J. Austral. Math. Soc. (Series A) 51 (1991), 300-304

CHARACTERIZATIONS OF S-CLOSED HAUSDORFF SPACES

TAKASHI NOIRI

(Received 20 October 1989)

Communicated by J. H. Rubinstein

Abstract

A topological space X is said to be S-closed if every cover of X by regular closed sets of X has a finite subcover. In this note some characterizations of S-closed Hausdorff spaces are obtained.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 54 D 20. Keywords and phrases: S-closed, Hausdorff, extremally disconnected.

1. Introduction

In 1976, Thompson [9] introduced the concept of S-closed spaces in terms of semiopen sets due to Levine [6]. The present author [7] defined subsets said to be S-closed relative to a topological space. For a topological space (X, τ) , the family of open sets of (X, τ) whose complements are S-closed relative to (X, τ) was utilized as a base for a topology τ^* on X by Di Maio [2]. The purpose of the present note is to obtain some characterizations of S-closed Hausdorff spaces by utilizing τ^* , the family of semiopen sets and that of θ -semiopen sets due to Joseph and Kwack [5].

2. Preliminaries

Throughout the present note spaces always mean topological spaces. Let (X, τ) be a space and A be a subset of X. The closure of A and the interior

^{© 1991} Australian Mathematical Society 0263-6115/91 \$A2.00 + 0.00

of A are denoted by Cl(A) and Int(A), respectively. A subset A is said to be semiopen [6] (respectively regular closed) if $A \subset Cl(Int(A))$ (respectively A = Cl(Int(A))). The family of all semiopen (respectively regular closed) sets in (X, τ) is denoted by $SO(X, \tau)$ (respectively $RC(X, \tau)$). The complement of a semiopen set is said to be semi-closed. The intersection of all semi-closed sets containing A is called the semi-closure [1] of A and is denoted by sCl(A).

DEFINITION 2.1. A subset A of a space (X, τ) is said to be S-closed relative to (X, τ) [7] if for every cover $\{U_{\alpha} | \alpha \in \nabla\}$ of A by semiopen sets of (X, τ) , there exists a finite subset ∇_0 of ∇ such that $A \subset \bigcup \{Cl(U_{\alpha}) | \alpha \in \nabla_0\}$.

A space (X, τ) is said to be *S*-closed [9] if X is *S*-closed relative to (X, τ) . It is shown in [4, Theorem 3.2] that a space (X, τ) is *S*-closed if and only if every regular closed cover of X has a finite subcover. We recall a space (X, τ^*) defined by Di Maio [2]. The family of all open sets of (X, τ) whose complements are *S*-closed relative to (X, τ) is a base for a topology τ^* on X. A space (X, τ) is said to be *extremally disconnected* (briefly E.D.) if $Cl(U) \in \tau$ for every $U \in \tau$.

DEFINITION 2.2. A space (X, τ) is said to be *weakly-Hausdorff* (briefly *weakly-T*₂) [8] if each point $x \in X$ is the intersection of regular closed sets of (X, τ) .

Let A be a subset of a space (X, τ) . A point $x \in X$ is said to be in the θ -semiclosure [5] of A, denoted by $\theta - sCl(A)$, if $A \cap Cl(U) \neq \emptyset$ for every $U \in SO(X, \tau)$ containing x. If $\theta - sCl(A) = A$, then A is said to be θ -semiclosed. The complement of a θ -semiclosed set is said to be θ -semiclosed. By τ^+ we denote the family of all θ -semiopen sets in (X, τ) . The following lemma is obvious from the definitions and will be often used in the sequel.

LEMMA 2.3. The following are equivalent for a subset A of a space (X, τ) :

- (a) $A \in \tau^+$;
- (b) for each $x \in A$, there exists $U \in SO(X, \tau)$ such that $x \in U \subset Cl(U) \subset A$;
- (c) A is the union of regular closed sets of (X, τ) .

In general, τ^+ is not a topology on X. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ [3, Example 0.4]. Then $\{a, c\}$ and $\{b, c\}$ are θ -semiopen in (X, τ) but $\{a, c\} \cap \{b, c\} \notin \tau^+$. However, we have the following lemma.

