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A duality toolbox

5.1 Gauge/gravity duality

In the previous chapter we outlined the string theory reasoning behind the equiv-
alence (4.27) between N = 4 SU (Nc) SYM theory and type IIB string theory
on AdS5 × S5. N = 4 SYM theory is the unique maximally supersymmetric
gauge theory in (3 + 1) dimensions, whose field content includes a gauge field,
six real scalars, and four Weyl fermions, all in the adjoint representation of the
gauge group. The metric of AdS5 × S5 is given by

ds2 = ds2
AdS5

+ R2d�2
5 , (5.1)

with

ds2
AdS5

= r2

R2
ημνdxμdxν + R2

r2
dr2 , r ∈ (0,∞) . (5.2)

In the above equation xμ = (t, �x), ημν is the Minkowski metric in four spacetime
dimensions, and d�2

5 is the metric on a unit five-sphere. The metric (5.2) covers
the so-called “Poincaré patch” of a global AdS spacetime, and it is sometimes
convenient to rewrite (5.2) using a new radial coordinate z = R2/r ∈ (0,∞), in
terms of which we have

ds2
AdS5

= gM N dx Mdx N = R2

z2

(
ημνdxμdxν + dz2

)
, x M = (z, xμ) , (5.3)

as used earlier in (4.10).
In (5.3), each constant-z slice of AdS5 is isometric to four-dimensional

Minkowski spacetime with xμ identified as the coordinates of the gauge theory (see
also fig. 4.1). As z → 0 we approach the “boundary” of AdS5. This is a boundary
in the conformal sense of the word but not in the topological sense, since the pref-
actor R2/z2 in (5.3) approaches infinity there. Although this concept can be given a
precise mathematical meaning, we will not need these details here. As motivated in
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112 A duality toolbox

Section 4.1.1 it is natural to imagine that the Yang–Mills theory lives at the bound-
ary of AdS5. For this reason, below we will often refer to it as the boundary theory.
As z → ∞, we approach the so-called Poincaré horizon, at which the prefactor
R2/z2 and the determinant of the metric go to zero.

5.1.1 UV/IR connection and renormalization group flow

Owing to the warp factor R2/z2 in front of the Minkowski metric in (5.3), energy
and length scales along Minkowski directions in AdS5 are related to those in the
gauge theory by a z-dependent rescaling. More explicitly, consider an object with
energy EYM and size dYM in the gauge theory. These are the energy and the size of
the object measured in units of the coordinates t and �x . From (5.3) we see that the
corresponding proper energy E and proper size d of this object in the bulk are

d = R

z
dYM , E = z

R
EYM , (5.4)

where the second relation follows from the fact that the energy is conjugate to time,
and so it scales with the opposite scale factor than d. We thus see that physical pro-
cesses in the bulk with identical proper energies but occurring at different radial
positions correspond to different gauge theory processes with energies that scale
as EYM ∼ 1/z. In other words, a gauge theory process with a characteristic energy
EYM is associated with a bulk process localized at z ∼ 1/EYM [594, 768, 671].
This relation between the radial direction z in the bulk and the energy scale of the
boundary theory makes concrete the heuristic discussion of Section 4.1.1 that led
us to identify the evolution of the bulk metric along the z-direction with the renor-
malization group flow of the gauge theory. In particular the high energy (UV) limit
EYM → ∞ corresponds to z → 0, i.e. to the near-boundary region, while the low
energy (IR) limit EYM → 0 corresponds to z → ∞, i.e. to the near-horizon region.

In a conformal theory, there exist excitations of arbitrarily low energies. This is
reflected in the bulk in the fact that the geometry extends all the way to z → ∞. As
we will see in Section 5.2.2, for a confining theory with a mass gap m, the geometry
ends smoothly at a finite value z0 ∼ 1/m. Similarly, at a finite temperature T ,
which provides an effective IR cut-off, the spacetime will be cut-off by an event
horizon at a finite z0 ∼ 1/T (see Section 5.2.1).

There is a large literature on what is often referred to as the “holographic
renormalization group”, namely mapping the radial evolution in the bulk gravity
theory to the renormalization group flow equations of its dual boundary theory.
For examples, see Refs. [33, 47, 379, 326, 112, 359, 310]. The basic goal is to
relate the Einstein equations that describe how the bulk geometry changes as a
function of position in the radial direction to the renormalization group equations
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5.1 Gauge/gravity duality 113

that describe how the boundary quantum field theory changes as a function of
energy scale, given that the boundary energy scale E is associated with a radial
position z(E) ∼ 1/E . Indeed, there have been recent efforts to develop pre-
cise parallels between the Wilsonian procedure of integrating out high energy
degrees of freedom and integrating out a part of the bulk geometry near the bound-
ary [438, 348]. One identifies the boundary theory Wilsonian effective action
obtained by integrating out modes with energies larger than E with a bulk the-
ory effective action obtained by integrating over all the bulk fields including the
metric in the region of the bulk geometry that lies between the boundary at z = 0
and z(E). The result of doing this partial path integral is an effective action defined
on the z = z(E) slice which governs the dynamics of the remaining bulk fields in
the unintegrated part of the geometry and which can be mapped onto the boundary
theory Wilsonian effective action. There has also been progress toward deriving the
bulk gravity theory from the Wilsonian renormalization group flow of a boundary
theory [572, 329, 574, 573].

5.1.2 Strong coupling from gravity

N = 4 SYM theory is a scale-invariant theory characterized by two parameters: the
Yang–Mills coupling g and the number of colors Nc. The theory on the right-hand
side of (4.27) is a quantum gravity theory in a maximally symmetric spacetime
which is characterized by the Newton’s constant G and the string scale  s in units of
the curvature radius R. The relations between these parameters are given by (4.29).
Recalling that G ∼  8

p, with  p the Planck length, these relations imply

 8
p

R8
∝ 1

N 2
c

,
 2

s

R2
∝ 1√

λ
, (5.5)

where λ = g2 Nc is the ’t Hooft coupling and we have omitted only purely
numerical factors.

The full IIB string theory on AdS5×S5 is rather complicated and right now a sys-
tematic treatment of it is not available. However, as we will explain momentarily,
in the limit

 8
p

R8
� 1 ,

 2
s

R2
� 1 (5.6)

the theory dramatically simplifies and can be approximated by classical super-
gravity, which is essentially Einstein’s general relativity coupled to various matter
fields. An immediate consequence of the relations (5.5) is that the limit (5.6)
corresponds to

Nc � 1 , λ � 1 . (5.7)
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114 A duality toolbox

Equation (4.27) then implies that the planar, strongly coupled limit of the SYM
theory can be described using just classical supergravity.

Let us return to why string theory simplifies in the limit (5.6). Consider first the
requirement  2

s � R2. This can be equivalently rewritten as m2
s � R or as Tstr �

R, where R ∼ 1/R2 is the typical curvature scale of the space where the string
is propagating. The condition m2

s � R means that one can omit the contribution
of all the massive states of microscopic strings in low energy processes. In other
words, only the massless modes of microscopic strings, i.e. the supergravity modes,
need to be kept in this limit. This is tantamount to treating these strings as pointlike
particles and ignoring their extended nature, as one would expect from the fact
that their typical size,  s , is much smaller than the typical radius of curvature of
the space where they propagate, R. The so-called α′-expansion on the string side
(with α′ =  2

s ), which incorporates stringy effects associated with the finite length
of the string in a derivative expansion, corresponds on the gauge theory side to an
expansion around infinite coupling in powers of 1/

√
λ.

The extended nature of the string, however, cannot be ignored in all cases. As
we will see in the context of the Wilson loop calculations of Section 5.4 and in
many other examples in Chapter 8, the description of certain physical observables
requires one to consider long, macroscopic strings whose typical size is much
larger than R – for example, this happens when the string description of such
observables involves non-trivial boundary conditions on the string. In this case
the full content of the second condition in (5.6) is easily understood by rewriting it
as Tstr � R. This condition says that the tension of the string is very large com-
pared to the typical curvature scale of the space where it is embedded, and therefore
implies that fluctuations around the classical shape of the string can be neglected.
These long strings can still break and reconnect, but in between such processes
their dynamics is completely determined by the Nambu–Goto equations of motion.
In these cases, the α′-expansion (that is, the expansion in powers of 1/

√
λ) incor-

porates stringy effects associated with fluctuations of the string that are suppressed
at λ → ∞ by the tension of the string becoming infinite in this limit. From this
viewpoint, the fact that the massive modes of microscopic strings can be omitted in
this limit is just the statement that string fluctuations around a pointlike string can
be neglected.

Consider now the requirement  8
p � R8. Since the ratio  8

p/R8 controls the
strength of quantum gravitational fluctuations, in this regime we can ignore quan-
tum fluctuations of the spacetime metric and talk about a fixed spacetime like
AdS5 × S5. The quantum gravitational corrections can be incorporated in a power
series in  8

p/R8, which corresponds to the 1/N 2
c expansion in the gauge theory.

Note from (4.28) that taking the Nc → ∞ limit at fixed λ corresponds to taking the
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5.1 Gauge/gravity duality 115

string coupling gs → 0, meaning that quantum corrections corresponding to loops
of string breaking off or reconnecting are suppressed in this limit.

In summary, we conclude that the strong coupling limit in the gauge theory
suppresses the stringy nature of the dual string theory, whereas the large-Nc limit
suppresses its quantum nature. When both limits are taken simultaneously the full
string theory reduces to a classical gravity theory with a finite number of fields.

Given that the S5 factor in (5.1) is compact, it is often convenient to express a
ten-dimensional field in terms of a tower of fields in AdS5 by expanding it in terms
of harmonics on S5. For example, the expansion of a scalar field φ(x, �) can be
written schematically as

φ(x, �) =
∑
 

φ (x)Y (�) , (5.8)

where x and � denote coordinates in AdS5 and S5 respectively, and Yl(�) denote
the spherical harmonics on S5. Thus, for many purposes (but not all) the orig-
inal duality (4.27) can also be considered as the equivalence of N = 4 SYM
theory (at strong coupling) with a gravity theory in AdS5 only. This perspective
is very useful in two important aspects. First, it makes manifest that the dua-
lity (4.27) can be viewed as an explicit realization of the holographic principle
mentioned in Section 4.1.1, with the bulk spacetime being AdS5 and the bound-
ary being four-dimensional Minkowski spacetime. Second, as we will mention in
Section 5.2.3, this helps to give a unified treatment of many different examples of
the gauge/gravity duality. In most of this book we will adopt this five-dimensional
perspective and work only with fields in AdS5.

