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Introduction

1.1 Quantum Many-Body Problems

According to legend, chess was invented by Grand Vizier Sissa Ben Dahir and
given to King Shirham of India. The king was so pleased with the game that he
offered to grant Sissa any request within reason. The Grand Vizier asked the king
for one grain of wheat to be placed on the first square of the chessboard, two grains
on the second square, four on the third, and so on, doubling the amount each time
until all 64 squares were occupied. The king, arithmetically unaware, accepted the
request. However, all the wheat of his kingdom was not enough to fulfill this offer
because the total number of grains the Grand Vizier asked for was

1+ 2+ 4+ 8+ · · · + 263
= 264

− 1 = 18, 446, 744, 073, 709, 551, 615.

This amount of wheat is approximately 80 times what would be produced in one
harvest at current yields if all of Earth’s arable land could be devoted to wheat.
This number is significant because the number of grains grows exponentially as
the number of chessboard squares increases. It demonstrates the rapid growth of
exponential sequences.

This wheat-and-chessboard problem is just what is encountered in the study of
quantum many-body theory, in which the Hilbert space grows exponentially with
the system size. It limits the application range of many computational methods,
such as exact diagonalization. Considering, for example, a system of N interacting
electrons, if each electron has d-degrees of freedom, then the total dimension of
the Hilbert space of the system is M = dN . To determine the ground state of the
system, one needs to minimize the energy within this M-dimensional space. The
maximal M that is feasible with the best computer software and hardware currently
available is about 109. It means that only N ∼ 30 electrons can be handled, even if
d = 2 and no extra information (for example, symmetry) is used.
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2 1 Introduction

The exponential growth of the Hilbert space with the system size is one of the
most severe problems we face in the theoretical study of quantum many-body sys-
tems. As vividly pointed out by the Nobel Laureate Walter Kohn [1], it raises an
exponential wall that hinders the development of quantum many-body theory. In
the early stage of quantum mechanics, soon after the successful interpretation of
optical spectra of hydrogen atoms and other simple atoms by the Schrödinger equa-
tion, many physicists, including particularly Paul Dirac, declared that chemistry
had come to an end because its content was entirely contained in the powerful
Schrödinger equation. However, as it was realized later, this equation was far too
complex to allow a solution for a system with many electrons.

In the search for fundamental interactions and elementary particles, the philos-
ophy of reductionism has played an important role. It assumes that the nature of
a complex world can be understood by reducing it to the interactions of its parts
and that a complex system is nothing but the sum of its parts and can reduce to the
account of individual constituents.

From the end of the nineteenth century, with the fast progress in the experimen-
tal exploration of the microscopic quantum world, a great many novel phenomena,
including superconductivity, helium superfluid, and quantum Hall effect, were dis-
covered. It turns out that the behavior of large and complex aggregates of particles
is difficult to understand in terms of the extrapolation of a few particles. Instead,
at each level of complexity, entirely new phenomena appear. For example, two
hydrogen atoms can form a hydrogen molecule via the valence bond, and many
hydrogen molecules can form liquid hydrogen at low temperature and even solid
hydrogen under high pressure. On the other hand, if hydrogen molecules mix with
oxygen molecules, they will undergo a chemical reaction to form water molecules.
Hydrogen atoms behave differently under different circumstances.

Emergence is the way complex systems and phenomena arise out of relatively
simple interactions and is central to the theories of integrative levels and complex
systems [2]. The exponential wall is an unavoidable problem in the investigation of
emergent phenomena. It is a non-perturbative problem and cannot be completely
solved by conventional quantum field theory, which is established based on per-
turbation. A detailed description of quantum many-body systems poses formidable
difficulties due to the exponentially large dimension of the associated Hilbert space.
Certain approximations have to be taken to solve this problem.

In general, two kinds of approximations are used. One is to take a single parti-
cle approximation to convert a many-body problem into a single-particle one. The
most commonly used methods in this direction include the self-consistent mean-
field theory and the first-principles density functional theory. The other is to take
a many-body approximation by selecting a finite many-body basis set to represent
a target state or physical quantity defined in an intractably large Hilbert space.
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1.1 Quantum Many-Body Problems 3

It includes, for example, the configuration interaction, coupled-cluster expan-
sion, quantum Monte Carlo methods, and tensor network renormalization group
methods to be introduced in this book.

The renormalization group (RG) was initially devised in particle physics. It
serves as the primary means for constructing the connections between theories at
different length scales and becomes a powerful and efficient tool for exploring the
systems where perturbation theory fails. Starting from some microscopic Ham-
iltonian, certain degrees of freedom are iteratively integrated and accounted for
by modifying the original Hamiltonian. The new Hamiltonian contains modified
couplings by a priori elimination of degrees of freedom. It is tempting to believe
that this “renormalized” effective Hamiltonian captures the essential physics of the
system on a narrower energy scale.

This method is rooted in modern physics and has played a crucial role in the
fundamental theory of microscopic particles and the theory of condensed matter
physics, and continuous phase transitions. In quantum field theory, renormalization
was first introduced to cancel infinities by redefining parameters at different energy
or momentum scales. In condensed matter and statistical physics, a more general
RG framework based on scaling analyses was introduced to explain the universality
properties of continuous phase transitions. It was even extended to compute wave
functions for quantum lattice models directly.

The idea of RG was first anticipated by Stueckelberg and Peterman in 1951 [3]
and reformulated in 1953 [4]. It emerges from the renormalization of field variables
under a scale transformation. RG is not a group. It just forms a semigroup since the
RG transformation is not reversible. It was dubbed as a group probably because in
the 1950s, when the RG concept was first proposed, a doctrine of physics was that
our world could be understood in terms of symmetries and their implementation
through groups. However, the connection between RG transformation and group
structure is highly formal, and its group interpretation is almost useless in practical
applications.

The modern RG in terms of flow equations was introduced by Gell-Mann and
Low [5] in 1954 and reformulated by Callan [6] and Symanzik [7] in 1970. Their
essential assumption was that a renormalizable quantum field theory is scale-
invariant, which depends on the parameters but not the scale. Thus under the scale
transformation, the effective theory makes a self-similar replica of itself, with tiny
changes in coupling constants determined by the flow equations.

The application of RG has achieved great success in studying quantum field the-
ory. For example, a renormalization scheme developed by Feynman, Schwinger,
and Tomonaga led them to solve the ubiquitous problem of infinities by express-
ing physical observables in terms of parameters. Their theory was spectacularly
successful in quantum electrodynamics. They received the Nobel Prize in 1965.
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4 1 Introduction

In the early 1970s, ’t Hooft and Veltman showed that Yang-Mills gauge theories
are renormalizable, for which they shared the 1999 Nobel Prize. In 1973, Gross,
Politzer, and Wilczek found that the beta function describing the renormalization
flow equation of the strong interaction is negative and discovered the asymptotic
freedom in quantum chromodynamics. They won the Nobel Prize in 2004.

In the second half of the 1960s, ideas to recursively generate flows of cou-
pling constants arose independently in condensed matter physics, which led to
a deeper understanding of the physical meaning of RG. In 1966, Kadanoff [8]
proposed a block-spin idea to define the interactions at large distances as aggre-
gates of components at shorter distances. A block spin transformation consists of
the scale and the block spin transformations. This block spin approach, together
with many vital contributions of Kenneth Wilson, laid the foundation of the scal-
ing theory of second-order phase transitions and critical phenomena. The success
of their approach rests on scale separation. At a critical point, the correlation
length diverges and short-range fluctuations can affect long-wavelength behavior
quantitatively but not qualitatively.

In the first half of the 1970s, Wilson began to apply the RG techniques to prob-
lems not pertaining to a critical point or the computation of ground-state wave
functions for quantum systems. His work pioneered the idea of RG and allowed it
to be implemented for any physical system, even away from critical points where
the scaling invariance breaks. It extended the field of RG from the simple flow
equations of coupling parameters to the whole Hilbert space and opened the field
of the numerical renormalization group (NRG) [9]. He demonstrated the potential
of this powerful method by constructing a successive RG solution of the famous
Kondo impurity model, which describes a single magnetic impurity in a nonmag-
netic metal. Wilson was awarded the Nobel prize partly for this contribution in
1982.

The success of Wilson’s method in the single magnetic impurity problem relies
on two peculiar features of the Kondo model. First, the width of the Kondo res-
onance sets an energy scale such that the contributions of energy levels far from
the resonance can be integrated out. Second, the Kondo Hamiltonian can always be
mapped onto an effective one-dimensional model since the Kondo interaction cou-
ples only with the s-wave part of the electron wave function. It dramatically lowers
the barrier to solving this problem.