LEMMA 2.4. The following are equivalent for a space (X, τ) : (a) (X, τ) is E.D.; (b) $SO(X, \tau)$ is a topology on X; (c) τ^+ is a topology on X.

PROOF. (a) \Rightarrow (b). Let $A, B \in SO(X, \tau)$. Since (X, τ) is E.D., $Cl(Int(A)) \in \tau$ and hence we have $A \cap B \subset Cl(Int(A)) \cap Cl(Int(B)) \subset Cl[Cl(Int(A)) \cap Int(B)] \subset Cl(Int(A \cap B))$. Therefore, we obtain $A \cap B \in SO(X, \tau)$. Now [6, Theorem 2] completes the proof.

(b) \Rightarrow (c). Let $A, B \in \tau^+$ and $x \in A \cap B$. There exist $U, V \in SO(X, \tau)$ such that $x \in U \subset Cl(U) \subset A$ and $x \in V \subset Cl(V) \subset B$. Therefore, we have $x \in U \cap V \subset Cl(U \cap V) \subset Cl(U) \cap Cl(V) \subset A \cap B$ and $U \cap V \in SO(X, \tau)$. This shows that $A \cap B \in \tau^+$. Lemma 2.3 completes the proof.

(c) \Rightarrow (a). Suppose that (X, τ) is not E.D. There exists $U \in \tau$ and $x \in X$ such that $x \in Cl(U) - Int(Cl(U))$. Let A = Cl(U) and B = X - Int(Cl(U)), then $A, B \in RC(X, \tau)$ and hence $A, B \in \tau^+$. Since τ^+ is a topology, $x \in A \cap B \in \tau^+$. There exists $V \in SO(X, \tau)$ such that $x \in V \subset Cl(V) \subset A \cap B$. Since $V \subset B$, $Int(V) \subset Int(A) \cap B = \emptyset$. However, $x \in V \in SO(X, \tau)$ and hence $Int(V) \neq \emptyset$. This is a contradiction.

LEMMA 2.5. If a space (X, τ) is E.D. and $A \in SO(X, \tau)$, then $sCl(A) = \theta - sCl(A) = Cl(A)$.

PROOF. This is shown in [3, Lemma 0.3].

3. Characterizations

THEOREM 3.1. The following are equivalent for a space (X, τ) :

- (a) (X, τ^*) is Hausdorff;
- (b) (X, τ^*) is weakly- T_2 ;
- (c) (X, τ) is S-closed Hausdorff;
- (d) $(X, SO(X, \tau))$ is S-closed Hausdorff;
- (e) (X, τ^+) is compact Hausdorff.

PROOF. In the sequel, we denote the closure and the interior of a subset A of X with respect to the topology τ^* by $Cl_*(A)$ and $Int_*(A)$, respectively.

 $(a) \Rightarrow (b)$. The proof is obvious.

(b) \Rightarrow (c). Let (X, τ^*) be weakly- T_2 . First, we shall show that (X, τ) is S-closed. Let x and y be distinct points of X. There exists $F \in RC(X, \tau^*)$ such that $x \in F$ and $y \notin F$. Since $Int_*(F) \neq \emptyset$, there exists $U, V \in \tau$ such that $\emptyset \neq U \subset X - F, \emptyset \neq V \subset Int_*(F)$ and X - U and X - Vare S-closed relative to (X, τ) . Since X - F and $Int_*(F)$ are disjoint, $U \cap V = \emptyset$ and hence $X = (X - U) \cup (X - V)$ is S-closed relative to

