
UPPER AND LOWER BOUNDS FOR THE AREA 
OF A TRIANGLE FOR WHOSE SIDES 

TWO SYMMETRIC FUNCTIONS ARE KNOWN 

ROBERT FRUCHT 

1. Introduction. Improving on inequalities given by Gerretsen (2), 
Beatty (1) has proved that for the area A of any plane triangle with sides 
a, b, c the following inequalities hold: 

n u (K-H)2 • (K-H)(SK-5H) 

u.-u 12 > A > 12 
where 
(1.2) H = J(a2 + b2 + c2), K = be + ca + ab; 

the signs of equality in (1.1) only apply when the triangle is equilateral. 
Beatty has also remarked that the second inequality in (1.1) is of no value 
in case 5H > 3K, since then the lower estimate which it gives for A2 is not 
even positive. 

As an improvement on the foregoing estimates, a proof of the following 
inequalities will be given here (§2) : 

n o\ s(s ~ g)2l* + 2?) \ A2 s s(s + q)2(s - 2q) 
[i'6) 27 > > 27 
where 
(1.4) q = (a2 + b2 + c2 - be - ca - abf\ 

i.e. 

(1.5) g = (i<3)è. 
where 
(1.6) Q = (b - c)2 + (c - a)2 + (a - b)2 

is the measure of "unequilaterality" already considered by Gerretsen (2); 
and 

a + b + c (H + KV 
(1.7) 5 = g = V~2~7 
is the semiperimeter of the triangle.1 

The first (second) equality sign in (1.3) holds for isosceles triangles whose 
base is the smallest (largest) of the three sides; of course both equality signs 
apply when the triangle is equilateral, since then q = 0. 

Recieved April 20, 1956 
xThe use of 5 and q as the given symmetric functions of the sides throughout the present 

note (instead of Beatty's i ? and K) seems justified by the fact that it simplifies the formulation 
and proof of (1.3). 
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In our (1.3), as in Beatty's (1.1), the second inequality is useless when 
5H > 3K, i.e. when q > %s. It is easily seen that in this case triangles can be 
found with as small an area as one might wish; hence no other lower bound 
for A can then exist than the trivial one: A > 0. 

Apart from this exceptional case (and that of an equilateral triangle), 
(1.3) represents an improvement over (1.1), which might be rewritten in terms 
of 5 and q as follows: 

/ 2 2x2 / 2 2x / 2 A 2\ 

(1.8) £7 > A > - , 

by using the easily verified formulae 
(1.9) H = \{2s* + g2), K = |(4<>2 - q2). 

Indeed, Beatty's upper bound in (1.8) is higher than ours in (1.3), since the 
difference between them is 

(^ im C?2 ~ g ' ) ' __ s(s - q)\s + 2g) _ q\s - qf 
U.iu; 27 27 27 ^ ' 

analogously from 

s{s + q)\s - 2g) _ ( / - g 2 ) ( / - 4 g 2 ) _ 2g2(. + g ) ( * - 2 g ) 
u.n; 2 7 27 27 > 

(g < Js) it follows that our lower bound in (1.3) is higher than Beatty's in 
(1.8)._ 

Incidentally it might be remarked that a new simple proof of (1.1) is thus 
obtained by deriving (1.8) from (1.3). 

Moreover, it can be shown that in a certain sense our estimates (1.3) are 
best possible; indeed, the bounds given by (1.3) for A2 are nothing else than 
the extremal values that can be attained by A2 considered as a function of 
the three positive variables a, b, c subject to the constraining relations (1.4) 
and (1.7) and furthermore to the obvious inequalities 

(1.12) b + c > a, c + a > b, a + b > c, 

equivalent to 

(1.13) a < 5, b < s, c < s. 

Of course, the given values of 5 and q (besides being positive) have to 
satisfy the inequality 

(1.14) q < s 

(equivalent to Beatty's H < K) as a consequence of the easily verified 
identity 

(1.15) q = s2 - *(abc + y ) . 
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To prove the foregoing statements it would only be necessary to find these 
extremal values of A2 by standard methods of differential calculus, although 
some caution is necessary because of the inequalities (1.13).2 It seems, however, 
that the proof of (1.3) given in §2 avoids this difficulty, and at the same time 
has the advantage of being purely algebraic. (The use of trigonometric func
tions is not essential, as will be pointed out at the end of §2.) 

A final remark (§3) will be devoted to the problem of finding bounds for the 
product of the three sides of a triangle. 

2. Proof of the inequalities (1.3). We start with the well known 
formulae (3, pp. 25-28) for the trigonometric solution of a reduced cubic 
equation 
(2.1) x3 + 3Cx + D = 0 

with real roots Xi, x2, x3 satisfying the condition 

(2.2) xi + x2 + x3 = 0, 

viz. (if the roots are numbered conveniently) : 

lXl = 2 V " - ^ c o s 6, x2 = 2 V - " C c o s ( e + 120°), 
(2*3) 1 x3 = 2 V r r C c o s ( e + 240°), 

where the auxiliary angle 9 is defined by 

(2.4) cos 36 = - i D ( - C ) - 3 / 2 , 0 < 9 < 60°. 

