Flow of magnetic colloid under rotating magnetic fields

by superposition of a weak magnetic field gradient to the homogeneous rotating
magnetic field. Remarkably, we have never managed to reach recirculation in
either a homogeneous rotating field or in a stable magnetic colloid free of the
field-induced phase separation. Thus, the claimed mechanism is a synergy of the
physics reminiscent for the spin-up in a non-aggregated ferrofluid (Shliomis 2021)
and field-induced self-assembly observed in magnetic swarm actuation (Bente et al.
2021). However, we achieve recirculation flows for a very dilute colloid (ϕp =
(1.6−3.2)× 10−3) at low-frequency ( f = 5−15 Hz) and low-amplitude (H0 ∼
3−10 kA m−1) fields, as opposed to ferrofluids or magnetic swarms with typical
particle volume fraction of the order of a few percent.

2. The generated flow pattern is rather simple and physically understandable. The
magnetic field gradient orthogonal to the main channel axis and oriented towards
one of the channel walls makes the aggregates more ‘crowded’ near this (first)
wall but any sticking is avoided by short-ranged hydrodynamic repulsion from
the wall. The spinning aggregates propel the ambient fluid in the directions of
their rotation thus creating a weak flux in one direction in a close vicinity with
the channel wall and a stronger flux in an opposite direction a bit further from
the wall. To compensate for the difference between these two fluxes, a third
flux appears near the opposite (second) wall in the same direction as the weak
flux near the first wall. Quantitatively, the experimental velocity profiles were
measured by PIV technique that fully confirms the aforementioned arguments.
The average recirculation velocities measured in experiments are of the order of
q ∼ 5−8 μm s−1 within the channel of a width h ∼ 500−1000 μm.

3. We have also developed a theoretical model based on the hydrodynamic diffusion
concept for the aggregate concentration profile and on the momentum balance
equation (completed with a magnetic torque term) for the velocity profile. The
model captures a relatively sharp shape of the concentration profile and correctly
reproduces the flow pattern through the variation of the macroscopic magnetic
torque density across the channel.

4. The effect of the governing parameters ( f, H0, h, ϕp) on the intensity of the generated
flow has been assessed both experimentally and theoretically. Because of high
statistical experimental errors (intrinsic for a phase separating colloid) and large
confidence intervals of the model, it was difficult to establish precise correlations.
However, experiments seem to show some of the trends predicted by the theoretical
scaling q ∝ F(ω,H0)Φ0H2

0/[η0(b−2 + h−2)]. The recirculation intensity increases
gradually with the magnetic field amplitude H0, the channel width h (for the present
case of h > b) and the particle volume fraction ϕp, as long as it affects the aggregate
concentration Φ0. As for the frequency effect, experiments and theory seem to
indicate a plateau at intermediate ω values, whose range depends on the field
amplitude. Quantitatively, the experimental points enter (at least by their error bars)
to the confidence interval of the model. More pronounced effects could be expected
for broader ranges of the governing parameters. Installation of a fractal capacitor
bank (Martin 2013) would allow us in the future to overcome the current limitations
on the frequency and amplitude of the applied rotating field.

5. The results of this paper are believed to give a thorough physical insight into
the problem of the clot lysis by enhanced thrombolytic drug convection along
the blocked blood vessels provided that the vascular segment between the inlet to
the blocked vessel and the clot is the most important part of the drug delivery
pathway. In vitro experimental modelling of the blood clot dissolution in the
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presence of field-induced recirculation flow is a further logical step towards
a real biomedical application. From the general perspective, the present work
provides a supplementary example of the colloidal motors allowing macroscopic
flow generation at low particle concentrations through a controlled self-assembly
combined with collective spinning of the aggregates.

Supplementary movies. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.48.
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Appendix A. Determination of the velocity field through the PIVlab tool

The determination of the velocity field was split into the following steps.

1. The videos were recorded at different acquisition rates for each magnetic field
frequency, and only a fraction of images was conserved for further treatment, as
listed in table 3. This preselection of snapshots imposed the time interval between
two conserved images to be equal to the period of magnetic field rotation. Thus,
considering synchronous aggregate rotation with small phase lag angle, θ � 1, a
single orientation of the aggregates was kept all along the image stack.

2. We determined that the time at which the aggregate size distribution reached its
plateau and the generated flow reached the steady state occurred at the time t ≈ 100 s
elapsed from the moment of the magnetic field application. Thus, the first images
corresponding to t < 100 s were excluded from the analyses because we seek the
steady-state velocity profiles. The rest of the images were submitted to the following
three steps.