 (X, τ) [7, Theorem 3.6]. Therefore, (X, τ) is S-closed. Next, we shall show that (X, τ) is weakly- T_2 . For this purpose, we prove that $RC(X, \tau^*) \subset$ $RC(X, \tau)$. Let $F \in RC(X, \tau^*)$. Since $\tau^* \subset \tau$, we have $Int_{+}(F) \subset Int(F)$ and hence $F = Cl_*(Int_*(F)) \subset Cl_*(Int(F)) \subset Cl_*(F) = F$. Therefore, we obtain $F = Cl_{*}(Int(F))$. Since $\tau^{*} \subset \tau$, $Cl(Int(F)) \subset Cl_{*}(Int(F))$ and hence $Cl(Int(F)) \subset F$. In order to show the opposite inclusion, we suppose that $x \notin Cl(Int(F))$. There exists $V \in \tau$ containing x such that $V \cap Int(F) = \emptyset$; hence $Int(Cl(V)) \cap Int(F) = \emptyset$. Since $X - Int(Cl(V)) \in$ $RC(X, \tau)$ and (X, τ) is S-closed, it follows from [7, Theorems 3.3 and 3.4] that X - Int(Cl(V)) = Cl(X - Cl(V)) is S-closed relative to (X, τ) . Therefore, we have $x \in Int(Cl(V)) \in \tau^*$ and hence $x \notin Cl_{+}(Int(F))$. Since $F = Cl_{*}(Int(F))$, we have $x \notin F$ and hence $F \subset Cl(Int(F))$. Consequently, we obtain $F \in RC(X, \tau)$. Therefore, it follows that (X, τ) is weakly- T_2 . Moreover, an S-closed weakly- T_2 space is E.D. [4, Theorem 3.7]. Every regular closed set is clopen in an E.D. space. Therefore, (X, τ) is Hausdorff.

(c) \Rightarrow (a). Since (X, τ) is S-closed Hausdorff, it follows from [9, Theorem 7] that (X, τ) is E.D. Let x and y be any distinct points of X. There exist U, $V \in \tau$ such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$; hence $Cl(U) \cap Cl(V) = \emptyset$. Since Cl(U) and Cl(V) are clopen in (X, τ) and (X, τ) is S-closed, it follows from [7, Theorem 3.3] that X - Cl(U) and X - Cl(V) are S-closed relative to (X, τ) . Therefore, we obtain $x \in Cl(U) \in \tau^*$, $y \in Cl(V) \in \tau^*$ and $Cl(U) \cap Cl(V) = \emptyset$. This shows that (X, τ^*) is Hausdorff.

(c) \Rightarrow (d). Since (X, τ) is S-closed Hausdorff, (X, τ) is E.D. [9, Theorem 7] and by Lemma 2.4 $SO(X, \tau)$ is a topology on X. Let $\{V_{\alpha} | \alpha \in \nabla\}$ be any $SO(X, \tau)$ -semiopen cover of X. For each $\alpha \in \nabla$, there exists $U_{\alpha} \in SO(X, \tau)$ such that $U_{\alpha} \subset V_{\alpha} \subset SO(X, \tau) - Cl(U_{\alpha})$. By Lemma 2.5, $SO(X, \tau) - Cl(U_{\alpha}) = sCl(U_{\alpha}) = Cl(U_{\alpha})$ and hence $V_{\alpha} \in SO(X, \tau)$ [6, Theorem 4]. Therefore, $\{V_{\alpha} | \alpha \in \nabla\}$ is a τ -semiopen cover of X. There exists a finite subset ∇_0 of ∇ such that $X = \bigcup \{Cl(V_{\alpha}) | \alpha \in \nabla_0\}$. It follows from Lemma 2.5 that $(X, SO(X, \tau))$ is S-closed. It is obvious that $(X, SO(X, \tau))$ is Hausdorff.