There are two ways in which NRG differs from the conventional (analytic) RG:
First, in the conventional RG of quantum field theory, it is the charge, mass, inter-
acting coupling constants, and a few other physical parameters renormalized during
the reduction of energy scales. In contrast, in NRG, it is the wave function of a
quantum state or the partition function of a Hamiltonian that is calculated using the
RG transformation. A wave function or partition function contains the information
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1.2 From NRG to DMRG 5

needed to evaluate all physical observables. Second, in the conventional RG cal-
culation, the scaling invariance is assumed to keep the formula of interacting
potentials unchanged. This assumption is no longer needed in the implementation
of NRG.

1.2 From NRG to DMRG

Shortly after Wilson’s dramatic success in solving the Kondo problem, there was
considerable excitement about the possibility of applying the real-space NRG
together with the Kadanoff blocking spin scheme [8] to a variety of quantum lat-
tice problems with lattice sites replacing energy levels [10, 11, 12, 13]. The basic
idea was to take Kadanoff’s block spins as building cells and aggregate every two
cells into a new block at each RG transformation. It was hoped that the ground-
state properties of other many-body systems, for example, the Hubbard model [14],
could be solved by this approach. However, the performance of Wilson’s NRG was
poor in treating these many-body models. For example, the error of the ground-
state energy obtained with this method for the one-dimensional Hubbard model
with 16 sites by keeping about 1,000 basis states is about 5–10% [15].

The essence of Wilson’s NRG is to select a small set of basis states to represent
the ground state or other targeted states of a Hamiltonian through successive local
basis transformations. In the NRG calculations, the basis space is not fixed, unlike
in the exact diagonalization. Instead, it changes dynamically at each step of RG
iterations. The truncation error is determined by the criterion used in the basis
space truncation. Of course, an optimal RG scheme should use a criterion that
minimizes the error in the basis truncation. In addition, the number of basis states
retained is a key parameter that can affect the truncation error – the more basis
states retained, the smaller the truncation error.

A basic assumption of Wilson’s NRG is that the ground state of a large system
is determined by the low-lying excitations of the building blocks, whose weight is
determined by the thermal density matrix

ρ = e−βH (1.1)

up to a normalization constant. Here, β = 1/kBT , kB is the Boltzmann constant,
and T is temperature. Using the eigenvalues and eigenstates of the Hamiltonian

H |9n〉 = En|9n〉, (1.2)

the density matrix can also be expressed as

ρ =
∑

n

e−βEn |9n〉〈9n|. (1.3)
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6 1 Introduction

The weight of the eigenstate |9n〉 in the partition function is proportional to
exp(−βEn). Thus, the lower the energy, the larger the weight. This criterion is
not optimal because some highly excited states in a small system may lower their
energies and become increasingly important with the increase of the system size.
However, in Wilson’s NRG, energy is the only parameter used for judging whether
a state is retained or discarded.

The block spin NRG starts by considering a block B where the Hamiltonian HB

and the operators at the two ends of the blocks are defined. Then a new block of the
same size is added to the system, which augments the Hamiltonian to HBB. After
diagonalizing this Hamiltonian, the enlarged block is replaced by a new effective
block Bnew, formed by D lowest eigenstates of HBB, and the iteration continues,
where D is the number of basis states retained. A schematic representation of these
NRG iteration steps is

At each step, a block (left) is added with a duplicated block (right) to form an
augmented block after the basis truncation.

This block spin NRG scheme was applied to the one-dimensional Hubbard
model by Bray and Chui [10] in 1979, and later to the one-dimensional Heisen-
berg model by Pan and Chen [11], and by Kovarik [12]. Unlike the Kondo impurity
model, their results were not that encouraging. The reason for this lies in the
physical difference between the Kondo problem and the translationally invariant
quantum lattice models. The most significant difference between the Kondo sys-
tem and a one-dimensional lattice model is that the couplings between adjacent
sites decrease exponentially in the Kondo system under Wilson’s logarithmic dis-
cretization scheme. In contrast, it remains constant in the Hubbard or Heisenberg
model. This exponential decrease is the key to the success of the method for the
Kondo impurity systems. However, it is flawed in treating quantum lattice problems
in a real-space blocking form.

The failure of Wilson’s block spin NRG, as pointed out by White and Noack
[16], results from the boundary or interface effect between blocks. This can be
understood by considering a toy model – a single particle on a tight-binding chain.
For this model, the ground state is a standing wave that vanishes at the two ends
of each block. As an example, Fig. 1.1 shows how the ground-state wave function
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Figure 1.1 Ground-state wave functions of a particle hopping on a tight-binding
chain. Two five-site blocks form a large block of ten sites. The ground state is a
standing wave on each block. The wave function from the ground state of the two
five-site blocks (diamonds) vanishes at the interface where the ground-state wave
function of the ten-site block (circles) shows a maximum.

changes when a ten-site block is formed by combining two five-site blocks. The
ground state is a standing wave on each block. The wave function takes a minimum
at the interface of two small blocks. By combining two blocks into a larger one, the
lowest-lying states of each block have nodes at the compound block center. On
the contrary, the ground state of the compound block shows a maximum there. It
suggests that the basis states of a larger block cannot be accurately approximated
by a restricted number of states of smaller blocks without adequately considering
the interface effect.

In 1992, Xiang and Gehring showed that Wilson’s NRG could be improved by
adding just one spin, instead of a block spin, at each iteration [13]. Their approach
reduces both the truncation error and the interface effect and improves the accu-
racy of the ground-state energy of the one-dimensional Heisenberg model by a
few orders of magnitude [13, 17]. By keeping about 200 states, for example, they
obtained an error of about 0.5% in the ground-state energy. Their approach is
similar to that used by Wilson for treating a single-impurity Kondo problem. The
difference is that in the Kondo impurity problem, there are distinct energy scales to
separate each lattice point in the effective Hamiltonian, and it is natural to add one
site at each step of RG transformation.

This simple approach has two advantages compared to the block spin NRG. First,
as shown in Fig. 1.2, this approach reduces the boundary error encountered in the
double-blocking NRG scheme. Second, in the conventional NRG algorithm, the
total number of basis states is squared by combining two blocks into a larger block.
Namely, if the number of states at each block is D, then the total number of states is
D2. After truncation, only D of them are retained. However, in Xiang and Gehring’s
approach [13], the total number of states is dD with d the number of basis states
at each lattice site. After truncation, the number of states retained is still D, but
its percentage in the total number of states is much higher than in the former case
since d � D. It significantly reduces the truncation error. Furthermore, because
the total number of states in this improved NRG scheme is just dD, a larger D can
be used in the RG calculation, which can also improve the accuracy.
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8 1 Introduction

Figure 1.2 (a) Illustration of the one-site growing scheme. After obtaining the
new block from the previous step, a new site is added. The size of the block
grows by one at each iteration step. (b) The lowest-energy states for a particle on
a tight-binding chain. A ten-site block is obtained by adding the rightmost site to
a nine-site block.

In 1992, White invented the density matrix renormalization group (DMRG) [18].
This iterative and variational method relies on an exact diagonalization of the Ham-
iltonian. The premise is to obtain a wave function in a reduced Hilbert space that
approximates the actual ground state, minimizing the loss of information. It was
originally developed for studying one-dimensional quantum lattice models in real
space at zero temperature. But its core idea to construct the RG flow in terms
of reduced density matrices works very generally. It yields an optimal scheme to
truncate Hilbert space and a powerful approach for evaluating static, dynamical,
and thermodynamic properties of low-dimensional quantum many-body systems
without introducing any external bias. Its applicability has now been extended
successfully to statistical mechanics, quantum chemistry, nuclear and high-energy
physics, quantum information, machine learning, and other fields.

The idea of making a systematic approximation by truncating the basis space is
not new. It is also the idea used in NRG and Monte Carlo simulations. Unfortu-
nately, this truncation is often not very effective, especially in strongly correlated
electronic systems. In DMRG, however, the basis states are first rotated to reduce
the truncation error so that the ground state could be accurately represented just by
a small set of basis states.

The DMRG technique splits a system into two blocks, called left (L) and right
(R) blocks, and two sites that are often placed between these two blocks. These two
blocks need not be of equal size. A set of representative states is retained for each
block during the warmup. This system of left block plus two sites plus right block,
abbreviated as (L • •R), is defined as a superblock. We call the left block plus the
left-added site as the system block, denoted as S = L•, and the right-added site
plus the right block as the environment block, denoted as E = •R. At each step
of the iteration, the ground-state wave function of the superblock is calculated by
diagonalizing the Hamiltonian. The reduced density matrix for the system block
is then evaluated from the density matrix of the ground state by tracing out all the
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1.3 From DMRG to Tensor Network Algorithms 9

degrees of freedom in the environment. The eigenvalues of the reduced density
matrix determine the probabilities of the corresponding eigenvectors in the ground
state. These eigenvectors form a new set of basis states of the system block, which
are now truncated according to their probabilities. In this scheme, the system block
is augmented by just adding one site at each iteration, similar to the conventional
NRG scheme of Xiang and Gehring [13].