3. Preprocessing. The images were loaded into a preprocessing MATLAB script,
which pivoted them to align the image of the channel front wall (lower wall in
the snapshots) along a horizontal line and subtract the mean of the stack over time
(removing inhomogeneity due to the sample and the microscope illumination). To
facilitate visualization, the image greyscale is inverted. The purpose was to contrast
out the aggregates and the polystyrene tracers that appeared white on a completely
black background (figure 8).

4. PIV processing. Each stack was loaded into the PIVlab script. The region of
interest (ROI) focused on the observed channel was drawn. Then the PIV analysis
was parametrized as follows. Fast Fourier Transform (FFT) window deformation
algorithm; 64 pixels interrogation area for the first iteration (pass) and 32 pixel
area for the second pass; Gauss 2 × 3-point interpolation for subpixel x and y
positions of the correlation function peak. Once the images were analysed, x and y
velocity components were thresholded by the algorithm allowing one to exclude the
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Field frequency (Hz) Acquisition frequency (fps) Fraction of conserved images

5 50a 1/10
10 50a 1/5
15 60 1/4

Table 3. Acquisition parameters for the image processing procedure.
a50 fps is the minimal acquisition frequency of the used fast speed camera.

Pass 1

Pass 2

Figure 8. A snapshot of the microfluidic channel after greyscale inversion. Small coloured rectangles
correspond to interrogation area selection. The long white strands are the aggregates and the white dots (visible
in original high-resolution images) are the polystyrene tracers.

outliers. Thus, the velocity components were bounded from above by the values vx =
± 10 px frame−1 and vy = ± 5 px frame−1.

5. Post-processing. The data obtained from the PIVlab script were imported to
another MATLAB script, which first converted the velocities vx, vy and positions
x, y into physical units (μm/s and μm, respectively). Then, we focused on
the longitudinal velocity profile vx(x, y, t) and proceeded to the averaging over
the observation time T: 〈vx(x, y)〉T = T−1 ∫ T

0 vx(x, y, t) dt, over the ROI length
l: 〈vx(y, t)〉l = l−1 ∫ l

0 vx(x, y, t) dx or over both these magnitudes: 〈vx(y)〉l,T =
(Tl)−1 ∫ T

0

∫ l
0 vx(x, y, t) dx dt, where the integration was performed using a discrete

calculus. The obtained averaged velocity profile 〈vx(y)〉l,T was further averaged over
different experimental runs.

Appendix B. Tracking of aggregate size and concentration

The image stack obtained during PIV preprocessing step (Appendix A) was loaded
into the Fiji image calculator. Then each aggregate (appearing as a white rod–cf.
figure 8) was labelled, while its geometrical centre (described by xc, yc-coordinates),
length L and thickness D were determined through fitting the intensity profile along
its major and minor axes by a Gaussian function, as described in detail in the
Supporting Information of Queiros Campos et al. (2021). Collecting the data from all the
snapshots, histograms of the aggregate lengths L were constructed. To get the aggregate
concentration profileΦ(y), the yc-positions of the aggregate centres were sorted to N equal
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intervals, �yi = [(i − 1)h/N, ih/N], i = 1 . . .N, and the sum of the aggregate volumes
whose centres enter the given interval was calculated, assuming their ellipsoidal shape:
(�Va)i = (�(πLD2/6))i, yc ∈ �yi. The aggregate volume fraction in a given interval
was assessed through dividing this sum by the volume of the channel slice Vi = �yibl =
hbl/N corresponding to the given interval: Φ(�yi) = (�Va)i/Vi, and the interval in
the argument of Φ was replaced by its medium value yi = (i − 1/2)h/N. Finally, the
concentration profile Φ( yi) was averaged over all the analysed snapshots, including
six different experimental runs. The Φ( yi) data were obtained at N = 20. The average
aggregate volume fraction across the whole channel was calculated as the sum of volumes
of all aggregates in the given snapshot divided by the visualized channel volume, Φ0 =
�Va/(hbl), the ratio being averaged over all the snapshots. It was also checked that the
particle conservation condition, Φ0 = (1/N)

∑N
i=1Φ(�yi), was satisfied.

Appendix C. Approximated expression for the magnetic force F m

We start by decomposing the magnetization vector of the colloid onto projections Mh, Mn
parallel and normal to the instantaneous direction of the external magnetic field, as
depicted in figure 9:

M = Mhh + Mnn, (C1)
where h = H/H, n = h × k are the unit vectors parallel and perpendicular to the
magnetic field vector, while k = K/K is the unit magnetic torque vector given by (4.2e),
K = |K |. With this choice for orientation of h and n vectors, positive values Mh > 0
and Mn > 0 are ensured in the range of the phase lag angles 0 ≤ θ ≤ π/4 between the
aggregates and magnetic field allowing for synchronous aggregate rotation. Using (C1),
the first term of (4.3b) reads

μ0(M · ∇)H = μ0Mh(h · ∇)H + μ0Mn(n · ∇)H . (C2)