After dimensional reduction on S5, the supergravity action can be written as

S = 1

16πG5

∫
d5x

[
Lgrav + Lmatt

]
, (5.9)

where

Lgrav = √−g

(
R + 12

R2

)
(5.10)

is the Einstein–Hilbert Lagrangian with a negative cosmological constant
� = −6/R2 and Lmatt is the Lagrangian for matter fields. In the general case, the
latter would include the infinite towers φ (x) coming from the expansion on the
S5. The metric (5.3) is a maximally symmetric solution of the equations of motion
derived from the action (5.9) with all matter fields set to zero.

The relation between the effective five-dimensional Newton’s constant G5 and
its ten-dimensional counterpart G can be read off from the reduction of the
Einstein–Hilbert term,
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116 A duality toolbox

1

16πG

∫
d5xd5�

√−g10 R10 = R5�5

16πG5

∫
d5x

√−g5 R5 + · · · , (5.11)

where �5 = π3 is the volume of a unit S5. This implies

G5 = G

�5 R5
= G

π3 R5
, i.e.

G5

R3
= π

2N 2
c

, (5.12)

where in the last equation we made use of (4.29).

5.1.3 Symmetries

Let us now examine the symmetries on both sides of the correspondence. The N =
4 SYM theory is invariant not only under dilatations but under Conf(1, 3)×SO(6).
The first factor is the conformal group of four-dimensional Minkowski space,
which contains the Poincaré group, the dilatation symmetry generated by D, and
four special conformal transformations whose generators we will denote by Kμ.
The second factor is the R-symmetry of the theory under which the φi in (4.16)
transform as a vector. In order to provide an analogy of the baryon number in QCD,
we will often select a U (1) subgroup within the R-symmetry group and define
a conserved, Abelian R-charge from its associated Noether current. In addition,
the theory is invariant under sixteen ordinary or “Poincaré” supersymmetries, the
fermionic superpartners of the translation generators Pμ, as well as under 16 special
conformal supersymmetries, the fermionic superpartners of the special conformal
symmetry generators Kμ.

The string side of the correspondence is of course invariant under the group of
diffeomorphisms, which are gauge transformations. The subgroup of these consist-
ing of large gauge transformations that leave the asymptotic (i.e. near the boundary)
form of the metric invariant is precisely SO(2, 4)× SO(6). The first factor, which
is isomorphic to Conf(1, 3), corresponds to the isometry group of AdS5, and the
second factor corresponds to the isometry group of S5. As usual, large gauge trans-
formations must be thought of as global symmetries, so we see that the bosonic
global symmetry groups on both sides of the correspondence agree. In more detail,
the Poincaré group of four-dimensional Minkowski spacetime is realized inside
SO(2, 4) as transformations that act separately on each of the constant-z slices
in (5.3) in an obvious manner. The dilation symmetry of Minkowski spacetime
is realized in AdS5 as the transformation (t, �x) → C(t, �x), z → Cz (with C a
positive constant), which indeed leaves the metric (5.3) invariant. The four special
conformal transformations of Minkowski spacetime are realized in a slightly more
involved way as isometries of AdS5.

An analogous statement can be made for the fermionic symmetries. AdS5 ×S5 is
a maximally supersymmetric solution of type IIB string theory, and so it possesses
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5.1 Gauge/gravity duality 117

32 Killing spinors which generate fermionic isometries. These can be split into two
groups that match those of the gauge theory.1

We therefore conclude that the global symmetries are the same on both sides
of the duality. It is important to note, however, that on the gravity side the global
symmetries arise as large gauge transformations. In this sense there is a correspon-
dence between global symmetries in the gauge theory and gauge symmetries in the
dual string theory. This is an important general feature of all known gauge/gravity
dualities, to which we will return below after discussing the field/operator cor-
respondence. It is also consistent with the general belief that the only conserved
charges in a theory of quantum gravity are those associated with global symmetries
that arise as large gauge transformations.

5.1.4 Matching the spectrum: the field/operator correspondence

We now consider the mapping between the spectra of the two theories. To motivate
the main idea, we begin by recalling that the SYM coupling constant g2 is identified
(up to a constant) with the string coupling constant gs . As discussed below (4.15),
in string theory this is given by gs = e�∞ , where �∞ is the value of the dilaton at
infinity, in this case at the AdS boundary, ∂AdS. This suggests that deforming the
gauge theory by changing the value of a coupling constant corresponds to changing
the value of a bulk field at ∂AdS. More generally, one may imagine deforming the
gauge theory action as

S → S +
∫

d4x φ(x)O(x) , (5.13)

where O(x) is a local, gauge-invariant operator and φ(x) is a possibly point-
dependent coupling, namely a source. If φ(x) is constant, then the deformation
above corresponds to simply changing the coupling for the operator O(x). The
example of g suggests that to each possible source φ(x) for each possible local,
gauge-invariant operator O(x) there must correspond a dual bulk field �(x, z)
(and vice versa) such that its value at the AdS boundary may be identified with
the source, namely:

φ(x) = �|∂AdS (x) ≡ lim
z→0

zα��(x, z) . (5.14)

The power α� in the last expression is chosen so that the limit is well-defined, and
is thus determined by the boundary asymptotic behavior of �(x, z). The explicit
asymptotic behavior of various types of fields, and hence the values of their α�,
will be discussed below and in the next subsection.
1 In both boundary and bulk, bosonic and fermionic symmetries combine together to form a supergroup

SU (2, 2|4).
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118 A duality toolbox

This one-to-one map between bulk fields in AdS and local, gauge-invariant oper-
ators in the gauge theory is known as the field/operator correspondence. The field
and the operator must have the same quantum numbers under the global symme-
tries of the theory, but there is no completely general and systematic recipe to
identify the field dual to a given operator. Fortunately, an additional restriction is
known for a very important set of operators in any gauge theory: conserved cur-
rents associated to global symmetries, such as the SO(6) symmetry in the case of
the N = 4 SYM theory. The source aμ(x) coupling to a conserved current Jμ(x) as∫

d4x aμ(x)Jμ(x) (5.15)

may be thought of as an external background gauge field, and we can view it as the
boundary value of a dynamical gauge field AM(x, z) in AdS, i.e.

aμ(x) = lim
z→0

Aμ(z, x) , (5.16)

meaning that, in the notation of (5.14), a gauge field has αA = 0. The identifi-
cation (5.16) is natural given that, as we discussed in Section 5.1.3, continuous
global symmetries in the boundary theory should correspond to large gauge trans-
formations in the bulk. This identification will be confirmed below by examining
the asymptotic behavior of Aμ near the boundary, see (5.32) and the discussion
around it.

An especially important set of conserved currents in any translationally invariant
theory are those encapsulated in the energy–momentum tensor operator T μν(x).
The source hμν(x) coupling to T μν(x) as∫

d4x hμν(x)T
μν(x) (5.17)

can be interpreted as a deformation of the boundary spacetime metric. In the
absence of any such boundary metric deformation, from (5.3) we see that
the asymptotic AdS bulk metric gμν and the boundary Minkowski metric are
related by

gμν(z, x) → R2

z2
ημν, z → 0 . (5.18)

In the presence of a boundary metric deformation hμν it is thus natural to relate the
full boundary metric g(b)

μν = ημν + hμν to the bulk metric as

g(b)
μν (x) = lim

z→0

z2

R2
gμν(z, x) , (5.19)

meaning that for the metric αg = 2. The relation (5.19) should also be valid for hμν

which is not infinitesimal, i.e. for a general curved boundary metric. Given (5.17),
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5.1 Gauge/gravity duality 119

the identification (5.19) has important implications: the dual of a translationally
invariant gauge theory, in which the energy–momentum tensor is conserved, must
involve gravity.

5.1.5 Normalizable vs. non-normalizable modes and mass–dimension relation

Having motivated the field/operator correspondence, we now elaborate on two
important aspects of this correspondence: how the conformal dimension of an
operator is related to properties of the dual bulk field [392, 803], and how to
interpret normalizable and non-normalizable modes of a bulk field in the boundary
theory [113, 114].

For illustration we will consider a massive bulk scalar field �, dual to some
scalar operator O in the boundary theory. Although our main interest is the case
in which the boundary theory is four-dimensional, it is convenient to present the
equations for a general boundary spacetime dimension d. For this reason we will
work with a generalization of the AdS metric (5.3) in which xμ = (t, �x) denote
coordinates of a d-dimensional Minkowski spacetime.

The bulk action for � can be written as

S = −1

2

∫
dz dd x

√−g
[
gM N∂M�∂N� + m2�2

] + · · · . (5.20)

We have canonically normalized �, and the dots stand for terms of order higher
than quadratic. We have omitted these terms because they are proportional to posi-
tive powers of Newton’s constant, and are therefore suppressed by positive powers
of 1/Nc.

Since the bulk spacetime is translationally invariant along the xμ-directions, it is
convenient to introduce a Fourier decomposition in these directions by writing2

�(z, xμ) =
∫

ddk

(2π)d
eik·x �(z, kμ) , (5.21)

where k · x ≡ ημνkμxμ and kμ ≡ (ω, �k), with ω and �k the energy and the spatial
momentum, respectively. In terms of these Fourier modes the equation of motion
for � derived from the action (5.20) is

zd+1∂z(z
1−d∂z�) − k2z2� − m2 R2� = 0 , k2 = −ω2 + �k2 . (5.22)

Near the boundary z → 0, the above equation can be readily solved perturbatively
in z to obtain the asymptotic behavior:

�(z, k) ≈ A(k)
(
zd−� + · · ·) + B(k)

(
z� + · · ·) as z → 0 , (5.23)

2 For notational simplicity we will use the same symbol to denote a function and its Fourier transform,
distinguishing them only through their arguments.
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where

� = d

2
+ ν , ν =

√
m2 R2 + d2

4
. (5.24)

In (5.23), “+ · · · ” denotes subleading terms in each of the two linearly indepen-
dent solutions. In subsequent equations we shall continue to suppress subleading
terms, displaying only the leading term for each linearly independent solution and
not even writing the “+ · · · ”. Since k enters (5.22) as a parameter, the integration
“constants” A and B in general depend on k.

Fourier transforming (5.23) back into coordinate space, we then find

�(z, x) ≈ A(x) zd−� + B(x) z� as z → 0 . (5.25)

The exponents in (5.25) are real provided

m2 R2 ≥ −d2

4
. (5.26)

In fact, one can show that the theory is stable for any m2 in the range (5.26),
whereas for m2 R2 < −d2/4 there exist modes that grow exponentially in time and
the theory is unstable [194, 195, 617]. In other words, in AdS space a field with
a negative mass-squared does not lead to an instability provided the mass-squared
is not “too negative”. Equation (5.26) is often called the Breitenlohner–Freedman
(BF) bound.