Recently, DMRG has become one of the most reliable and versatile methods
developed in modern computational physics. In particular, the real-space DMRG
is one of the most accurate and efficient methods for studying quantum lattice
models with short-range interactions in one dimension. It can treat large systems
with controllable precision. In particular, in many one-dimensional systems, the
error can be reduced to the level at which the DMRG results can be regarded as
quasi-exact if the ground state has a finite excitation gap. A striking illustration of
the precision of this method was first given by White and Huse [19]. They showed,
by taking the S = 1 antiferromagnetic Heisenberg spin chain as an example, that
precision of 10−12 for the ground-state energy, E0 = −1.401484038971(4) in the
unit of the exchange constant, could be achieved just using modest computational
resources.

1.3 From DMRG to Tensor Network Algorithms

Since the invention of DMRG, it has been successfully applied to study ground-
state properties of one-dimensional and quasi-one-dimensional quantum lattice
systems. Meanwhile, several methods have been developed to extend DMRG from
zero temperature to finite temperatures, from local to nonlocal basis space, and
from the calculation of static quantities to time-dependent or dynamical correlation
functions. Such progress has extended the application scope of DMRG and stimu-
lated the development of a new breed of algorithms based on the so-called tensor
network states. These algorithms treat quantum states as products of interconnected
tensors and offer new tools for probing quantum many-body systems.

Matrix Product State (MPS)

In 1995, Östlund and Rommer [20] pointed out that the wave function generated
by DMRG is an MPS, and the success of DMRG is related to the fact that it is a
variational method within the MPS space. They also pointed out that an MPS can
be viewed as a variational wave function that can be optimized without invoking
DMRG [20, 21]. Their work sheds light on the understanding of DMRG. It offers
not just a systematical way to parameterize quantum many-body states but also a
new route to extend the DMRG algorithm, especially to higher dimensions.
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An MPS provides a highly versatile parametrization for the ground states of local
Hamiltonians [22, 23]. It is a collection of so-called local tensors defined on each
lattice site. A local tensor contains a dangling physical bond, whose dimension is
just the total number of basis states at each lattice site, and two virtual bonds, whose
dimensions equal the number of states retained at the DMRG calculation. The local
tensors are connected by virtual bonds. The number of parameters required to spec-
ify these tensors grows linearly with the system size, significantly smaller than the
exponentially large dimension of the Hilbert space.

The matrix product representation of quantum states is not new. It has been intro-
duced under various names over the past five decades. The concept of MPS was first
introduced in classical statistical physics by Baxter [24], and later on in the con-
text of quantum Markov chains [25]. In 1987, Affleck, Kennedy, Lieb, and Tasaki
(AKLT) proposed an extended Heisenberg model and showed that its ground state
is a valence bond solid (VBS) state [26, 27]. Their work provided crucial insight
into the physics of Haldane’s conjecture that an integer spin antiferromagnetic Hei-
senberg chain has a gap in the excitation spectrum [28, 29, 30]. In 1991, Klümper
et al. showed that the one-dimensional VBS state can be parameterized as a trans-
lationally invariant MPS [31, 32]. These works stimulated extensive studies of
the translationally invariant subclass of MPS in the community of mathematical
physics under the name of finitely correlated states [33].

The structure of MPS is simple and conceptually useful. However, in the first ten
years of DMRG, MPS was not frequently used because the standard DMRG cal-
culation does not benefit much from this kind of representation. The potential of
MPS was released when this kind of wave function was explored using the language
of quantum information. In particular, it was shown that the expression power of
MPS (or DMRG) could be quantified by the entanglement entropy, a concept first
introduced in quantum information theory [34, 35]. DMRG correctly character-
izes the entanglement structure of the ground state governed by the area law of
entanglement entropy in one dimension [36, 37]. This is the reason why it is so
successful.

In 2004, Vidal introduced the time-evolving block decimation (TEBD) method to
evaluate the time evolution of a quantum state represented by an MPS [38] without
invoking direct renormalization of the Hamiltonian and other physical operators.
Verstraete and Cirac also showed that one could variationally calculate the ground-
state energy for a periodic system as accurately as for an open boundary system if
the ground-state wave function is represented by a periodic MPS [39]. Their works
revealed a deep connection between DMRG and quantum information, which has
allowed the extension of DMRG to fields quite far from its origin.

From the perspective of MPS, DMRG can be regarded as an algorithm that
locally updates the matrix elements of an MPS at two lattice sites at a time. By
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exploiting the translational invariance, it is possible to develop algorithms for
infinite-size systems with MPS. This means it is feasible to explore the physical
properties of a given system directly in the thermodynamic limit without relying
on finite-size extrapolations.

In the framework of MPS, the low-lying excitations can also be evaluated under
the single-mode approximation that was first introduced by Bijl et al. [40] and
by Feynman [41, 42] in the 1950s. In 1995, Östlund and Rommer proposed a var-
iational ansatz for a single-particle excitation by representing it as a momentum
superposition of a locally excited state from the ground state in the framework
of MPS [20]. The local excitation is implemented through a bond matrix that is
variationally optimized. In 2009, instead of using a bond matrix, Chung et al. sug-
gested using some relevant local operators on the lattice sites to generate local
excitations [43]. Pirvu et al. [44], on the other hand, generated the local excitation
by replacing one of the local tensors in the ground-state MPS with a perturbed
local tensor that is variationally optimized. Haegeman et al. [45] first explored the
extension of the single-mode approximation with MPS in the thermodynamic limit.

As mentioned, MPS faithfully represents a quantum state that satisfies the area
law of entanglement entropy in one dimension [36, 37]. However, in a critical
system where the correlation length diverges, the entanglement entropy grows
logarithmically with the system size [46, 47, 48]. This logarithmic correction to
the entanglement entropy does not affect the calculation of short-range correlation
functions much. However, as it diverges with the system size, it can strongly affect
the calculation of long-range correlation functions. An MPS cannot describe this
logarithmic correction with a finite bond dimension because the bond dimension
has to grow polynomially with system size. Nevertheless, it could be described by
an infinite-dimensional MPS [49, 50]

In 2007, Vidal proposed a new kind of tensor network state, called multiscale
entanglement renormalization ansatz (MERA), to represent a critical state effec-
tively [51]. A MERA yields a tensorial representation of a critical system with fixed
bond dimensions independent of system size. It consists of a network of isometric
tensors that are connected by another class of unitary tensors, called disentan-
glers. These tensors are introduced to mix up different length scales and to locally
minimize the entanglement between neighboring sites on the same length scale.
Physically, a MERA could be understood as a network on which quantum entan-
glement propagates. It opens up exciting perspectives for studying one-dimensional
quantum or two-dimensional classical systems. The price to pay is an increase in
the overall computational cost.

MPS was originally defined in one-dimensional lattice systems. In 2010, Ver-
straete and Cirac extended it into the continuous limit and introduced continuous
MPS [52]. Their work allows, for the first time, variational tensor network
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algorithms to be applied to quantum field theories in one spatial dimension with-
out lattice discretization. In 2013, Haegeman et al. proposed a continuous MERA
theory for constructing RG flows of quantum field theories in real space [53]. In
2015, Jennings et al. [54, 55] introduced a higher-dimensional generalization of
continuous MPS in the framework of path-integral representation.

Nonlocal Basis Space DMRG

In 1996, Xiang extended DMRG from real space to momentum space [56]. In
momentum space, a “lattice” is simply a set of properly ordered momentum points
allowed by periodic boundary conditions, with each momentum point representing
a lattice site. An advantage of implementing DMRG in momentum space is that
it enables simple manipulation of the kinetic energy term and treats the momen-
tum as a good quantum number to block diagonalize the Hamiltonian. However,
the interaction is highly “nonlocal” in the momentum space. It contains a sum of
N3 terms of four fermion or boson operators, which link two or more momentum
points if considering the momentum conservation, where N is the lattice size. To
compute and store the matrix elements of these N3 operators is computationally
costly. Xiang solved this problem by introducing a regrouping method to reduce
the number of operators whose matrix elements need to be computed and stored
[56]. This regrouping method works in arbitrary basis space. It paved the way for
the application of DMRG in quantum chemistry [57], nuclear physics [58], and
quantum Hall effects [59, 60, 61].

The DMRG algorithm was first applied to a molecular system of cyclic pol-
yene chain modeled by an extended Hubbard [62, 63] or the Pariser–Parr–Pople
Hamiltonian [64, 65]. It was followed by the first DMRG calculation with the
full electronic Hamiltonian of 25 Hartree–Fock orbitals for a water molecule by
White and Martin in 1999 [57]. A more accurate DMRG calculation for water
molecules outperforming the best coupled-cluster result was first made by Chan
and Head-Gordon using 41 orbitals in 2003 [66]. Since then, DMRG has been
broadly used to benchmark other molecules. It has also been shown that DMRG is
an efficient method for optimizing single-particle basis states from a large reservoir
of Hartree–Fock orbitals [67].