A possible choice fulfilling (2.2) is 

(2.5) xi = a — f s, x2 = b — f s, x3 = c — f s; 
then 
(2.6) SC = x2x3 + X3X1 + X\x2 

will be related to q—defined in (1.4)—by 

(2.7) C = - <z2/9, 
since 

2 = (& ~ c)2 + (c " a)2 + (a ~~ b)2 (x2 — Xz)2 + (xz — Xi)2 + (xi — x2)
2 

q ' 2 " 2 
= (xi + x2 + x3)2 — 3(x2x3 + X3X1 + XiX2) = — 9C 

Hence (2.3) goes over into 

(2.8) Xi = f g c o s 9 , x2 = f q cos(9 + 120°), x3 = f q cos(9 + 240°), 
2Such a proof has been suggested by Beatty (in a letter to the editor) : Since for a maximum 

or minimum of A2 in the sense of differential calculus the jacobian 
d(s, H, A2) 
d (a, b, c) 

must vanish, from (1.2), (1.7) and (1.15) it would follow rather immediately that the triangle 
is isosceles. 
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and from (2.4) and (2.7) it follows t h a t 

(2.9) D = - | - #3cos 3 9 . 

Let us now express A2 as a function of q, s, and 9 . W e have : 

(2.10) ~ = (s- a)(s -b)(s-c) = ( t - X i ^ l - x 2 ) ( j - * 3 ) , 

and from the ident i ty 

(2.11) (x — Xi)(x — x2)(x — x3) = x3 + 3Cx + D 

it follows for x = ^s t h a t 

/ 9 1 9 v A^ _ s* + 27Cs + 2 7 £ 
(Z'U) s ~ 27 ; 

finally, using the values of C and D given by (2.7) and (2.9), we are led to the 
formula3 

(2.13) A2 = ~{s' - 3sq2 - 2g3cos 3 9 ) . 

From (2.13) it is now obvious t h a t the maximum of A2 is 

/o i i\ s ( 3 o 2 , 0 3x s(s — q)2(s + 2q) 
(2.14) 27(5 - Ssq + 2q ) = ^ * - , 

and it is really a t ta ined by taking 9 = 60°, i.e.—see (2.5) and (2.8)—for an 
isosceles triangle with sides 

(2.15) a = C = ^ 2 , 6 = ^ - ^ 1 . 

T h e minimum of A2, corresponding to the second equal i ty sign in (1.3), 
viz. 

to 1 ^ s(s* - 3sq2 - 2q) _ s(s + q)2(s - 2q) 
V-lb) - 2 ? - 2 7 

is obtained by taking 9 = 0 in (2.13), i.e. for an isosceles triangle with sides 

(2.17) a = , b = c = — « — , 

if that triangle exists, i.e., if the conditions (1.13) are fulfilled. From (2.17) it is 
immediately seen t h a t this is only the case if g < \s\ b u t it has already been 
mentioned above (§1) t h a t there is no positive minimum of A2 in the excep
tional case q > ^s (i.e., 5H > 3K in Bea t ty ' s nota t ion) . 

Finally it should be remarked t h a t the use of t r igonometric functions in the 
3Professor Gordon Pall has pointed out that the following more general formula can be 

proved along the same lines: 

(k - a)(k - b)(k-c) = Ag3(£3 - \p - \ cos 30), where p = (Sk - 2s)/2q. 
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foregoing proof might be avoided by proving instead of (2.13) the following 
algebraic identity: 

(2.18) { A 2 - ^ - 3<z2)}2 = ( ~ ) 2 { V - 27(b - c)\c - a)*(a - 6)2} 

and obtaining thus the following inequality equivalent to (1.3): 

(2.19) 
2 

A - 27(5 - Sq ) 
. 2 , 

3. Bounds for the product abc. In virtue of (1.15), one might obtain 
from (1.3), or from (2.15) and (2.17), exact bounds also for the product 
abc: 

(3.1) ~(s - q)(2s 4- qf < abc < ^(s + q)(2s - qf, 

giving us the solution of the following algebraic problem which might be of 
some interest in itself: to find maximum and minimum of the product of 
three positive variables a, 6, c, if two of their symmetric functions, viz. 5 
and q, are given. Since 
(3.2) q2 = 4s2 - 3K, 

it is easy to obtain from (3.1) the exact bounds for abc also in the case when 
the first two elementary symmetric functions, viz. 2s and K, are given: 

(3.3) §j\s(9K - 8s2) - (452 - SK)V2\ < abc 

< §}{s(9K - 8s2) + ( 4 / - 3 i n 3 / 2 | . 
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