In the stable region (5.26) one must still distinguish between the finite interval
−d2/4 ≤ m2 R2 < −d2/4+1 and the rest of the region, m2 R2 ≥ −d2/4+1. In the
first case both terms in (5.25) are normalizable with respect to the inner product

(�1,�2) = −i
∫
!t

dzd �x √−g gtt(�∗
1∂t�2 − �2∂t�

∗
1) , (5.27)

where !t is a constant-t slice. We will comment on this case at the end of this
section.

For the moment let us assume that m2 R2 ≥ −d2/4 + 1. In this case the first
term in (5.25) is non-normalizable and the second term, which is normalizable,
does not affect the leading boundary behavior. As motivated in the previous sec-
tion, the boundary value of a bulk field � should be identified with the source
for the corresponding boundary operator O. Since in (5.25) the boundary behavior
of � is controlled by A(x), the presence of such a non-normalizable term should
correspond to a deformation of the boundary theory of the form

Sbdry → Sbdry +
∫

dd x φ(x)O(x) , with φ(x) = A(x) . (5.28)

In other words, the non-normalizable term determines the boundary theory
Lagrangian. In particular, we see that in order to obtain a finite source φ(x) for
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5.1 Gauge/gravity duality 121

a scalar operator O(x) which is dual to an AdS scalar field �(x, z) of mass m,
with m related to � through (5.24), we need to make the identification

φ(x) = �|∂AdS (x) ≡ lim
z→0

z�−d�(z, x) , (5.29)

which is (5.14) with the choice α� = � − d.
In contrast, the normalizable modes are elements of the bulk Hilbert space. More

explicitly, in the canonical quantization one expands � in terms of a basis of nor-
malizable solutions of (5.22), from which one can then build the Fock space and
compute the bulk Green’s functions, etc. The equivalence between the bulk and
boundary theories implies that their respective Hilbert spaces should be identified.
Thus we conclude that normalizable modes should be identified with states of the
boundary theory. This identification gives an important tool for finding the spec-
trum of low energy excitations of a strongly coupled gauge theory. In the particular
example at hand, one can readily see from (5.22) that, for a given �k, there is a con-
tinuous spectrum of ω, consistent with the fact that the boundary theory is scale
invariant.

Furthermore, as will be discussed in Section 5.3 (and in Appendix C), the coeffi-
cient B(x) of the normalizable term in (5.25) can be identified with the expectation
value of O in the presence of the source φ(x) = A(x), namely

〈O(x)〉φ = 2νB(x) . (5.30)

In the particular case of a purely normalizable solution, i.e. one with A(x) = 0,
this equation yields the expectation value of the operator in the undeformed theory.

Equations (5.25), (5.28) and (5.30) imply that �, introduced in (5.24), should be
identified as the conformal dimension of the boundary operator O dual to � [803].
Indeed, recall that a scale transformation of the boundary coordinates xμ → Cxμ

corresponds to the isometry xμ → Cxμ, z → Cz in the bulk. Since � is a scalar
field, under such an isometry it transforms as �′(Cz,Cxμ) = �(z, xμ), which
implies that the corresponding functions in the asymptotic form (5.25) must trans-
form as A′(Cxμ) = C�−d A(xμ) and B ′(Cxμ) = C−�B(xμ). This means that
A(x) and B(x) have mass scaling dimensions d−� and �, respectively. Eqs. (5.28)
and (5.30) are then consistent with each other and imply that O(x) has mass scaling
dimension �.

The mass–dimension relations (5.24), the near-boundary behavior (5.25), and
the identification (5.29) are modified for fields of nonzero spin. For example, for a
massive vector field whose bulk action is given by the Maxwell action plus a mass
term, one finds,

� = d

2
+
√

(d − 2)2

4
+ m2 R2 . (5.31)
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A gauge field AM has m2 = 0, which means � = d −1 as expected for a conserved
boundary current, see Section 5.1.4. By an analysis similar to that discussed above
for the case of a scalar field, it can be shown that, near the boundary the vector
field, AM has the asymptotic behavior

Aμ = aμ + bμzd−2, as z → 0 (5.32)

confirming the identification (5.16).
For the metric (a massless spin-two field), analysis of the Einstein equations

leads to � = d , as expected for the stress–energy tensor. An intuitive way to under-
stand this is to note that just as the transverse traceless part of the graviton behaves
like a massless scalar field in Minkowski space, in AdS space the transverse trace-
less part of a metric fluctuation behaves like a minimally coupled massless scalar,
as we discuss further in Section 6.2.2. More explicitly, when a transverse traceless
metric perturbation is written with one upper and one lower index, it satisfies the
same equation that a massless scalar field does. We then note from (5.19) that any
metric perturbation with one upper and one lower index tends to a finite limit upon
approaching the boundary, just like a massless scalar field. Consequently, the com-
ponent of the boundary theory stress tensor that is dual to the transverse traceless
part of the bulk metric has scaling dimension d. By covariance this means that all
components of the boundary theory stress tensor scale in this way. Note that upon
applying the scaling argument below Eq. (5.30) to Eq. (5.19), one finds that g(b)

μν and
thus hμν does not scale under a scaling transformation, which then gives the correct
scaling dimension for T μν . This provides a quick consistency check of (5.19).

Before closing this section, let us return to the range −d2/4 ≤ m2 < −d2/4+1.
We shall be brief because this is not a case that arises in later sections. Since in
this case both terms in (5.25) are normalizable, either one can be used to build
the Fock space of physical states of the theory [194, 195]. This gives rise to two
different boundary CFTs in which the dimensions of the operator O(x) are � or
d − �, respectively [538]. It was later realized [805, 142] that even more general
choices are possible in which the modes used to build the physical states have
both A and B, nonzero. These choices correspond to different quantizations from
the bulk viewpoint, and to deformations by double-trace operators from the gauge
theory viewpoint.

5.2 Generalizations

5.2.1 Nonzero temperature and nonzero chemical potential

As discussed in Section 4.3, the same string theory reasoning giving rise to the
equivalence (4.27) can be generalized to nonzero temperature by replacing the pure
AdS metric (5.2) by that of a black brane in AdS5 [804], Eq. (4.30), which we
repeat here for convenience:
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ds2 = r2

R2

(− f dt2 + d �x2
) + R2

r2 f
dr2, f (r) = 1 − r4

0

r4
. (5.33)

Equivalently, in terms of the z-coordinate, we replace Eq. (5.2) by Eq. (4.32), i.e.

ds2 = R2

z2

(− f dt2 + d �x2
) + R2

z2 f
dz2, f (z) = 1 − z4

z4
0

. (5.34)

The metrics above have an event horizon at r = r0 and z = z0, respectively, and
the regions outside the horizon correspond to r ∈ (r0,∞) and z ∈ (0, z0). This
generalization can also be directly deduced from (4.27) as the black brane (5.33)–
(5.34) is the only metric on the gravity side that satisfies the following properties:
(i) it is asymptotically AdS5; (ii) it is translationally invariant along all the boundary
directions and rotationally-invariant along the boundary spatial directions; (iii) it
has a temperature and satisfies all laws of thermodynamics. It is therefore natural
to identify the temperature and other thermodynamical properties of (5.33)–(5.34)
with those of the SYM theory at nonzero temperature.

We mention in passing that there is also a nice connection between the
black brane geometry (5.33)–(5.34) and the thermal-field formulation of finite-
temperature field theory in terms of real time. Indeed, the fully extended spacetime
of the black brane has two boundaries. Each of them supports an identical copy of
the boundary field theory which can be identified with one of the two copies of the
field theory in the Schwinger–Keldysh formulation. The thermal state can also be
considered as a specific entangled state of the two field theories. For more details
see [593, 451].

The Hawking temperature of the black brane can be calculated via the stan-
dard method [376] (see Appendix B for details) of demanding that the Euclidean
continuation of the metric (5.34) obtained by the replacement t → −i tE,

ds2
E = R2

z2

(
f dt2

E + dx2
1 + dx2

2 + dx2
3

) + R2

z2 f
dz2 , (5.35)

be regular at z = z0. This requires that tE be periodically identified with a period β

given by

β = 1

T
= π z0 . (5.36)

The temperature T is identified with the temperature of the boundary SYM theory,
since tE corresponds precisely to the Euclidean time coordinate of the bound-
ary theory. We emphasize here that while the Lorentzian spacetime (5.34) can be
extended beyond the horizon z = z0, the Euclidean metric (5.35) exists only for
z ∈ (0, z0) as the spacetime ends at z = z0, and ends smoothly once the choice
(5.36) is made.

https://doi.org/10.1017/9781009403504.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403504.005


124 A duality toolbox

For a boundary theory with a U (1) global symmetry, like N = 4 SYM theory,
one can furthermore turn on a chemical potential μ for the corresponding U (1)
charge. From the discussion of Section 5.1.4, this requires that the bulk gauge field
Aμ which is dual to a boundary current Jμ satisfies the boundary condition

lim
z→0

At = μ . (5.37)

The above condition along with the requirement that the field Aμ should be regular
at the horizon implies that there should be a radial electric field in the bulk, i.e. the
black hole is now charged. We will not write the metric of a charged black hole
explicitly, as we will not use it in this book. For more details and its applications,
see e.g. [261, 262, 393, 228, 302, 303, 426, 483]. Similarly, in the case of theories
with fundamental flavor introduced as probe D-branes, a baryon number chemical
potential corresponds to an electric field on the branes [529, 461, 539, 606, 643,
516, 809, 141, 309, 718, 644, 375, 515].

5.2.2 A confining theory

Although our main interest is the deconfined phase of QCD, in this section we will
briefly describe a simple example of a duality for which the field theory possesses
a confining phase [804]. For simplicity we have chosen a model in which the field
theory is three-dimensional, but all the essential features of this model extend to
the string duals of more realistic confining theories in four dimensions.