Extension to Finite Temperatures

Extension of DMRG to finite temperature was first made by Nishino in 1995 [68]
when he realized that the DMRG idea could also be used to diagonalize transfer
matrices of two-dimensional classical statistical models. This led to the method
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of transfer matrix renormalization group (TMRG). In 1996, Nishino and Okunishi
combined the idea of corner transfer matrix, first introduced by Baxter [69], with
DMRG and developed the corner transfer matrix renormalization group (CTMRG)
method [70]. A variant of this CTMRG, called the directional corner transfer
matrix method, was introduced by Orus and Vidal in 2009 [71]. This method treats
the four directions of the lattice independently and is more flexible in application.
It is commonly used, for example, in the contraction of two-dimensional tensor
network states.

In 1996, Bursill, Xiang, and Gehring extended DMRG to finite temperatures for
one-dimensional quantum systems [72] by introducing a quantum transfer matrix
representation for the partition function using the Trotter–Suzuki decomposition
[73, 74]. In this case, the lattice size is infinite, and the finiteness is at the level of
the Trotter approximation along the imaginary time (i.e. inverse temperature) direc-
tion. As a quantum transfer matrix is generally non-symmetric and its left and right
eigenvectors may not be a conjugate pair, a crucial step in establishing an efficient
quantum transfer matrix renormalization group (QTMRG) was the introduction
of nonsymmetric density matrix. This was done by Wang and Xiang [75] and inde-
pendently by Shibata [76]. However, the nonsymmetric density matrix is not always
positive definite, although it should be physically. The accumulated truncation error
may ruin the positivity of this density matrix and lead to numerical instability,
which dramatically reduces the accuracy of results at low temperatures. To avoid
this instability, Huang introduced a biorthonormalization scheme to perform the
QTMRG calculation [77]. In this scheme, a pair of basis sets obtained from the
singular value decomposition (SVD) of the density matrix are biorthonormalized
and used to construct the renormalized transfer matrix. It reduces the numerical
instability and allows much lower temperatures to be reliably accessed by QTMRG.

Thermodynamic properties can also be calculated on a finite lattice system using
TEBD based on the purification of the thermal density matrix [78]. The purifi-
cation enlarges the Hilbert space with auxiliary sites, called ancillas. An ancilla
contains the same number of basis states as a physical site. It pairs with a phys-
ical site to form a maximally entangled state at infinite high temperatures. The
whole system resembles a ladder with the ancilla lattice appearing geometrically
as another chain parallel to the original one. This ancilla approach is convenient to
implement within the traditional framework of DMRG [79].

Time Evolution and Dynamical Correlation Functions

Dynamical correlation functions, such as optical conductivity or single-particle
spectral function, can be measured experimentally. However, the calculation of
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these quantities is rather challenging. During the last three decades, several
approaches have been proposed to calculate spectral functions using DMRG or
related methods.

In 1987, Gagliano and Baliseiro [80] proposed a continued-fraction method
(also called the Lanczos vector method) to evaluate dynamical correlation func-
tions based on the Lanczos diagonalization. Their method was first adopted in the
DMRG calculation by Hallberg [81] in 1995. While this method requires only mod-
est numerical resources, reliable results that can be obtained are only limited to low
frequencies.

The continued-fraction method uses sequential basis states generated by the
Lanczos iteration to represent the whole Hilbert space of the system. It is not
accurate nor efficient for describing the correlation at a particular frequency. To
remedy this deficiency, the correction vector method, initially proposed by Soos
and Ramasesha [82], was introduced in the DMRG calculation, first by Ramase-
sha et al. [83] in 1997, and later refined by Kühner and White [84] in 1999. The
critical idea is to take Green’s function at a particular frequency as a target state
and calculate it by solving a set of large but sparse linear equations. This method
can generate extremely accurate results at a given frequency, but the computational
cost is very high. In 2002, Jeckelmann [85] improved the correction vector method
and showed that it is much more efficient and accurate to determine the correction
vector by minimizing a cost function. In 2011, Dargel et al. proposed an adaptive
Lanczos vector method [86] to improve efficiency in the calculation of dynamical
correlation functions. In 2016, Nocera and Alvarez [87] proposed a Krylov-space
approach to replace the conjugate gradient method in the calculation of correction
vectors.

It is more convenient to investigate dynamical spectral functions using either a
Chebyshev expansion [88, 89] or a Lanczos expansion [90] in the framework of
MPS. The key idea is to use MPS to represent the Chebyshev or Lanczos vec-
tors generated in the corresponding expansion. However, as each vector obtained
at each step of expansion is represented by an MPS, the recurrence or orthog-
onal relation between different vectors is satisfied only approximately. Thus, a
reorthogonalization of these vectors is desired to improve the accuracy of dynam-
ical correlation functions [89, 90]. This kind of method offers a balanced scheme
between cost and accuracy. It yields results with accuracies comparable to those
of the correction-vector DMRG but at dramatically reduced computational cost.
Furthermore, one can also use the orthogonalized Chebyshev or Lanczos vectors
to represent the Hamiltonian. Diagonalizing this Hamiltonian can also accu-
rately determine the spectral weight at each energy eigenvalue, offering a simple
but accurate approach to performing the finite-size scaling in the entire energy
range [89].
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Dynamic quantities can also be calculated from the Fourier transform of the
time-dependent Green’s function. However, to obtain good frequency resolution,
one has to calculate the correlation functions over a long time interval, which is
limited by either a loss of accuracy due to the approximation used or by finite-
size effects such as reflections from the two open ends. In 2002, Cazalilla and
Marston evaluated the time-dependent correlation functions for a one-dimensional
system under an applied bias using DMRG [91]. In 2003, Luo et al. [92] proposed
a pace-keeping approach to optimize the basis states that are retained with the time
evolution. TEBD, on the other hand, provides a method to efficiently simulate the
time evolution of one-dimensional quantum systems with short-range interactions
using MPS [38]. Based on this approach, an adaptive time-dependent DMRG was
proposed by Daley et al. [93] and by White and Feiguin [94].

TEBD is implemented by taking the Trotter–Suzuki decomposition. At each
time of evolution, an MPS with a larger bond dimension than the original one
is obtained. To proceed, one has to truncate the MPS by discarding less important
parameters. In order to reduce both the truncation and the Trotter errors, Haegeman
et al. introduced a time-dependent variational principle to optimize an MPS that
preserves all symmetries of the system [95].

Investigation of long-time dynamics, however, remains challenging due to the
linear growth of the entanglement entropy with the evolving time [96]. To catch
up with the growing speed of the entanglement entropy, the bond dimension of
MPS has to grow exponentially with time. In 2009, Bañuls et al. [97] proposed a
folding scheme to reduce the entanglement of transfer matrices defined in the time
direction. It yields an accurate approach for evaluating the long-time dynamics of
a quantum state in the thermodynamic limit. A QTMRG extension of this method
to finite temperatures was proposed by Huang et al. [98]. DMRG has also been
extended to simulate time evolution at finite temperatures by purifying thermal
density matrices with ancillas [99, 100].

Two- or Higher-Dimensional Quantum Systems

Investigation into physical properties of two-dimensional quantum systems with
strong correlations, including high-temperature superconductivity, quantum Hall
effects, frustrated antiferromagnets, and quantum spin liquids, has been at the heart
of condensed matter physics in the past four decades. After the successful applica-
tion of DMRG in one dimension, it is natural to extend this method to two or more
dimensions. Liang and Pang made the first attempt to apply DMRG to two dimen-
sions [101]. Unlike in one dimension, they found that DMRG is only moderately
successful in two dimensions because computational resources need to increase
exponentially with the width of the lattice, implying that DMRG can reliably access
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only narrow two-dimensional lattices. From an analytical study for the spectra of a
two-dimensional system of coupled oscillators, Chung and Peschel also found that
the eigenvalues of density matrix decay much slower than in one dimension [102].

A better understanding of this exponential breakdown of DMRG in two dimen-
sions is revealed by the entanglement area law, which provides a systematic way
to quantify quantum correlations. The entanglement area law is believed to hold
in both one and two dimensions if the ground state is gapped so that the corre-
lation length is finite. According to the area law, the entanglement entropy of the
ground state between two subsystems scales with the size of the interface. In one
dimension, the interface contains just one site, independent of the lattice size. In
two dimensions, however, the interface grows with the lattice size.