(d) \Rightarrow (e). By Lemma 2.4, τ^+ is a topology on X. Let \mathscr{V} be a cover of X by τ^+ -open sets. Then each member of \mathscr{V} is θ -semiopen in (X, τ) . Every θ -semiopen set of (X, τ) is the union of regular closed sets of (X, τ) . Every regular closed set of (X, τ) is semiopen and semiclosed in (X, τ) and hence clopen in $(X, SO(X, \tau))$. Therefore, \mathscr{V} has a finite subcover. This shows that (X, τ^+) is compact. Next, we shall show that (X, τ^+) is Hausdorff. Let x and y be any distinct points of X. Since $(X, SO(X, \tau))$ is Hausdorff, there exists $U, V \in SO(X, \tau)$ such that $x \in U, y \in V$ and $U \cap V = \varnothing$; hence $sCl(U) \cap V = \varnothing$. By Lemmas 2.4 and 2.5, $Cl(U) \cap V = \varnothing$ and hence $Cl(U) \cap Cl(V) = \emptyset$. Since Cl(U) and Cl(V) are regular closed in (X, τ) and $RC(X, \tau) \subset \tau^+$, (X, τ^+) is Hausdorff. (e) \Rightarrow (c). Since τ^+ is a topology on X, by Lemma 2.4 (X, τ) is E.D.

(e) \Rightarrow (c). Since τ^+ is a topology on X, by Lemma 2.4 (X, τ) is E.D. First, we shall show that (X, τ) is S-closed. Let \mathscr{V} be a cover of X by regular closed sets of (X, τ) . Since $RC(X, \tau) \subset \tau^+$ and (X, τ^+) is compact, \mathscr{V} has a finite subcover. This shows that (X, τ) is S-closed. Next, we shall show that (X, τ) is Hausdorff. Let x_1 and x_2 be any distinct points of X. Since (X, τ^+) is Hausdorff, there exists $V_1, V_2 \in \tau^+$ such that $x_1 \in V_1, x_2 \in V_2$ and $V_1 \cap V_2 = \varnothing$. Moreover, there exists $U_i \in SO(X, \tau)$ such that $x_i \in U_i \subset Cl(U_i) \subset V_i$ for i = i, 2. Therefore, we have $Cl(U_1) \cap Cl(U_2) = \varnothing$. Since $U_i \in SO(X, \tau)$, we have $Cl(U_i) = Cl(Int(U_i))$ for i = 1, 2. Thus, $Cl(U_1)$ and $Cl(U_2)$ are open in (X, τ) since (X, τ) is E.D. Therefore, (X, τ) is Hausdorff.

REMARK 3.2. Every S-closed weakly- T_2 space is E.D. [4, Theorem 3.7]. Each regular closed set is clopen in an E.D. space. Therefore, every S-closed weakly- T_2 space is Urysohn. The statement (c) in Theorem 3.1 is thus equivalent to each one of the following:

- (c') (X, τ) is S-closed weakly- T_2 ;
- (c") (X, τ) is S-closed Urysohn.

References

- [1] S. Gene Crossley and S. K. Hildebrand, 'Semi-closure', Texas J. Sci. 22 (1971), 99-112.
- [2] G. Di Maio, 'S-closed spaces, S-sets and S-continuous functions', Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 118 (1984), 125-134.
- [3] M. Ganster, T. Noiri and I. L. Reilly, 'Weak and strong forms of θ-irresolute functions', J. Inst. Math. Comp. Sci. Math. Ser. 1 (1988), 19-29.
- [4] R. A. Herrmann, 'RC-convergence', Proc. Amer. Math. Soc. 75 (1979), 311-317.
- [5] J. E. Joseph and M. H. Kwack, 'On S-closed spaces', Proc. Amer. Math. Soc. 80 (1980), 341-348.
- [6] N. Levine, 'Semi-open sets and semi-continuity in topological spaces', Amer. Math. Monthly 70 (1963), 36-41.
- [7] T. Noiri, 'On S-closed subspaces', Atti Accad. Naz. Lincei Rend. Cl. Sci. Fi. Mat. Natur.
 (8) 64 (1978), 157-162.
- [8] T. Soundararajan, 'Weakly Hausdorff spaces and the cardinality of topological spaces', General Topology and its Relations to Modern Analysis and Algebra III, Proc. Conf. Kampur, 1968; pp. 301-306 (Academia, Prague, 1971).
- [9] T. Thompson, 'S-closed spaces', Proc. Amer. Math. Soc. 60 (1976), 335-338.

Yatsushiro College of Technology Yatsushiro Kumamoto 866 Japan

https://doi.org/10.1017/S144678870003425X Published online by Cambridge University Press