We start by considering N = 4 SYM theory at finite temperature. In the
Euclidean description the system lives on R

3 ×S1. The circle direction corresponds
to the Euclidean time, which is periodically identified with period β = 1/T . As
is well known, at length scales much larger than β one can effectively think of
this theory as the Euclidean version of pure three-dimensional Yang–Mills theory.
The reasoning is that at these scales one can perform a Kaluza–Klein reduction
along the circle. Since the fermions of the N = 4 theory obey antiperiodic bound-
ary conditions around the circle, their zero-mode is projected out, which means
that all fermionic modes acquire a tree-level mass of order 1/β. The scalars of
the N = 4 theory are periodic around the circle, but they acquire masses at the
quantum level. The only fields that cannot acquire masses are the gauge bosons
of the N = 4 theory, since masses for them are forbidden by gauge invariance.
Thus, at long distances the theory reduces to a pure Yang–Mills theory in three
dimensions, which is confining and has a map gap. The Lorentzian version of the
theory is simply obtained by analytically continuing one of the R

3 directions into
the Lorentzian time. Thus, in this construction the “finite temperature” of the origi-
nal four-dimensional theory is a purely theoretical device. The effective Lorentzian
theory in three dimensions is at zero temperature.
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In order to obtain the gravity description of this theory we just need to implement
the above procedure on the gravity side. We start with the Lorentzian metric (5.1)–
(5.2) dual to N = 4 SYM at zero temperature. Then we introduce a nonzero
temperature by going to Euclidean signature via t → −i tE and periodically identi-
fying the Euclidean time. This results in the metric (5.35). Finally, we analytically
continue one of the R

3 directions, say x3, back into the new Lorentzian time:
x3 → i t . The final result is the metric

ds2 = R2

z2

(−dt2 + dx2
1 + dx2

2 + f dt2
E

) + R2

z2 f
dz2 . (5.38)

In this metric the directions t, x1, x2 correspond to the directions in which the effec-
tive three-dimensional Yang–Mills theory lives. The direction tE is now a compact
spatial direction. Note that since the original metric (5.35) smoothly ends at z = z0,
so does (5.38). This leads to a dramatic difference between the gauge theory dual
to (5.38) and the original N = 4 theory: the fact that the radial direction smoothly
closes off at z = z0 introduces a mass scale in the boundary theory. To see this,
note that the warp factor R2/z2 has a lower bound. Thus, when applying the dis-
cussion of Section 5.1.1 to (5.38), EYM in Eq. (5.4) will have a lower limit of order
M ∼ 1/z0, implying that the theory develops a mass gap of this order. This can
also be explicitly verified by solving the equation of motion of a classical bulk field
(which is dual to some boundary theory operator) in the metric (5.38): for any fixed
�k one finds a discrete spectrum of normalizable modes with a mass gap of order M .
(Note that since the size of the circle parametrized by tE is proportional to 1/z0, the
mass gap is in fact comparable to the energies of Kaluza–Klein excitations on the
circle.) As explained in Section 5.1.5, these normalizable modes can be identified
with the glueball states of the boundary theory.

The fact that the gauge theory dual to the geometry (5.38) is a confining theory
is further supported by several checks, including the following two. First, analysis
of the expectation value of a Wilson loop reveals an area law, as will be discussed
in Section 5.4. Second, the gravitational description can be used to establish that
the theory described by (5.38) undergoes a deconfinement phase transition at a
temperature Tc ∼ M set by the mass gap, above which the theory is again described
by a geometry with a black hole horizon [804] (see [601, 672] for reviews).

The above construction resulted in an effective confining theory in three dimen-
sions because we started with the theory on the worldvolume of D3-branes, which
is a four-dimensional SYM theory. By starting instead with the near horizon solu-
tion of a large number of non-extremal D4-branes, which describes a SYM theory
in five dimensions, the above procedure leads to the string dual of a Lorentzian con-
fining theory that at long distance reduces to a four-dimensional pure Yang–Mills
theory [804]. This has been used as the starting point of the Sakai–Sugimoto model
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for QCD [721, 722], which incorporates spontaneous chiral symmetry breaking
and its restoration at high temperatures [30, 670]. For reviews on some of these
topics see for example [601, 672].

5.2.3 Other generalizations

In addition to (4.27), many other examples of gauge/string dualities are known in
different spacetime dimensions (see e.g. [29] and references therein). These include
theories with fewer supersymmetries and theories which are not scale invariant, in
particular confining theories [688, 537, 597] (see e.g. [27, 764] for reviews).

For a d-dimensional conformal theory, the dual geometry on the gravity side
contains a factor of AdSd+1 and some other compact manifold.3 When expanded
in terms of the harmonics of the compact manifold, the duality again reduces to
that between a d-dimensional conformal theory and a gravity theory in AdSd+1. In
particular, in the classical gravity limit, this reduces to Einstein gravity in AdSd+1

coupled to various matter fields with the precise spectrum of matter fields depend-
ing on the specific theory under consideration. For a nonconformal theory the dual
geometry is in general more complicated. Some simple, early examples were dis-
cussed in [487]. If a theory has a mass gap, the dual bulk geometry either closes
off at some finite value of z0 as in the example of Section 5.2.2 or ends in some IR
singularity that can be reached in a finite proper distance.

All known examples of gauge/string dual pairs share the following common
features with (4.27): (i) the field theory is described by elementary bosons and
fermions coupled to non-Abelian gauge fields whose gauge group is specified by
some Nc; (ii) the string description reduces to classical (super)gravity in the large-
Nc, strong coupling limit of the field theory. In this book we will use (4.27) as
our prime example for illustration purposes, but the discussion can be immediately
applied to other examples including nonconformal ones.

5.3 Correlation functions of local operators

In this section we will explain how to calculate correlation functions of local gauge-
invariant operators of the boundary theory in terms of the dual gravity description.
We will mostly focus on one-point and two-point functions, in the latter case in par-
ticular on real time retarded correlators which are important for determining linear
response, transport coefficients, and spectral functions. We will, however, begin
by describing the general prescription for computing n-point Euclidean correlation
functions.

3 Not necessarily in a direct product; the product may be warped.
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5.3.1 General prescription for Euclidean correlators

In view of the field/operator correspondence discussed in Sections 5.1.4 and 5.1.5,
it is natural to postulate that the Euclidean partition functions of the boundary and
bulk theories must agree, namely that [392, 803]

ZCFT [φ(x)] = Zstring
[
�|∂AdS (x)

]
. (5.39)

Both sides of this equation require explanation. The left-hand side of (5.39) is the
most general partition function in the CFT, including a source for each gauge-
invariant operator in the theory, namely

ZCFT [φ(x)] ≡ 〈e
∫
φO〉 . (5.40)

Here one should think of φ(x) in Eq. (5.39) as succinctly indicating the collection
of all such sources. The expectation value 〈· · · 〉 can be in the vacuum or a thermal
state. Since AdS has a boundary, to define the string theory partition function on the
right-hand side of (5.39) one needs to specify a boundary condition for each bulk
field. The collection of all such boundary conditions is indicated by �|∂AdS (x)
in Eq. (5.39). Having parsed both sides of it, the equality in (5.39) makes sense
because both sides of the equation are functionals of the same variables upon the
identification of φ and �|∂AdS (x) in (5.14).

The right-hand side of (5.39) is in general not easy to compute, but it simplifies
dramatically in the classical gravity limit (5.6), where it can be obtained using the
saddle point approximation as

Zstring[φ] � exp
(
S(ren)[�(E)

c ]) , (5.41)

where we have absorbed a conventional minus sign into the definition of the
Euclidean action which avoids having some additional minus signs in various equa-
tions below and in the analytic continuation to Lorentzian signature. In Eq. (5.41),
S(ren)[�(E)

c ] is the renormalized on-shell classical supergravity action [450, 111,
635, 338, 558, 314, 158], namely the classical action evaluated on a Euclidean
solution �(E)

c of the classical equations of motion determined by the boundary
identification with φ, i.e. the Euclidean version of (5.14), and by the requirement
that the solution be regular everywhere in the interior of the spacetime. The on-shell
action needs to be renormalized because it typically suffers from IR divergences
due to the integration region near the boundary of AdS [803]. These divergences
are dual to UV divergences in the gauge theory, consistent with the UV/IR corre-
spondence. The procedure to remove these divergences on the gravity side is well
understood and is referred to as “holographic renormalization”. (It is no more sim-
ilar to the holographic renormalization group that we mentioned in Section 5.1.1
than the renormalization group is to traditional renormalization.) Although holo-
graphic renormalization is an important ingredient of the gauge/string duality, it
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is also somewhat technical. In Appendix C we briefly review it in the context of
a two-point function calculation. The interested reader may consult the literature
cited above, as well as the review [742], for details.

From (5.39) and (5.41) we thus find that in the large-Nc and large-λ limit, the
boundary theory free energy is given by

log ZCFT[φ(x)] = S(ren)[�(E)
c ] . (5.42)

Corrections to Eq. (5.41) can be included as an expansion in α′ and gs , which
correspond to 1/

√
λ and 1/Nc corrections in the gauge theory, respectively. Note

that since the classical action (5.9) on the gravity side is proportional to 1/G5, from
Eq. (5.12) we see that S(ren)[�(E)

c ] ∼ N 2
c , as one would expect for the generating

functional of an SU (Nc) SYM theory in the large-Nc limit. From (5.42), in the
large-Nc and large-λ limit, connected correlation functions of the gauge theory are
given simply by functional derivatives of the on-shell, classical gravity action:

〈O(x1) . . .O(xn)〉 = δn S(ren)[�(E)
c ]

δφ(x1) . . . δφ(xn)

∣∣∣∣
φ=0

. (5.43)

This concludes our general discussion of n-point functions. In Appendix C we give
an explicit computation of the Euclidean two-point function for a scalar operator
in a CFT. For some early work on the evaluation of higher-point functions see
Refs. [358, 581, 260].

5.3.2 One-point functions

Here we describe how to compute the one-point function (i.e. expectation value)
of an operator in a general time-dependent state which may not have a Euclidean
analytic continuation. We first consider a generic scalar operator, and then turn
more specifically to the stress tensor and a conserved current.

From (5.43), the Euclidean one point function of a scalar operator O in the
presence of the source φ is given by

〈O(x)〉φ = δS(ren)[�(E)
c ]

δφ(x)
= lim

z→0
zd−� δS(ren)[�(E)

c ]
δ�

(E)
c (z, x)

, (5.44)

where in the second equality we have used (5.29). In classical mechanics, it is well
known that the variation of the action with respect to the boundary value of a field
results in the canonical momentum � conjugate to the field, where the boundary
in that case is usually a constant-time surface. (See, e.g., Ref. [566].) In the present
case the boundary is a constant-z surface, but it is still useful to proceed by analogy
with classical mechanics and to think of the derivative in the last term in (5.44) as
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the renormalized canonical momentum conjugate to �(E)
c evaluated on the classical

solution:

�(ren)
c (z, x) = δS(ren)[�(E)

c ]
δ�

(E)
c (z, x)

. (5.45)

With this definition, Eq. (5.44) takes the form

〈O(x)〉φ = lim
z→0

zd−��(ren)
c (z, x) (5.46)

which can further be shown to yield

〈O(x)〉φ = 2νB(x), (5.47)

where we have used (5.25) and have identified A(x) in (5.25) with φ(x). See
Appendix C for a discussion. In the absence of a source, i.e. if φ(x) = A(x) =
0, then (5.47) gives the expectation value of O in terms of the fall-off of a
normalizable solution.