To capture the entanglement feature of the ground state correctly, the minimal
number of many-body states should grow exponentially with the entanglement
entropy. It puts an upper bound on the system sizes that can be accurately simu-
lated. Nevertheless, DMRG is still one of the most promising methods for studying
two-dimensional quantum lattice models because other methods, such as the exact
diagonalization and the quantum Monte Carlo, all have their limitations. DMRG
has been successfully applied to study, for example, the t-J model [103], Hubbard
model [104], frustrated quantum spin models [105, 106, 107], and other quantum
lattice models in two dimensions.

A simple extension of DMRG to two dimensions would be to replace every site
added between the left and right blocks with a column of sites. However, the extra
degrees of freedom added to the system would make the size of the Hilbert space
prohibitively large. A practically feasible extension of DMRG to two dimensions
is to add a single site to a block at a time. To do this, one needs to map a two-
dimensional lattice onto a one-dimensional one or select a path to order all lattice
points at the price of breaking the lattice symmetry and introducing long-range
interactions.

A typical mapping is to fold a two-dimensional lattice, generally a multichain
system, into a one-dimensional zipper by ordering the lattice sites in a snake path
extending along the chain direction. Alternatively, one can zip a two-dimensional
lattice along the diagonal direction [34]. This diagonal map would allow one to
build up a L× L lattice using the blocks of an (L− 1)× (L− 1) lattice.

In a two-dimensional DMRG calculation for a multichain system, open or
cylindrical boundary conditions are generally assumed instead of fully periodic
boundary conditions. This is to avoid squaring the number of basis states required
for a given accuracy. By cylindrical boundary conditions, we mean open boundary
conditions along the chain direction and periodic boundary conditions along the
direction perpendicular.
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As mentioned before, the wave function generated by DMRG is an MPS. In
two dimensions, the entanglement entropy scales with the linear size of a lat-
tice in a gapped system. To capture this effect, the bond dimension of MPS
has to increase exponentially with the cylinder’s circumference. To resolve this
exponentially growing problem, one needs to find a scalable representation of the
ground-state wave function that captures the entanglement area law.

Niggemann et al. made the first tensor network extension of MPS to two dimen-
sions in the study of an extended spin-3/2 Heisenberg model on a honeycomb
lattice [108]. They called this kind of tensor network state a vertex-state model
to emphasize its resemblance to a standard vertex model. Similar to an MPS, they
defined a local tensor at each lattice site that maps a set of bond variables onto a
physical state. Later, Sierra and Martin-Delgado made a similar ansatz for the ten-
sor network wave function [109]. The use of a tensor network state as a variational
wave function for the three-dimensional classical lattice model was also suggested
by Nishino [110].

In 2004, the idea of two- or higher-dimensional tensor network states was
discussed by Verstraete and Cirac from a perspective of quantum information the-
ory [111]. They reinvented the tensor network wave function first suggested by
Niggemann et al. [108], and called it a projected entangled pair state (PEPS), since
it can be understood in terms of pairs of maximally entangled virtual basis states
defined on the bond linking two sites. Their work has attracted significant attention
because it reveals more clearly the physical picture embedded in the tensor net-
work representation of quantum states. Furthermore, they pointed out that PEPS
satisfies the entanglement area law since the number of entangled bonds between
any two blocks grows linearly with the size of their interface [112]. In other words,
PEPS presents a faithful representation of a ground state that is governed by the
entanglement area law.

PEPS accurately describes the entanglement between any two neighboring sites
in the ground state. It is, for example, an exact representation of the ground state
of the two-dimensional AKLT model [27], which is a VBS. In principle, it can
be used to accurately describe an arbitrary quantum state that satisfies the entan-
glement area law if there is no limitation on the bond dimensions of local tensors.
However, in practical calculations, the bond dimension of PEPS that can be reliably
handled is generally not much more than ten without imposing any symmetry. In
this case, PEPS is no longer an efficient representation of a quantum state in which
the entanglements among three or more particles become important. An example of
this kind of quantum state is the so-called simplex solid state (SSS), first introduced
by Arovas [113].

A simplex is a building block of a lattice. For example, a four-site square is a
simplex of a square lattice, and a three-site triangle is a simplex of a Kagome lattice.
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Unlike VBS, SSS emphasizes the group entanglement within a simplex. The wave
function that characterizes the SSS-type state is given by the so-called projected
entangled simplex state (PESS) first introduced by Xie et al. in 2014 [114]. PESS
presents a natural extension of PEPS to a system in which many-particle or cluster
entanglement becomes important. It also satisfies the entanglement area law. In the
limit that a simplex contains two sites, it reduces to PEPS.

Either PEPS or PESS can accurately describe a quantum state with short-range
entanglement and keep the locality of interactions. The minimal bond dimension
that is needed for accurately describing a quantum state does not depend on the
system size in a gapped system. This is an advantage of using this kind of ansatz.
Furthermore, it can be directly used in a thermodynamic limit like an MPS.

Unlike an MPS with open boundary conditions, we cannot choose a gauge to
simultaneously orthogonalize all the bond indices of PEPS so that all local tensors
are canonicalized. It also happens for MPS with periodic boundary conditions or,
more generally, if there is a loop in a tensor network state. A loop in a tensor
network state means that one cannot split the network into two parts by just cutting
one bond.

The biggest challenge in developing a two-dimensional tensor network algo-
rithm is the optimization of local tensors, which give the best approximation to
the ground state for a given Hamiltonian. Two kinds of approaches can be used
to determine the local tensors of PEPS (similarly to PESS). One is to determine
the local tensors by variationally minimizing the ground-state energy [111]. The
other is the so-called update approach in which a PEPS is determined by perform-
ing an imaginary time evolution, that is, by applying the projection operator, or
the density-matrix operator, exp(−βH) onto an arbitrary initialized PEPS which is
not orthogonal to the true ground state. This projection is made by dividing β into
many small pieces so that the projection operator can be readily evaluated using the
Trotter–Suzuki decomposition formula [73, 115]. At each projection, an approxi-
mation has to be taken to truncate the bond indices of PEPS. The PEPS obtained
with this approach would converge to the ground state in the zero-temperature limit,
β →∞.

There are two kinds of update approaches: the simple update [116] and the
full update [117]. The simple update is essentially an entanglement mean-field
approach. It approximates the environment tensors by entanglement spectra defined
on the bonds separating the system and environment sites. In other words, these
bond entanglement spectra serve as an effective mean field acting on the system
tensors whose elements are updated. This simple update approach becomes exact
on the Bethe lattice or any other kind of lattice without loops [118].

The simple update is a local update approach. It underestimates the long-range
correlations but works very efficiently and allows a PEPS or PESS with a bond
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dimension as large as 100 or more to be approximately determined. With this
approach, a system block with one or a few tensors is updated at one time. A PEPS
determined by the simple update can be directly used to evaluate physical observ-
ables. It can also be used as an initial state in the full update calculation. One can
also update a relatively large cluster of tensors at one time. In this case, the simple
update is referred to as a cluster update approach [119]. The entanglement mean-
field approximation used in the simple update can also be used in the variational
minimization of PEPS or PESS [120]. It allows us to efficiently determine PEPS
or PESS with a relatively large bond dimension.

The full update evaluates the environment tensor by directly contracting all
the local tensors in the environment block [117] using, for example, a boundary
MPS or CTMRG method. It is more accurate than the simple update but has a
much higher computational cost. The bond dimension this approach can handle
is generally less than ten if the tensors are not block diagonalized by imposing
symmetries.

Both PEPS and PESS are variational wave functions and satisfy the variational
principle. Hence, the energy calculated with either PEPS or PESS should be an
upper bound of the true ground-state energy. However, as it is difficult to rigor-
ously contract a PEPS or PESS, certain approximations have to be introduced in
computing observables. These approximations may violate the variational principle
and ruin the condition for the calculated energy being a rigorous upper bound.

The PEPS or PESS can also represent a low-lying excitation in a translation-
invariant system under the single-mode approximation. This approach was first
explored by Vanderstraeten et al. in 2015 [121]. The single-particle excitation is
assumed to be a momentum superposition of a locally excited state by replacing
one of the local tensors in a PEPS ground state with a perturbed local tensor that is
variationally optimized. Dynamical spectral functions can be evaluated using this
kind of tensor network states [122, 123].

Besides PEPS and PESS, a number of other tensor network states have also been
introduced in two or more dimensions. This includes but is not limited to the tree
tensor network state [124], string-bond state [125], entangled-plaquette state [126],
and branching MERA [127].

Coarse-Graining Tensor Renormalization

Before the tensor network wave function was introduced in quantum systems, ten-
sor network representations for the partition functions of classical lattice models
were already used in statistical physics. In fact, as discussed in Chapter 3, all clas-
sical lattice models with local interactions can be represented as tensor network
models. A tensor network model is a special kind of tensor network state that does
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not have any dangling physical bonds. Moreover, this representation is rigorous,
unlike a quantum TNS whose local tensors have to be variationally determined.
The partition function is determined by contracting all local tensors.