In (C2), we can put Mh(h · ∇)H = Mh∇H = (M · h)∇H and (n · ∇)H = H(n · ∇h)
thanks to the following expressions: ∇ × H = 0 and n · h = 0. With this substitution, the
last term of (C2) becomes of particular interest because the multiplier μ0MnH is nothing
but the absolute value of the magnetic torque density K = |K | experienced by the colloid
and appearing in the last term of the magnetic force (4.3b). With this in mind, we get

μ0Mn(n · ∇)H = K(n · ∇h) = K(h × k) · ∇h = −(K × h) · ∇h. (C3)

Using (C2) and (C3), the magnetic force (4.3b) can be expressed in the following
general form valid for nonlinear magnetization behaviour and for synchronous rotation
of aggregates with the rotating magnetic field (θ ≤ π/4, Ma ≤ 1):

F m = μ0(M · h)∇H − (K × h) · ∇h + 1
2(∇ × K). (C4)

Let us now compare different terms of (C4) in the present case of low-Mason-number limit
θ � 1, Ma � 1.

Bearing in mind that K ≈ 2η0βΦω (4.5), we get

|(K × h) · ∇h| ∼ η0βΦω

LH
, (C5a)∣∣∣∣12(∇ × K)

∣∣∣∣ ∼ η0βΦω

L�
, (C5b)

where LH ≈ 27 mm and LΦ ≈ 100 μm (cf. table 1) are the length scales of the magnetic
field and aggregate concentration field variations. The LΦ scale appears in (C5b) as a result
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Figure 9. Geometrical notation for the problem of magnetic force determination.

of ∇Φ term appearing in (4.6) when taking curl operator over the torque density K . It is
now clear that |(1/2)(∇ × K)| � |(K × h) · ∇h| provided that LH � LΦ .

The first term of (C4) can be evaluated in linear magnetization approximation relevant
for our experimental magnetic field range. Under this approximation, the term (M · h) is
expressed through the phase lag angle θ , the magnetic susceptibility of aggregates χ and
their volume fraction Φ as follows:

(M · h) = Mh = ΦΓH, (C6a)

Γ = χ cos2 θ + 2χ
2 + χ

sin2 θ. (C6b)

Here, we applied the expressions of the aggregate demagnetization factor in the infinite
aspect ratio limit. The first term of (C4) takes the following form:

μ0(M · h)∇H = 1
2ΦΓμ0∇(H2), (C7)

and can be expressed through the Mason number (4.1a) giving the following scaling:

|μ0(M · h)∇H| ∼ η0βΦω

LHMa
∼ η0βΦω

LΦ
, (C8)

where we used approximations r � 1, χ � 1 and θ, Ma � 1, and replace the product
LHMa by LΦ according to the scaling provided in (4.23). We note that first and the last
terms of (C4) are of the same order of magnitude, while the middle term is negligible
with respect to the two other terms. Since at least one of the large terms (1st or 3rd) of
(C4) appear in x and y components of the momentum balance equation ((4.7a), (4.7b)),
the small middle term can be safely omitted, and, together with (C7), the approximate
expression for the magnetic force (4.3b) reads

F m ≈ 1
2ΦΓμ0∇(H2)+ 1

2 (∇ × K). (C9)
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Appendix D. Analytical expressions for Kn

The integrals in (4.10d) have the following analytical expressions.

(A) For Gaussian fit of the concentration profile (4.14):

Kn ≈ 2δ√
π

A
∞∑

k=1

{
k exp(−k2/4)

k2 − (2πδn)2

[
sin
(

kỹ0

2δ

)
+ (−1)n sin

(
k(1 − ỹ0)

2δ

)]}
, (D1)

where the expression for A is given by (4.14b). The expression (D1) is exact at a relative
error of ∼exp(−4π2) ∼ 10−17.

(B) For hydrodynamic diffusion model with the concentration profile provided by (4.22):

Kn = C3

{
exp(ακ)

κ(nπ)2
[−1 + cos(nπκ)+ nπκ sin(nπκ)] + 1

κ2 + (nπ)2

× [κ exp(α(1 − κ)) cos(nπ(1 − κ))− κ exp(ακ) cos(nπκ)

− ((−1)n exp(α(1 − κ))+ exp(ακ))nπ sin(nπκ)] + exp(α(1 − κ))

κ(nπ)2

× [−nπ sin(nπ(1 − κ))+ (−1)n(−1 + cos(nπκ)− nπ(1 − κ) sin(nπκ))]
}
,

(D2)

recalling that κ = Ld/h (Ld being the thickness of a depletion layer near the wall poor of
aggregates) and the expressions for α and C3 are given by (4.21b) and (4.22b), respectively.
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