The prescription (5.46) or (5.47) requires only knowledge of the asymptotic
boundary behavior of the bulk solution �c and is thus much simpler to com-
pute than (5.44). More importantly, the formulation (5.44) does not generalize to a
generic time-dependent state which does not have a Euclidean analytic continua-
tion, while the expressions (5.46) or (5.47) do have straightforward generalizations.
Recall that a normalizable solution in the bulk is mapped to a state in the boundary.
Evaluating (5.46) or (5.47) for such a bulk solution then gives the expectation value
in the corresponding state on the boundary.

Let us now consider the one-point function of the stress–energy tensor which,
upon making the identification (5.42), can be obtained from the expression

〈T μν(x)〉 = 2√
g(b)(x)

δS(ren)[g(b)]
δg(b)

μν (x)
= lim

z→0

zd+2

Rd+2

2√
detgμν(x, z)

δS(ren)[g]
δgμν(x, z)

,

(5.48)
where g(b)

μν is the metric for the boundary theory and where the various expressions
should all be understood in Euclidean signature. The first equality follows from
the standard field theory definition of the stress tensor and we have used (5.19)
in the second equality. Note that in the last expression det gμν is the determinant
of gμν(x, z), which is the part of the bulk metric along boundary directions or,
equivalently, the induced metric on a constant-z hypersurface.

As in the scalar case, the variation of the bulk on-shell action with respect to the
boundary value of gμν is given by the canonical momentum �μν conjugate to gμν

evaluated on the classical solution:

δS(ren)

δgμν

= �
μν

(ren) =
√

detgμν

16πG N
(Kμν − gμν K ) + δS(ct)[g]

δgμν(x, z)
(5.49)
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with Kμν the extrinsic curvature for a constant-z hypersurface. In (5.49), the first
term is the standard canonical momentum in general relativity, while S(ct)[g] is the
counterterm that must be added to the action in order to make the total action finite.
S(ct)[g] is dimension-dependent for a general curved boundary metric g(b), but has
a universal form when the boundary metric is flat, in which case one has [111]

S(ct) = − 1

8πG N

d − 1

R

∫
z→0

dd x
√

detgμν , (5.50)

where the integral is over a constant-z slice. From (5.48)–(5.50) we thus find that,
if the boundary theory has a flat metric,

〈T μν〉 = lim
z→0

1

8πG N

Rd+2

zd+2

(
Kμν − gμν K − d − 1

R
gμν

)
. (5.51)

As discussed above in the scalar case, the expression (5.51) can be applied to a
general bulk Lorentzian geometry to find the expectation value of the stress tensor
in the corresponding dual state. In particular, it applies to non-equilibrium states.
Equation (5.51) will play an important role in Chapter 7 and in Section 8.3.

Finally we briefly mention the prescription for extracting the expectation value
of a conserved current jμ in a boundary state dual to some given bulk state.
Suppose the corresponding bulk gauge field AM has the Maxwell action

S = −1

4

∫
dz dd x

√−g FM N F M N . (5.52)

The canonical momentum conjugate to Aμ is �μ = −√−gFzμ and (5.46)–(5.47)
then generalize to

〈 jμ〉 = − lim
z→0

√−gFzμ = −(d − 2)Rd−3ημνbμ (5.53)

where bμ is the coefficient of the normalizable term in (5.32) and ημν is the
boundary Minkowski metric.

5.3.3 Real time two-point functions

We now proceed to the prescription for calculating real time correlation func-
tions in equilibrium. We will focus our discussion on retarded two-point functions
because of their important role in characterizing linear response. Also, once the
retarded function is known one can then use standard relations to obtain the other
Green’s functions. The calculation of two-point functions out of equilibrium does
not yield closed form expressions like those we shall find in equilibrium below, and
we shall not present it here. However, for an out-of-equilibrium formulation that
that yields explicit expressions suitable for numerical evaluation, see Ref. [241].
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We start with linear response in Euclidean signature. In momentum space the
response, i.e the expectation value of an operator, is proportional to the corre-
sponding source, and the constant of proportionality (for each momentum) is the
two-point function of the operator:

〈O(ωE , �k)〉φ = G E(ωE , �k)φ(ωE , �k) . (5.54)

Then, Eqs. (5.46)–(5.47) yield

G E(ωE , �k) = 〈O(ωE , �k)〉φ
φ(ωE , �k) = lim

z→0
z2(d−�)�

(ren)
c

�
(E)
c

= 2ν
B(ωE , �k)
A(ωE , �k) , (5.55)

where ωE denotes Euclidean frequency. See Appendix C for further discussion.
If the Euclidean correlation functions G E are known exactly, the retarded

functions G R can then be obtained via the analytic continuation

G R(ω, �k) = G E(−i(ω + iε), �k) . (5.56)

In most examples of interest, however, the Euclidean correlation functions can only
be found numerically and analytic continuation to Lorentzian signature becomes
difficult. Thus, it is important to develop techniques to calculate real time correla-
tion functions directly. Based on an educated guess that passed several consistency
checks, a prescription for calculating retarded two-point functions in Lorentzian
signature was first proposed by Son and Starinets in Ref. [747]. The authors of
Ref. [451] later justified the prescription and extended it to n-point functions. Here
we will follow the treatment given in Refs. [482, 481]. For illustration we consider
the retarded two-point function for a scalar operator O at nonzero temperature,
which can be obtained from the propagation of the dual scalar field � in the geom-
etry of an AdS black brane. The action for � again takes the form (5.20) with gM N

now given by the black brane metric (5.34).
Before giving the prescription, we note that in Lorentzian signature one cannot

directly apply the procedure summarized by Eq. (5.43) to obtain retarded functions.
There are two immediate complications/difficulties. First, the Lorentzian black
hole spacetime contains an event horizon and one also needs to impose appro-
priate boundary conditions there when solving the classical equation of motion
for �. Second, since partition functions are defined in terms of path integrals, the
resulting correlation functions should be time ordered.4 As we now describe, both
complications can be dealt with in a simple manner.

4 While it is possible to obtain Feynman functions this way, the procedure is quite subtle, since Feynman
functions require imposing different boundary conditions for positive- and negative-frequency modes at the
horizon and the choices of positive-frequency modes are not unique in a black hole spacetime. The cor-
rect choice corresponds to specifying the so-called Hartle–Hawking vacuum. For details see Ref. [451]. In
contrast, the retarded function does not depend on the choice of the bulk vacuum in the classical limit as
the corresponding bulk retarded function is given by the commutator of the corresponding bulk field – see
Eq. (5.66).
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The idea is to analytically continue the Euclidean classical solution that we
have denoted �(E)

c (ωE , �k), as well as Eq. (5.55), to Lorentzian signature according
to (5.56). Clearly the analytic continuation of �(E)

c (ωE , �k),
�c(ω, �k) = �(E)

c (−i(ω + iε), �k) , (5.57)

solves the Lorentzian equation of motion. In addition, this solution obeys the
infalling boundary condition at the future event horizon of the black brane met-
ric (5.34). This property is important as it ensures that the retarded correlator is
causal and only propagates information forward in time. This is intuitive since
we expect that, classically, information can fall into the black hole horizon but not
come out, so the retarded correlator should have no outgoing component. Although
it is intuitive, given its importance let us briefly verify that the infalling boundary
condition is satisfied. The Lorentzian equation of motion in momentum space for
�c in the black brane metric (5.34) takes the form

z5∂z

[
z−3 f (z)∂z�

]
+ ω2z2

f (z)
� − �k2z2� − m2 R2� = 0 , (5.58)

where �k2 = δi j ki k j . The corresponding Euclidean equation is obtained by set-
ting ω = iωE . Near the horizon z → z0, since f → 0 the last two terms in
(5.58) become negligible compared with the second term and can be dropped. The
resulting equation (with only the first two terms of (5.58)) then takes the simple
form

Lorentzian : ∂2
ξ � + ω2� = 0 ,

Euclidean : ∂2
ξ � − ω2

E� = 0 , (5.59)

in terms of a new coordinate

ξ ≡
∫ z dz′

f (z′)
. (5.60)

Since ξ → +∞ as z → z0, in order for the Euclidean solution to be regu-
lar at the horizon we must choose the solution with the decaying exponential,
i.e. �(E)

c (ωE , ξ) ∼ e−ωE ξ . The prescription (5.57) then yields �c(ω, ξ) ∼ eiωξ .
Going back to coordinate space we find that near the horizon

�c(t, ξ) ∼ e−iω(t−ξ) . (5.61)

As anticipated, this describes a wave propagating towards the direction in which
ξ increases, i.e. falling into the horizon. Had we chosen the opposite sign in the
prescription (5.57) we would have obtained an outgoing wave, as appropriate for
the advanced correlator which obeys an outgoing boundary condition at the past
event horizon of the metric (5.34), and has no infalling component.
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5.3 Correlation functions of local operators 133

Given a Lorentzian solution satisfying the infalling boundary condition at the
horizon which can be expanded near the boundary according to (5.23), as empha-
sized below (5.47), Eqs. (5.46)–(5.47) can then be applied directly to such a
Lorentzian solution, yielding the Lorentzian counterpart of (5.55):

G R(ω, �k) = lim
z→0

z2(d−�) �(ren)
c

�c(ω, �k) = 2ν
B(ω, �k)
A(ω, �k) . (5.62)

Incidentally, Eq. (5.62) shows that the retarded correlator possesses a pole precisely
at those frequencies for which A(ω, �k) vanishes. In other words, the poles of the
retarded two-point function are in one-to-one correspondence with normalizable
solutions of the equations of motion which are infalling at the horizon. Owing to the
infalling boundary conditions at the horizon, such modes have a discrete spectrum
and their frequencies have strictly negative imaginary parts. In the gravity literature
such modes are referred to as quasinormal modes. In the field theory context, poles
of retarded Green functions encode much of the physics of a system including the
presence of hydrodynamic modes, the way in which out-of-equilibrium states relax
toward equilibrium and the presence of quasiparticles, if any. We will return to this
discussion at length in the context of strongly coupled N = 4 SYM theory in
Chapter 6 and in particular in Section 6.4.

For practical purposes, let us recapitulate here the main result of this section,
namely the algorithmic procedure for computing the real time, finite-temperature
retarded two-point function of a local, gauge-invariant operator O(x). This consists
of the following steps.