Similarly, in the determination of a PEPS, either by the variational minimization
or by the full update, or in the evaluation of its observables, one needs to calculate a
scalar product of two PEPS. This scalar product of two PEPS forms a double-layer
tensor network model. The physical bonds connect the two layers of local tensors.
By contracting out these physical bonds, the double-layer tensor network model
becomes a single-layer one.

To exactly solve these tensor network models by contracting out all local ten-
sors is, unfortunately, an exponentially hard problem. The computational cost
scales exponentially with the number of sites no matter how the local tensors are
contracted. To resolve this problem, we have to rely on some approximate schemes.

A two-dimensional tensor network model can be approximately solved, for
example, using TMRG or CTMRG. It can also be solved by employing a modified
TEBD method, which is referred to as a boundary MPS method in the literature.
These methods are efficient and accurate in performing this kind of calculation,
and their costs scale linearly with system size.

The scheme of coarse-graining tensor renormalization has also been developed
to solve two-dimensional tensor network models. The idea is to perform a scal-
ing transformation by coarse-graining local tensors until some fixed-point tensors
are reached, similar to the Kadanoff block spin scheme [8] in classical statistical
models. In 2007, Levin and Nave introduced the first coarse-graining renormal-
ization group method of tensor network models [128]. They coined it tensor
renormalization group (TRG). This method truncates the basis space according
to the singular-value spectra of local tensors. It provides a local optimization of
the truncation space. However, it does not consider the renormalization effect of
the environment tensors on the singular-value spectra, which is key to the success
of DMRG. To solve this problem, Xie et al. introduced a second renormaliza-
tion group (SRG) method [129, 130] to account for the environment contribution.
The SRG improves the accuracy of TRG significantly. For example, for the two-
dimensional Ising model, the accuracy is improved by more than two orders of
magnitude at the critical point and more than five orders of magnitude far away
from the critical point by keeping 24 states.

The difference between TRG and SRG is similar to the difference between
Wilson’s NRG and DMRG. In Wilson’s NRG, a block Hamiltonian is optimized
without considering the interaction between its building cells. On the contrary, in
DMRG, the truncated basis states of the system are fully optimized by considering
the interplay between the system and the environment through the reduced density
matrix, which measures the entanglement spectra between these two blocks.
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The TRG algorithm can also be improved by just taking higher-order singular
value decomposition (HOSVD) or more generally Tucker decomposition for local
tensors [131]. This HOSVD-based tensor renormalization group (HOTRG) method
determines the entanglement spectra on all the bonds of a local tensor at the same
time. It presents a better scheme to truncate the basis states than TRG. HOTRG
can also incorporate SRG to improve the accuracy of results further. This HOSVD-
based SRG method is called HOSRG [131].

However, TRG and HOTRG do not remove all short-range entanglement embed-
ded in each loop that is gauge invariant during the coarse-graining process. As a
result, the effective tensor network at a given length scale still contains irrelevant
correlations belonging to shorter length scales. The accumulation of these short-
range correlations over successive coarse-graining transformations would ruin the
scaling invariance at the critical point, leading to a large truncation error around
the critical point. Nevertheless, universal information, such as critical exponents,
can still be obtained from the fixed-point tensors.

To remove short-range entanglement, Gu and Wen proposed a tensor entan-
glement filtering renormalization approach and pointed out that it is crucial
to optimize the tensor configurations that contain a loop [132]. However, this
approach is computationally inefficient. A better approach for removing short-
range entanglement or correlations at each coarse-graining step was introduced
by Evenbly and Vidal based on the idea of MERA [133]. This approach, which is
referred to as tensor network renormalization (TNR), is based on the insertion of
optimized unitary disentanglers and isometric tensors into the tensor network. To a
large extent, TNR recovers scale invariance at criticality.

In 2017, Yang et al. proposed a loop tensor network renormalization (Loop-
TNR) approach to remove short-range entanglement [134]. In this approach, the
short-range entanglement within a loop is removed by optimizing the rewiring
tensors at each coarse-graining step. Like TNR, Loop-TNR improves the RG
flow around a critical point. It produces accurately critical exponents, includ-
ing central charge and scaling dimensions, with a lower computational cost than
TNR.

The methods introduced here each have advantages and disadvantages. Some
are easier to implement, and some are more stable in catching critical behav-
iors. In general, the cost of DMRG- or MPS-based methods is lower than that
of coarse-graining methods. But the coarse-graining methods scale logarithmically
with system size and allow the scaling exponents to be directly computed.

Among these methods, only HOTRG and HOSRG are applicable to
three-dimensional tensor network models. These two methods can be used
to directly contract three-dimensional classical lattice models or equivalent
(2+1)-dimensional quantum lattice models. A HOTRG calculation for the
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three-dimensional Ising model, for example, produces a very accurate estimation
for the critical temperature [135] as well as the temperature dependence of the
specific heat and magnetic susceptibility [131].

Other methods are either not applicable or difficult to extend to study of three-
dimensional tensor network models. In order to use these methods, we have to
make a dimension reduction to contract a three-dimensional tensor network model
using a boundary PEPS, whose local tensors are determined using a variational
optimization approach. The computational cost for determining this PEPS and its
expectation values is generally higher than HOTRG.

1.4 Applications

Density-matrix and tensor network renormalization provides a state-of-the-art
method for the classical simulation of quantum systems. It was initially introduced
to investigate classical statistical and quantum lattice models in condensed mat-
ter physics, statistical mechanics, and quantum information, which significantly
deepened our understanding of so-called correlated quantum phenomena. Later
they were extended to new fields and generated significant impact, for example,
in quantum chemistry, cold atoms, quantum computing, artificial intelligence, and,
more generally, in the study of complex systems with a large number of degrees of
freedom or variables. During the past thirty years, more than ten thousand scientific
papers have been published in the development and applications of density-matrix
and tensor network renormalization.1 It is beyond my ability to comprehensively
review the vast literature of papers published in this field. A survey of DMRG
with its application up to late 1998 was given in a collection of lectures and arti-
cles [136]. To gain a more comprehensive picture of the DMRG or other tensor
network-related methods and their applications, we refer the interested readers to
the review articles [137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151] and references therein. A comparison between the early real-space
renormalization group methods and the newly developed tensor-network-based
renormalization group methods can be found in Ref. [152].

One Dimensional Quantum Systems

As an algorithm that is simple to implement, DMRG, together with its finite tem-
perature and finite frequency extensions, has now become the most effective and
accurate numerical method for studying not just the ground state but also thermo-
dynamic and dynamic properties in one dimension. It has been successfully applied

1 See the DMRG Home Page, http://quattro.phys.sci.kobe-u.ac.jp/dmrg.html, run by Tomotoshi Nishino.
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to solve nearly all fundamentally interesting models with short-range interactions
in one dimension (see Refs. [136, 137, 138, 139, 141]), including, but not limited
to, the following quantum systems:

(i) Quantum spin models
This includes the antiferromagnetic Heisenberg models [19, 20, 153, 154,
155, 156, 157, 158] and their experimentally relevant generalizations by
adding anisotropy [159, 160], dimerization [161], frustration [162, 163, 164],
defects [165, 166, 167], randomness [168], or other interactions [163, 169,
170] to the Hamiltonians. A number of interacting spin models with higher
symmetries, such as the SU(N) symmetry (N > 2) [171, 172], have also been
studied.

The quantum spin models are physically interesting for three reasons.
First, as the charge degree of freedom is frozen at each lattice site, this
kind of model is relatively simple to study compared to the interacting fer-
mion models, which serves as a playground for testing various numerical
methods. Second, in 1983, Haldane predicted that the one-dimensional Hei-
senberg model with integer spin has an excitation gap and a finite correlation
length [28, 29]. Since then, much experimental and theoretical effort has
gone into understanding the difference between half-integer and integer spin
chains. Third, there are a lot of quasi-one-dimensional compounds whose
physical properties can be adequately described within the framework of
interacting spin chains governed by quantum spin models.

The spin-1 Heisenberg model was the first quantum lattice model used by
White to demonstrate the efficiency and accuracy of DMRG [18]. A bench-
mark calculation of DMRG was made by White and Huse [19] to evaluate
the spin excitation gap and the correlation length for this model with an accu-
racy that was difficult to achieve with other numerical methods. The results
confirmed the valence-bond-solid state picture proposed by AKLT [26, 27].