(1) Identify the bulk mode �(x, z) dual to O(x).
(2) Find the Lorentzian-signature bulk effective action for � to quadratic order,

and the corresponding linearized equation of motion in momentum space.
(3) Find a solution �c(k, z) to this equation with the boundary conditions that the

solution is infalling at the horizon and behaves as

�c(z, k) ≈ A(k) zd−� + B(k) z� (5.63)

near the boundary (z → 0), where � is the dimension of O(x), d is the
spacetime dimension of the boundary theory and A(k) should be thought of
as an arbitrary source for O(k). B(k) is not an independent quantity but is
determined by the boundary condition at the horizon and A(k).

(4) The retarded Green’s function for O is then given by

G R(k) = 2ν
B(k)

A(k)
, (5.64)

where ν is defined in Eq. (5.24).
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In Section 9.5.2 we will discuss in detail an example of a retarded correlator of two
electromagnetic currents.

Before closing this section, we note that an alternative way to compute bound-
ary correlation functions which works in both Euclidean and Lorentzian signature
is [118]

〈O(x1) · · ·O(xn)〉 = lim
zi →0

(2νz�1 ) · · · (2νz�n )〈�(z1, x1) · · ·�(zn, xn)〉 (5.65)

where the correlator on the right-hand side is a correlation function in the bulk the-
ory. In (5.65) it should be understood that whatever ordering one wants to consider,
it should be same on both sides. For example, for the retarded two-point function
G R of O

G R(x1 − x2) = lim
z1,z2→0

(2νz�1 )(2νz�2 )GR(z1, x1; z2, x2) , (5.66)

where GR denotes the retarded Green’s function of the bulk field �.

5.4 Wilson loops

The expectation values of Wilson loops

W r (C) = TrP exp

[
i
∫
C

dxμ Aμ(x)

]
, (5.67)

are an important class of non-local observables in any gauge theory. Here,∫
C denotes a line integral along the closed path C, W r (C) is the trace of an

SU (N )-matrix in the representation r (one often considers fundamental or adjoint
representations, i.e. r = F, A), the vector potential Aμ(x) = Aa

μ(x) T a can be
expressed in terms of the generators T a of the corresponding representation, and
P denotes path ordering. The expectation values of Wilson loops contain infor-
mation about the nonperturbative physics of non-Abelian gauge field theories and
have applications to many physical phenomena such as confinement, thermal phase
transitions, quark screening, etc. For many of these applications it is useful to think
of the path C as that traversed by a quark. We will discuss some of these applica-
tions in Chapter 8. Here, we describe how to compute expectation values of Wilson
loops in a strongly coupled gauge theory using its gravity description.

We again use N = 4 SYM theory as an example. Now recall that the field
content of this theory includes six scalar fields �φ = (φ1, . . . φ6) in the adjoint
representation of the gauge group. This means that in this theory one can write
down the following generalization of (5.67) [595, 711]:

W (C) = 1

Nc
TrP exp

[
i
∮
C

ds
(

Aμ ẋμ + �n · �φ
√

ẋ2
)]

, (5.68)
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C

Σ

D-brane

Figure 5.1 String worldsheet associated with a Wilson loop.

where �n(s) is a unit vector in R
6 that parametrizes a path in this space (or, more

precisely, in S5), just like xμ(s) parametrizes a path in R
(1,3). The factor of

√
ẋ2

is necessary to make �n · �φ √
ẋ2 a density under worldline reparametrizations. Note

that the operators (5.67) and (5.68) are equivalent in the case of a light-like loop
(as will be discussed in Section 8.5) for which ẋ2 = 0.

An important difference between the operators (5.67) and (5.68) is that (5.67)
breaks supersymmetry, whereas (5.68) is locally 1/2-supersymmetric, meaning that
for a straight-line contour (that is time-like in Lorentzian signature) the operator is
invariant under half of the supercharges of the N = 4 theory.

We will now argue that the generalized operator (5.68) has a dual description
in terms of a string worldsheet. For this purpose it is useful to think of the loop
C as the path traversed by a quark. Although the N = 4 SYM theory has no
quarks, we will see below that these can be simply included by introducing in the
gravity description open strings attached to a D-brane sitting at some radial position
proportional to the quark mass. The endpoint of the open string on the D-brane is
dual to the quark, so the boundary ∂! of the string worldsheet ! must coincide
with the path C traversed by the quark – see Fig. 5.1. This suggests that we must
identify the expectation value of the Wilson loop operator, which gives the partition
function (or amplitude) of the quark traversing C, with the partition function of the
dual string worldsheet ! [595, 711]:

〈W (C)〉 = Zstring[∂! = C] . (5.69)

For simplicity, we will focus on the case of an infinitely heavy (non-dynamical)
quark. This means that we imagine that we have pushed the D-brane all the way to
the AdS boundary. Under these circumstances the boundary ∂! = C of the string
worldsheet also lies within the boundary of AdS.

The key point to recall now is that the string endpoint couples both to the gauge
field and to the scalar fields on the D-brane. This is intuitive since, after all, we
obtained these fields as the massless modes of a quantized open string with end-
points attached to the D-brane. Physically, the coupling to the scalar fields is just a
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reflection of the fact that a string ending on a D-brane “pulls” on it and deforms its
shape, thus exciting the scalar fields which parametrize this shape. The direction
orthogonal to the D-brane in which the string pulls is specified by �n. The coupling
to the gauge field reflects the fact that the string endpoint behaves as a pointlike
particle charged under this gauge field. We thus conclude that an open string end-
ing on a D-brane with a fixed �n excites both the gauge and the scalar fields, which
suggests that the correct Wilson loop operator dual to the string worldsheet must
include both types of fields and must therefore be given by (5.68).

The dual description of the operator (5.67) is the same as that of (5.68) except
that the Dirichlet boundary conditions on the string worldsheet along the S5 direc-
tions must be replaced by Neumann boundary conditions [42] (see also [330]). One
immediate consequence is that, to leading order, the strong coupling results for the
Wilson loop (5.68) with constant �n and for the Wilson loop (5.62) are the same.
However, the two results differ at the next order in the 1/

√
λ expansion, since in

the case of (5.67) we would have to integrate over the point on the sphere where
the string is sitting. More precisely, at the one-loop level in the α′-expansion one
finds that the determinants for quadratic fluctuations are different in the two cases
[331].

In the large-Nc, large-λ limit, the string partition function Zstring[∂! = C]
greatly simplifies and is given by the exponential of the classical string action, i.e.

Zstring[∂! = C] = ei S(C) → 〈W (C)〉 = ei S(C) . (5.70)

The classical action S(C) can in turn be obtained by extremizing the Nambu–Goto
action for the string worldsheet with the boundary condition that the string world-
sheet ends on the curve C. More explicitly, parameterizing the two-dimensional
world sheet by the coordinates σα = (τ, σ ), the location of the string world sheet
in the five-dimensional spacetime with coordinates x M is given by the Nambu–
Goto action (4.13). The fact that the action is invariant under coordinate changes
of σα will allow us to pick the most convenient worldsheet coordinates (τ, σ ) for
each occasion.

Note that the large-Nc and large-λ limits are both crucial for (5.70) to hold.
Taking Nc → ∞ at fixed λ corresponds to taking the string coupling to zero,
meaning that we can ignore the possibility of loops of string breaking off from the
string world sheet. Additionally taking λ → ∞ corresponds to sending the string
tension to infinity, which implies that we can neglect fluctuations of the string world
sheet. Under these circumstances the string worldsheet “hanging down” from the
contour C takes on its classical configuration, without fluctuating or splitting off
loops.

As a simple example let us first consider a contour C given by a straight line
along the time direction with length T which describes an isolated static quark at
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rest. On the field theory side we expect that the expectation value of the Wilson
line should be given by

〈W (C)〉 = e−i MT , (5.71)

where M is the mass of the quark. From the symmetry of the problem, the corre-
sponding bulk string worldsheet should be that of a straight string connecting the
boundary and the Poincaré horizon and translated along the time direction by T .
The action of such a string worldsheet is infinite since the proper distance from the
boundary to the center of AdS is infinite. This is consistent with the fact that the
external quark has an infinite mass. A finite answer can nevertheless be obtained if
we introduce an IR regulator in the bulk, putting the boundary at z = ε instead of
z = 0. From the IR/UV connection this corresponds to introducing a short-distance
(UV) cut-off in the boundary theory. Choosing τ = t and σ = z the string world-
sheet is given by xi (σ, τ ) = const., and the induced metric on the worldsheet is
then given by

ds2 = R2

σ 2
(−dτ 2 + dσ 2) . (5.72)

Evaluating the Nambu–Goto action on this solution yields

S = S0 ≡ − T R2

2πα′

∫ ∞

ε

dz

z2
= −

√
λ

2πε
T , (5.73)

where we have used the fact that R2/α′ = √
λ. Using (5.70) and (5.71) we then

find that

M =
√
λ

2πε
. (5.74)

5.4.1 Rectangular loop: vacuum

Now let us consider a rectangular loop sitting at a constant position on the S5

[711, 595]. The long side of the loop extends along the time direction with length
T , and the short side extends along the x1-direction with length L . We will assume
that T � L . Such a configuration can be though of as consisting of a static quark–
antiquark pair separated by a distance L . Therefore we expect that the expectation
value of the Wilson loop (with suitable renormalization) gives the potential energy
between the pair, i.e. we expect that

〈W (C)〉 = e−i EtotT = e−i(2M+V (L))T = ei S(C) , (5.75)

where Etot is the total energy for the whole system and V (L) is the potential energy
between the pair. In the last equality we have used (5.70). We will now proceed to
calculate S(C) for a rectangular loop.
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z(σ)

AdS boundary
L

Figure 5.2 String (red) associated with a quark–antiquark pair.