(ii) Interacting fermion models
This includes the Hubbard model [14, 173, 174, 175], extended Hubbard
model [176, 177], multiband Hubbard model [178], SU(N) Hubbard model
[179], t-J model [180, 181], periodic Anderson [182, 183], and Kondo lat-
tice [184, 185] models, with randomness [186, 187], or other interactions
[188]. The study of interacting fermion models is somewhat more compli-
cated because of the larger number of degrees of freedom at each lattice site.
However, DMRG is not bothered by the negative-sign problem that hampers
quantum Monte Carlo simulations.

The Hubbard model [14], named after J. Hubbard, is a basic model
for describing the Mott metal-insulator transition, charge-spin separation,
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quantum magnetism, charge density waves, and other fundamental properties
of interacting electrons. It reduces to the t-J model in the strong coupling limit.
The Hubbard [189] and t-J models [190] are also the two simplest models
used for understanding the mechanism of high-temperature superconductivity
discovered in copper oxides. The Kondo lattice model is equivalent to the peri-
odic Anderson lattice model in the strong coupling limit [191]. They are the
two basic models for understanding the physical properties of heavy fermion
systems in which itinerant electrons interact strongly with localized spins.

(iii) Systems with bosons
Bosonic systems are generally more challenging to treat than fermionic ones
in DMRG because a single bosonic mode has an infinite state space. The
basis space of a bosonic mode must be truncated before carrying out DMRG
calculations [192, 193, 194, 195]. A commonly adopted approximation is to
restrict the number of bosons in a finite interval around its average at each
lattice site. This approximation is valid when the fluctuation in the number of
bosons at a site is small.

There are three kinds of bosonic models that have been investigated with
DMRG. The first includes the systems that contain just bosons [196, 197]. A
typical example is the Bose–Hubbard model [196]. This model mimics the
dynamic properties of ultracool atoms in optical lattices generated by laser
beams [198]. Both the doping of particle numbers and the interaction strength
can be readily controlled in an optical lattice of ultracool atoms. The phase
diagram of this model, particularly the Mott insulator to superfluid conden-
sate transition, has been thoroughly investigated with DMRG in conjunction
with experimental measurements [199, 200]. The second model includes
the systems of bosons coupled with fermions, such as the Su–Schrieffer–
Heeger model or other electron–phonon coupled systems [193]. The third
includes the interacting systems of bosons coupled with spins, such as the
spin-Peierls system [195, 201] and the multiconnected Jaynes–Cummings lat-
tice model [202]. A multiconnected Jaynes–Cummings lattice can be realized
by coupling qubits, described by spins, with some cavity photon modes.

(iv) Quantum field theory and quantum gravity
The application of tensor network methods to the lattice gauge theory is a
forefront field undergoing rapid development [148]. In particular, DMRG
and other tensor network methods offer a powerful tool for defeating the
notorious sign problem encountered in the simulation of lattice quantum
chromodynamics [203, 204] and for exploring physical properties of the
(1+1)-dimensional Abelian Schwinger model [205, 206, 207], λφ4 scalar field
theory [208, 209], Z2 lattice gauge theory [210], SU(2) [211] and SU(3) [212]
gauge theory, O(N) (N = 2, 3, 4) nonlinear sigma models [213, 214, 215, 216],
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Gross–Neveu–Wilson model [217], lattice Abelian Higgs model [218], and
massive Thirring model [219].

Continuous MPS provides a powerful variational ansatz for the ground
state of strongly interacting quantum field theories in one dimension [52].
This ansatz, formulated directly in the continuum, enables us to parameter-
ize the ground-state wave function without resorting to a lattice discretization
scheme. It was first illustrated with the Lieb–Liniger model [52, 220], which
is a basic model of quantum field theory describing one-dimensional bosons
interacting through a repulsive contact potential. This approach was then
extended to the study of excited states of the Lieb–Liniger model [221], free
massive Dirac fermions and the Gross–Neveu model [222], coupled Lieb–
Liniger models [223], and systems of two species of fermions [224]. It was
also generalized for studying thermodynamic properties of one-dimensional
quantum lattice models in the continuous imaginary time representation of
quantum transfer matrices [225].

Tensor networks are relevant to quantum gravity. This connection was first
pointed out by Swingle [226]. It was proposed that MERA [51] is linked to
the geometry of space through a conjectured relationship or correspondence
between the anti-de Sitter space in theories of quantum gravity and conformal
field theories. Particularly, it was assumed that MERA could be understood
as a lattice realization of an anti-de Sitter space with some geometry, in
which the curvature is somehow linked to entanglement. The correspondence
implies that space-time geometry may emerge from the underlying entangle-
ment structure in a complex quantum state. This intriguing connection has
attracted great interest in the community of superstrings. However, a report
also claims that MERA is actually a lightcone geometry rather than an anti-de
Sitter space [227].

Two- or Higher-Dimensional Quantum Lattice Models

A thorough investigation of two-dimensional quantum systems is essential to
the microscopic understanding of high-temperature superconductivity, frustrated
magnetism, quantum spin liquids, and many other novel quantum phenomena dis-
covered in quasi-two-dimensional materials. However, the entanglement entropy
grows much faster in two dimensions than in one dimension. As a result, it leads to
a dramatic increase in the demand for computational resources compared to one-
dimensional calculations. Yet geometrical constraints in two dimensions are much
more relaxed than in one dimension, allowing exotic elementary excitations, such
as anyons, and competing quantum fluctuations to exist.

Two-dimensional quantum models have been investigated with both DMRG and
the tensor network methods based on the PEPS representation of wave functions
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[138, 140, 141, 142, 143, 144, 149, 150]. DMRG calculations start by unzipping
a two-dimensional lattice into a one-dimensional one [34, 101]. Due to the con-
straint imposed by the entanglement entropy, DMRG is limited to the study of
two-dimensional lattices with a relatively small width. PEPS maintains the lattice
structure and distributes the entanglement more evenly on the whole lattice. It
reduces the dimension of the virtual basis state on each bond and allows even an
infinite lattice system to be studied.

The first applications of both DMRG- and the PEPS-related RG methods were
in the area of magnetism [228]. The results obtained from the calculation of the
two-dimensional Heisenberg model were encouraging, demonstrating the potential
of these methods in solving strongly correlated problems in two dimensions [34,
105, 106, 107, 116, 229, 230] as well as in three dimensions [231]. For example,
both the ground-state energy and the magnetization of the square lattice Heisenberg
model obtained with either DMRG [34, 229] or PEPS [230] are consistent with the
quantum Monte Carlo results [232].

The tensor network RG study of the frustrated Heisenberg models on the triangu-
lar [229], kagome [105, 106, 107], honeycomb [233], and the Shastry–Sutherland
lattice [234], as well as models frustrated by further-neighbor [235, 236, 237] or
multispin interactions [238, 239], has yielded fruitful results, particularly in search
of quantum spin liquids. It has settled several problems that have been long debated
[105, 106, 107]. A quantum spin liquid is difficult to identify because it is topolog-
ically nontrivial and may possess long-range entanglement. Furthermore, it does
not break any symmetry and cannot be characterized by a local order parameter.

Another set of systems extensively simulated by DMRG or PEPS is the inter-
acting fermionic systems described by the t-J model [240, 241, 242], the Hubbard
model [243, 244], and the Kondo–Heisenberg lattice model [245]. A common fea-
ture revealed is the formation of the so-called stripe phase in lightly hole-doped
systems [240, 243, 244]. A stripe is a charge-density wave state separated by mag-
netically ordered states. It was first discovered in cuprate superconducting materials
by neutron scattering spectroscopy [246]. Superconducting pairing states have also
been studied for these models by DMRG [245]. It seems that the long-range pairing
order is absent in the thermodynamic limit of the Hubbard model if there is only
nearest-neighbor hopping.

The DMRG and PEPS have also been applied to interacting boson systems [231,
247, 248]. Particular attention has been devoted to the study of so-called supersolid
[249] in the extended Bose–Hubbard model and Bose metal [250]. Supersolid is
a phase with simultaneous charge-density wave and superfluid order. On the other
hand, Bose metal is not a phase characterized by an order parameter but by a pattern
of correlations associated with a surface of gapless modes.
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Quantum models defined on a Bethe or, more generally, a tree lattice have also
been extensively studied with tensor network methods. It is natural to represent a
quantum state as a tree tensor network on a tree lattice. The lack of loops implies
that a tree tensor network state can be rigorously canonicalized by minimizing the
ground-state energy with DMRG or by taking an imaginary time evolution with a
proper local tensor update scheme like simple update [116]. The simple update is an
entanglement mean-field approach for canonicalizing a tensor network state, which
works particularly well on a tree lattice [118]. It leads to a thorough understanding
of magnetic orders and other physical properties of the spin [251, 252, 253, 254],
and interacting fermion [255, 256] models on the Cayley or Bethe trees. However,
the correlation lengths are always finite, even at a critical point [118]. This implies
that the entanglement entropy is upper bounded, not like in a regular lattice, which
can be used to evaluate accurately low-temperature thermodynamic quantities just
by taking imaginary time evolution [257].