It is convenient to choose the worldsheet coordinates to be

τ = t, σ = x1 . (5.76)

Since T � L , we can assume that the surface is translationally invariant along the
τ direction, i.e. the extremal surface should have non-trivial dependence only on
σ . Given the symmetries of the problem we can also set

x3(σ ) = const. , x2(σ ) = const. (5.77)

Thus the only non-trivial function to solve for is z = z(σ ) (see Fig. 5.2), subject to
the boundary condition

z

(
± L

2

)
= 0 . (5.78)

Using the form (5.3) of the spacetime metric and Eqs. (5.76)–(5.77), the induced
metric on the worldsheet is given by

ds2
ws = R2

z2

(−dτ 2 + (1 + z′2)dσ 2
)
, (5.79)

giving rise to the Nambu–Goto action

SNG = − R2T
2πα′

∫ L
2

− L
2

dσ
1

z2

√
1 + z′2 , (5.80)

where z′ = dz/dσ . Since the action and the boundary condition are symmetric
under σ → −σ , z(σ ) should be an even function of σ . Introducing dimensionless
coordinates via

σ = L ξ , z(σ ) = L y(ξ) (5.81)
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we then have

SNG = − 2R2

2πα′
T
L

Q , with Q =
∫ 1

2

0

dξ

y2

√
1 + y′2 . (5.82)

Note that Q is a numerical constant. As we will see momentarily, it is in fact
divergent and therefore it should be defined more carefully. The equation of motion
for y is given by

y′2 = y4
0 − y4

y4
(5.83)

with y0 the turning point at which y′ = 0, which by symmetry should happen at
ξ = 0. Thus, y0 can be determined by the condition

1

2
=

∫ 1
2

0
dξ =

∫ y0

0

dy

y′ =
∫ y0

0
dy

y2√
y4

0 − y4
→ y0 = �( 1

4)

2
√
π�( 3

4)
. (5.84)

It is then convenient to change integration variable in Q from ξ to y to get

Q = y2
0

∫ y0

0

dy

y2
√

y4
0 − y4

. (5.85)

This is manifestly divergent at y = 0, but the divergence can be interpreted as
coming from the infinite rest masses of the quark and the antiquark. As in the
discussion after (5.71), we can obtain a finite answer by introducing an IR cut-off
in the bulk by putting the boundary at z = ε, i.e. by replacing the lower integration
limit in (5.85) by ε. The potential V (L) between the quarks is then obtained by
subtracting 2MT from (5.82) (with M given by (5.74)) and then taking ε → 0 at
the end of the calculation. One then finds the finite answer

V (L) = − 4π2

�4( 1
4)

√
λ

L
, (5.86)

where again we used the fact that R2/α′ = √
λ to translate from gravity to gauge

theory variables. Note that the 1/L dependence is simply a consequence of confor-
mal invariance. The non-analytic dependence on the coupling, i.e. the

√
λ factor,

could not be obtained at any finite order in perturbation theory. From the gravity
viewpoint, however, it is a rather generic result, since it is due the fact that the
tension of the string is proportional to 1/α′. The above result is valid at large λ.
At small λ, the potential between a quark and an antiquark in an N = 4 theory is
given by [342]

E = −πλ

L
(5.87)

to lowest order in the weak coupling expansion.
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It is remarkable that the calculation of a Wilson loop in a strongly interacting
gauge theory has been simplified to a classical mechanics problem no more difficult
than finding the catenary curve describing a string suspended from two points,
hanging in a gravitational field – in this case the gravitational field of the AdS
spacetime.

Note that given (5.86), the boundary short-distance cut-off ε in (5.74) can be
interpreted as the size of the external quark. One might have expected (incorrectly)
that a short distance cut-off on the size of the quark should be given by the Compton
wavelength 1/M ∼ ε/

√
λ, which is much smaller than ε. Note that the size of

a quark should be defined by either its Compton wavelength or by the distance
between a quark and an antiquark at which the potential is of the order of the quark
mass, whichever is bigger. In a weakly coupled theory, the Compton wavelength is
bigger, while in a strongly coupled theory with potential (5.86), the latter is bigger
and is of order ε.

5.4.2 Rectangular loop: nonzero temperature

We now consider the expectation of the rectangular loop at nonzero temperature
[712, 190]. In this case the bulk gravity geometry is given by that of the black
brane (5.34). The set-up of the calculation is exactly the same as in Eqs. (5.76)–
(5.78) for the vacuum. The induced worldsheet metric is now given by

ds2
ws = R2

z2

(
− f (z)dτ 2 +

(
1 + z′2

f

)
dσ 2

)
, (5.88)

which yields the Nambu–Goto action

SNG = − R2T
2πα′

∫ L
2

− L
2

dσ
1

z2

√
f (z) + z′2 . (5.89)

The crucial difference between the equation of motion following from (5.89) and
that following from (5.80) is that in the present case there exists a maximal value
Ls ∼ 1/T beyond which nontrivial solutions cease to exist [712, 190] – see
Fig. 5.3. Instead, the solution beyond this maximal separation consists of two dis-
joint vertical strings ending at the black hole horizon. The physical reason can
be easily understood qualitatively from the figure. At some separation, the lowest
point on the string touches the horizon. Surely at and beyond this separation the
string can minimize its energy by splitting into two independent strings, each of
which falls through the horizon. The precise value of Ls is defined as the quark–
antiquark separation at which the free energy of the disconnected configuration
becomes smaller than that of the connected configuration. This happens at a value
of L for which the lowest point of the connected configuration is close to but still
somewhat above the horizon. Once L > Ls , the quark–antiquark separation can
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Ls

Horizon

Figure 5.3 String (red) associated with a quark–antiquark pair in a plasma with
temperature T > 0. The preferred configuration beyond a certain separation Ls
consists of two independent strings.

then be increased further at no additional energy cost, so the potential becomes
constant and the quark and the antiquark are perfectly screened from each other by
the plasma between them. See, for example, Ref. [108] for a careful discussion of
the corrections to this large-Nc, large-λ result.

5.4.3 Rectangular loop: a confining theory

For comparison, let us consider the expectation value of a rectangular loop in the
2 + 1-dimensional confining theory [804] (for a review see [760]) whose metric is
given by (5.38), which we reproduce here for convenience:

ds2 = R2

z2

(−dt2 + dx2
1 + dx2

2 + f dtE
) + R2

z2 f
dz2, f = 1 − z4

z4
0

. (5.90)

As discussed earlier, the crucial difference between (5.90) and AdS is that the
spacetime (5.90) ends smoothly at a finite value z = z0, which introduces a scale
in the theory. The difference as compared to the finite-temperature case is that in
the confining geometry the string has no place to end, so in order to minimize its
energy it tends to drop down to z0 and to run parallel there – see Fig. 5.4.

Again the set-up of the calculation is completely analogous to the cases above.
The induced worldsheet metric is now given by

ds2
ws = R2

z2

(
−dτ 2 +

(
1 + z′2

f

)
dσ 2

)
, (5.91)

and the corresponding the Nambu–Goto action is

SNG = − R2T
2πα′

∫ L
2

− L
2

dσ
1

z2

√
1 + z′2

f (z)
. (5.92)
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z = z0

z = 0

Figure 5.4 String (red) associated with a quark–antiquark pair in a confining
theory.

When L is large, the string quickly drops to z = z0 and runs parallel there. We
thus find that the action can be approximated by (after subtracting the vertical parts
which can be interpreted as being due to the static quark masses)

− S(C) − 2MT ≈ R2T
2πα′

L

z2
0

, (5.93)

which gives rise to a confining potential

V (L) = σs L , σs =
√
λ

2π z2
0

. (5.94)

The constant σs can be interpreted as the effective string tension. As mentioned
in Section 5.2.2 the mass gap for this theory is M ∼ 1/z0, so we find that
σs ∼ √

λM2. Although we have described the calculation only for one example
of a confining gauge theory, the qualitative features of Fig. 5.4 generalize. In a
confining gauge theory with a dual gravity description, as a quark–antiquark pair
are separated the string hanging beneath them sags down to some “depth” z0 and
then as the separation is further increased it sags no further. Further increasing the
separation means adding more and more string at the same depth z0, which costs
an energy that increases linearly with separation. Clearly, any metric in which a
suspended string behaves like this cannot be conformal; it has a length scale z0

built into it in some way. This length scale z0 in the gravitational description cor-
responds via the IR/UV correspondence to the mass gap M ∼ 1/z0 for the gauge
theory and to the size of the “glueballs” in the gauge theory, which is of order z0.

To summarize, we note that the qualitative behavior of the Wilson loop dis-
cussed in various examples above is only determined by gross features of the bulk
geometry. The 1/L behavior (5.87) in the conformal vacuum follows directly from
the scaling symmetry of the bulk geometry; the area law (5.93) in the confining
case has to do with the fact that a string has no place to end in the bulk when the
geometry smoothly closes off; and the screening behavior at finite temperature is
a consequence of the fact that a string can fall through the black hole horizon. The
difference between Figs. 5.2 and 5.4 highlights the fact that N = 4 SYM theory
is not a good model for the vacuum of a confining theory like QCD. However, as
we will discuss in Section 8.7, the potential obtained from Fig. 5.3 is not a bad
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caricature of what happens in the deconfined phase of QCD. This is one of many
ways of seeing that N = 4 SYM at T 
= 0 is more similar to QCD above Tc than
N = 4 SYM at T = 0 is to QCD at T = 0. A heuristic way of thinking about
this is to note that at low temperatures the putative horizon would be at a zhor > z0,
i.e. it is far below the bottom of Fig. 5.4, and therefore it plays no role while at
large temperatures, the horizon is far above z0 and it is z0 that plays no role. At
some intermediate temperature, the theory has undergone a phase transition from
a confined phase described by Fig. 5.4 into a deconfined phase described by Fig.
5.3.5 Unlike in QCD, this deconfinement phase transition is a first order phase tran-
sition in the large-Nc, strong coupling limit under consideration, and the theory in
the deconfined phase loses all memory about the confinement scale z0. Presumably
corrections away from this limit, in particular finite-Nc corrections, could turn the
transition into a higher order phase transition or even a crossover.

5.5 Introducing fundamental matter

All the matter degrees of freedom of N = 4 SYM, the fermions and the scalars,
transform in the adjoint representation of the gauge group. In QCD, however, the
quarks transform in the fundamental representation. Moreover, most of what we
know about QCD phenomenologically comes from the study of quarks and their
bound states. Therefore, in order to construct holographic models more closely
related to QCD, we must introduce degrees of freedom in the fundamental repre-
sentation. It turns out that there is a rather simple way to do this in the limit in
which the number of quark species, or flavors, is much smaller than the number
of colors, i.e. when N f � Nc. Indeed, in this limit the introduction of N f flavors
in the gauge theory corresponds to the introduction of N f D-brane probes in the
AdS geometry sourced by the D3-branes [28, 517, 513]. This is perfectly consis-
tent with the well-known fact that the topological representation of the large-Nc

expansion of a gauge theory with quarks involves Riemann surfaces with bound-
aries – see Section 4.1.2. In the string description, these surfaces correspond to
the worldsheets of open strings whose endpoints must be attached to D-branes. In
the context of the gauge/string duality, the intuitive idea is that closed strings liv-
ing in AdS are dual to gauge-invariant operators constructed solely out of gauge
fields and adjoint matter, e.g. O = TrF2, whereas open strings are dual to meson-
like operators, e.g. O = q̄q. In particular, the two endpoints of an open string,
which are forced to lie on the D-brane probes, are dual to a quark and an antiquark,
respectively.

5 The way we have described the transition is a crude way of thinking about the so-called Hawking–Page phase
transition between a spacetime without and with a black hole [437, 803].
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Figure 5.5 Excitations of the system in the open string description.

5.5.1 The decoupling limit with fundamental matter

The fact that the introduction of gauge theory quarks corresponds to the introduc-
tion of D-brane probes in the string description can be more “rigorously” motivated
by repeating the arguments of Sections 4.2.2, 4.2.3 and 4.3 in the presence of N f

Dp-branes, as indicated in Fig. 5.5. We shall be more precise about the value of p
and the precise orientation of the branes later; for the moment we simply assume
p > 3.

As in Section 4.2.2, when gs Nc � 1 the excitations of this system are accurately
described by interacting closed and open strings living in flat space. In this case,
however, the open string sector is richer. As before, open strings with both end-
points on the D3-branes give rise, at low energies, to the N = 4 SYM multiplet
in the adjoint of SU (Nc). We see from Eq. (4.17) that the coupling constant for
these degrees of freedom is dimensionless, and therefore these degrees of freedom
remain interacting at low energies. The coupling constant for the open strings with
both endpoints on the Dp-branes, instead, has dimensions of (length)p−3. There-
fore the effective dimensionless coupling constant at an energy E scales as gDp ∝
E p−3. Since we assume that p > 3, this implies that, just like the closed strings,
the p–p strings become noninteracting at low energies. Finally, consider the sector
of open strings with one endpoint on the D3-branes and one endpoint on the Dp-
branes. These degrees of freedom transform in the fundamental of the gauge group
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on the D3-branes and in the fundamental of the gauge group on the Dp-branes,
namely in the bifundamental of SU (Nc)×SU (N f ). Consistently, these 3–p strings
interact with the 3–3 and the p–p strings with strengths given by the correspond-
ing coupling constants on the D3-branes and on the Dp-branes. At low energies,
therefore, only the interactions with the 3–3 strings survive. In addition, since
the effective coupling on the Dp-branes vanishes, the corresponding gauge group
SU (N f ) becomes a global symmetry group. This is the origin of the flavor symme-
try expected in the presence of N f (equal mass) quark species in the gauge theory.

To summarize, when gs Nc � 1 the low energy limit of the D3/Dp system yields
two decoupled sectors. The first sector is free and consists of closed strings in ten-
dimensional flat space and p-p strings propagating on the worldvolume of N f

Dp-branes. The second sector is interacting and consists of a four-dimensional
N = 4 SYM multiplet in the adjoint of SU (Nc), coupled to the light degrees of
freedom coming from the 3–p strings. We will be more precise about the exact
nature of these degrees of freedom later, but for the moment we emphasize that
they transform in the fundamental representation of the SU (Nc) gauge group, and
in the fundamental representation of a global, flavor symmetry group SU (N f ).

Consider now the closed string description at gs Nc � 1. In this case, as in Sec-
tion 4.2.3, the D3-branes may be replaced by their backreaction on spacetime. If we
assume that gs N f � 1, which is consistent with N f � Nc, we may still neglect
the backreaction of the Dp-branes. In other words, we may treat the Dp-branes
as probes living in the geometry sourced by the D3-branes, with the Dp-branes
not modifying this geometry. The excitations of the system in this limit consist
of closed strings and open p–p strings that propagate in two different regions,
the asymptotically flat region and the AdS5 × S5 throat – see Fig. 5.6. As in Sec-
tion 4.2.3, these two regions decouple from each other in the low energy limit. Also
as in Section 4.2.3, in this limit the strings in the asymptotically flat region become
noninteracting, whereas those in the throat region remain interacting because of the
gravitational redshift.

Comparing the two descriptions above, we see that the low energy limit at both
small and large values of gs Nc contains a free sector of closed and open p–p
strings. As in Section 4.3 we identify these free sectors, and we conjecture that
the interacting sectors on each side provide dual descriptions of the same physics.
In other words, we conjecture that the N = 4 SYM coupled to N f flavors of funda-
mental degrees of freedom is dual to type IIB closed strings in AdS5 × S5, coupled
to open strings propagating on the worldvolume of N f Dp-brane probes.

It is worth clarifying the following conceptual point before closing this section.
It is sometimes stated that, in the ’t Hooft limit in which Nc → ∞ with N f fixed,
the dynamics is completely dominated by the gluons, and therefore that the quarks
can be completely ignored. One may then wonder what the interest of introducing
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Figure 5.6 Excitations of the system in the second description.

fundamental degrees of freedom in a large-Nc theory may be. There are several
answers to this. First of all, in the presence of fundamental matter, it is more con-
venient to think of the large-Nc limit à la Veneziano, in which N f /Nc is kept small
but finite. Any observable can then be expanded in powers of 1/N 2

c and N f /Nc.
As we will see, this is precisely the limit that is captured by the dual description in
terms of N f D-brane probes in AdS5 × S5. The leading D-brane contribution will
give us the leading contribution of the fundamental matter, of relative order N f /Nc.
The Veneziano limit is richer than the ’t Hooft limit, since setting N f /Nc = 0 one
recovers the ’t Hooft limit. The second point is that, even in the ’t Hooft limit, the
quarks should not be regarded as irrelevant, but rather as valuable probes of the
gluon-dominated dynamics. It is their very presence in the theory that allows one
to ask questions about heavy quarks in the plasma, jet quenching, meson physics,
photon emission, etc. The answers to these questions are of course dominated by
the gluon dynamics, but without dynamical quarks in the theory such questions
cannot even be posed. There is a completely analogous statement in the dual grav-
ity description. To leading order the geometry is not modified by the presence of
D-brane probes, but one needs to introduce these probes in order to pose questions
about heavy quarks in the plasma, parton energy loss, mesons, photon production,
etc. In this sense, the D-brane probes allow one to decode information already
contained in the geometry.
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5.5.2 Models with fundamental matter

Above, we motivated the inclusion of fundamental matter via the introduction of
N f “flavor” Dp-brane probes in the background sourced by Nc “color” D3-branes.
However, we were deliberately vague about the value of p, about the relative orien-
tation between the flavor and the color branes, and about the precise nature of the
flavor degrees of freedom in the gauge theory. Here we will address these points.
Since we assumed p > 3 in order to decouple the p–p strings, and since we wish to
consider stable Dp-branes in type IIB string theory, we must have p = 5 or p = 7 –
see Section 4.2.2. In other words, we must consider D5- and D7-brane probes.

Consider first adding flavor D5-branes. We will indicate the relative orientation
between these and the color D3-branes by an array like, for example,

D3: 1 2 3 _ _ _ _ _ _
D5: 1 2 _ 4 5 6 _ _ _ .

(5.95)

This indicates that the D3- and the D5-branes share the 12-directions. The 3-
direction is transverse to the D5-branes, the 456-directions are transverse to the
D3-branes, and the 789-directions are transverse to both sets of branes. This means
that the two sets of branes can be separated along the 789-directions, and there-
fore they do not necessarily intersect, as indicated in Fig. 5.7. It turns out that the
lightest states of a D3–D5 string have a minimum mass given by what one would
have expected on classical grounds, namely M = TstrL = L/2π 2

s , where Tstr is
the string tension (4.11) and L is the minimum distance between the D3- and the
D5-branes.6 These states can therefore be arbitrarily light, even massless, provided
L is sufficiently small. Generic excited states, as usual, have an additional mass set
by the string scale alone, ms . The only exception are excitations in which the string
moves rigidly with momentum �p in the 12-directions, in which case the energy
squared is just M2 + �p 2. This is an important observation because it means that
in the decoupling limit, in which one focuses on energies E � ms , only a finite
set of modes of the D3–D5 strings survive, and moreover these modes can only
propagate along the directions common to both branes. From the viewpoint of the
dual gauge theory, this translates into the statement that the degrees of freedom in
the fundamental representation are localized on a defect – in the example at hand,
on a plane that extends along the 12-directions and lies at a constant position in the
3-direction. As an additional example, the configuration

6 In order to really establish this formula one must quantize the D3–D5 strings and compute the ground state
energy. In the case at hand, the result coincides with the classical expectation. The underlying reason is that,
because the configuration (5.95) preserves supersymmetry, corrections to the classical ground state energy
coming from bosonic and fermionic quantum fluctuations cancel each other out exactly. For other brane
configurations like (5.97) this does not happen.
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Figure 5.7 D3–D5 configuration (5.95) with a string (red) stretching between
them. The 12-directions common to both branes are suppressed.

D3: 1 2 3 _ _ _ _ _ _
D5: 1 _ _ 4 5 6 7 _ _

(5.96)

corresponds to a dual gauge theory in which the fundamental matter is localized on
a line – the 1-direction.

We thus conclude that, if we are interested in adding to the N = 4 SYM the-
ory fundamental matter degrees of freedom that propagate in 3+1 dimensions (just
like the gluons and the adjoint matter), then we must orient the flavor D-branes
so that they extend along the 123-directions. This condition leaves us with two
possibilities:

D3: 1 2 3 _ _ _ _ _ _
D5: 1 2 3 4 5 _ _ _ _

(5.97)

and

D3: 1 2 3 _ _ _ _ _ _
D7: 1 2 3 4 5 6 7 _ _ .

(5.98)

So far we have not been specific about the precise nature of the fundamental
matter degrees of freedom – for example, whether they are fermions or bosons,
etc. This also depends on the relative orientation of the branes. It turns out that
for the configuration (5.97), the ground state energy of the D3–D5 strings is (for
sufficiently small L) negative, that is, the ground state is tachyonic, signaling an
instability in the system. This conclusion is valid at weak string coupling, where
the string spectrum can be calculated perturbatively. While it is possible that the
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instability is absent at strong coupling, we will not consider this configuration
further in this book.

We are therefore left with the D3–D7 system (5.98). Quantization of the D3–D7
strings shows that the fundamental degrees of freedom in this case consist of N f

complex scalars and N f Dirac fermions, all of them with equal masses given by

Mq = L

2πα′ . (5.99)

In a slight abuse of language, we will collectively refer to all these degrees of
freedom as “quarks”. The fact that they all have exactly equal masses is a reflec-
tion of the fact that the addition of the N f D7-branes preserves a fraction of the
original supersymmetry of the SYM theory. More precisely, the original N = 4
is broken down to N = 2, under which the fundamental scalars and fermions
transform as part of a single supermultiplet. In the rest of the book, especially in
Chapter 9, we will focus our attention on this system as a model for gauge theories
with fundamental matter.
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