Quantum Systems with Nonlocal and Off-Diagonal Interactions

In an arbitrary basis space, one can order all the single-particle basis states to form
an effective “one-dimensional lattice” and carry out the DMRG calculation simi-
larly as in real space. Unlike in real space, the interaction of particles, represented
using these single-particle basis states, is generally nonlocal and off-diagonal. For
example, the Hubbard interaction is local and diagonal in real space. In momentum
space, on the other hand, each momentum point in the first Brillouin zone serves
as a basis site, and the Hubbard interaction becomes off-diagonal, which involves
the coupling from two to four momentum points, and long-ranged.

For two reasons, implementation of DMRG in momentum or other non-local
basis space is technically more challenging than in real space. First, the basis states
are not naturally ordered. One should determine the order of these basis states that
optimizes the final results [56, 258, 259]. Local optimization of orbital ordering
could be achieved by taking an adaptive scheme to update the active basis states
with a unitary transformation for the fermion operators on the two middle sites in
the superblock of DMRG [259]. This unitary transformation optimizes the basis
states by minimizing the entanglement between the augmented system and envi-
ronment blocks. It defines a new set of basis states and orders them optimally. One
could further improve this optimization scheme by sorting the orbitals according
to their mutual entanglement structures [258]. The purpose is to reduce long-range
correlations by placing strongly entangled orbitals close to one another. Second, as
the interaction becomes nonlocal and off-diagonal, there are more operators whose
matrix elements need to be evaluated and stored, leading to a dramatic increase
in computational time and memory space. This problem could be significantly
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ameliorated by factorizing the Hamiltonian and introducing the so-called comple-
mentary operators that take partial sums over certain combinations of operators
[56] within each subblock.

(i) Momentum space calculations
The application of momentum-space DMRG benefits from momentum con-
servation. It allows the Hamiltonian to be block diagonalized according to
the values of the total momentum so that more basis states can be retained
at each DMRG iteration. Furthermore, in a given interacting fermion model,
different scattering processes, such as the forward, backward, or Umklapp
scattering, could be readily identified in momentum space. This provides
a unique scheme, not feasible in other basis spaces, to understand the
effect of each scattering process by screening other scattering terms in the
model.
The momentum-space DMRG has been mainly applied to explore the ground-
state properties of the Hubbard model [56, 260, 261]. In both one and two
dimensions, the bipartite entanglement entropy is found to satisfy the volume
law and scale quadratically with the Hubbard interaction in the weak coupling
limit. Nevertheless, the momentum-space DMRG can still provide accurate
results for the two-dimensional Hubbard model with moderate system sizes
[261]. A one-dimensional Hubbard model with long-range hopping is also
investigated with DMRG [260]. This model is difficult to investigate with the
real-space DMRG because the hopping is long-ranged.
One possibility to combat the volume-law increase of the entanglement
entropy is to carry out DMRG calculations using a hybrid real- and
momentum-space representation. This approach aims to study a two-
dimensional cylindrical system by taking a real-space representation in the
direction along the axis of the cylinder and a momentum space representation
in the direction around the circumference. In this way, the translational invar-
iance and good momentum quantum numbers are preserved in the transverse
direction. This hybrid approach was used to study the interacting fermionic
Hofstadter model [262] and the Hubbard model [263] in two dimensions.
It leads to a considerable reduction in computation time and memory space
compared with the pure real-space approach [262, 263].

(ii) Fractional quantum Hall effect
The fractional quantum Hall effect occurs in a strong magnetic field where the
kinetic energy of electrons is quenched into highly degenerate Landau levels
and the electron–electron interaction is the only relevant term in the Hamil-
tonian. This leads to the emergence of highly entangled and nonperturbative
ground states with fractionalized particles.
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Due to the nonperturbative nature of the fractional quantum Hall effect,
numerical methods have played a crucial role in revealing its microscopic
picture. In the Landau gauge, the noninteracting Landau orbitals are Gauss-
ian localized [264], and the system could be mapped onto an effective
“one-dimensional” chain with long-range interaction. It was shown that cer-
tain model wave functions of fractional quantum Hall effects, such as the
Laughlin [265] and Moore–Read states [266], can be exactly represented by
MPS [267]. This exact MPS representation has an infinite bond dimension (as
the virtual space has support on conformal towers of states), but it can be trun-
cated to a finite-dimensional MPS with high fidelity, which can be used for
efficiently computing physical quantities [267, 268]. Furthermore, the topo-
logical order of fractional quantum Hall liquids can be identified from the
entanglement spectrum obtained by DMRG through the conjecture made by
Li and Haldane [269].
Like in the Hubbard model, the total momentum on a torus (or angular
momentum on a sphere) of the fractional quantum Hall system is conserved.
Therefore, the momentum-space DMRG can be extended to apply to the frac-
tional quantum Hall system. It yields a powerful numerical tool for accessing
a fractional quantum Hall system whose size is significantly larger than what
could be handled by exact diagonalizations. Shibata and Yoshioka [59] made
the first attempt along this line, emphasizing the investigation of the physi-
cal properties of electrons in higher Landau levels. More DMRG calculations
were followed by a number of groups [60, 61, 270, 271]. As a result, the
efficiency of DMRG has been significantly improved, which allows more
than twenty thousand states to be retained [61]. In addition, DMRG has also
been applied for studying fractional quantum Hall effects in a bosonic system
[272], as well as in an extended Kagome Heisenberg model [273].

(iii) Quantum chemistry calculations
The DMRG implementation in quantum chemistry was first presented in
the study of π -electrons of conjugated polyenes whose electronic proper-
ties are modeled by an extended Hubbard [62, 63] or the Parisier–Parr–Pople
[64, 65] Hamiltonian. The fully ab initio DMRG determination of the elec-
tronic structure of molecules, on the other hand, started from the work of
White and Martin in 1999 for the calculation of the ground-state energy
of a water molecule with 25 active molecular orbitals [57]. Their work
demonstrated the potential of DMRG for ab initio quantum chemistry calcula-
tions. The early applications focused on the multiconfigurational calculations
for small molecules [66, 274, 275, 276, 277]. It was also applied to solve
full configuration interaction problems for quasi-one-dimensional molecules,
including linear hydrogen chains [278, 279], polyenes [278, 280] and other
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π -conjugated organic systems [281], transition-metal complexes or clusters
[282, 283]. DMRG allows more than 100 active orbitals to be included
in the calculation. This size of active basis space is not reachable by full
configuration interaction algorithms.
In the quantum chemical DMRG, molecular orbitals play the role of lattice
sites. As the Coulomb interaction is inherently long-ranged and off-diagonal
in the orbital space, the lattice formed by the active orbitals are often far from
one-dimensional-like and relatively large bond dimensions are required to use
DMRG for diagonalizing the Hamiltonian. As the number of complemen-
tary operators whose matrix elements need to be evaluated and stored scales
quadratically with the dimension of the active space, not many active orbitals
can be used in the DMRG iteration. Luo et al. introduced a useful scheme to
tame this problem, which allows DMRG to optimize the orbitals by exchang-
ing one or two least-active orbitals in the active space with an equal number
of inactive orbitals from a larger pool of orbitals after each DMRG sweep
[67]. An orbital is chemically inactive if it is almost empty or fully occupied.
The occupation number of an active orbital is determined by the eigenvalue
of the single-particle density matrix obtained from the ground-state wave
function [67, 284, 285].
The rapid development of DMRG has turned it into a reference approach for
large-scale multiconfigurational calculations [147, 286], which dramatically
broadens its range of applications in quantum chemistry. To more efficiently
encode the entanglement structure of active orbitals, a higher-dimensional
tensor network extension, based on the tree tensor network states [287, 288],
is used to represent the ground-state wave function. This kind of tensor net-
work state encodes entanglement in a tree-like structure, allowing for a more
feasible description of molecules. Furthermore, the relativistic effects have
also been explored [289, 290, 291].
Besides the static properties, DMRG has also been extended to study
dynamical correlation functions. However, dynamical correlations involve the
contribution of excited states whose wave functions are described by some
orbitals not included in the active space. For the inclusion of those omit-
ted orbitals, DMRG has to be combined with an approach that can capture
these contributions, including perturbation [292, 293], coupled-cluster [294],
or other methods [295, 296].

(iv) Nuclear structures
The DMRG scheme also provides a good practical truncation strategy for
large-scale nuclear structure calculations. It works in the framework of
nuclear shell models with an effective Hamiltonian in which a nucleus is
modeled by filled core shells and partially filled valence orbitals of protons
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and neutrons. The core is assumed to be inert. This significantly reduces the
dimension of the active shell subspace.
The potential of DMRG in the nuclear structure calculation was first exem-
plified in a large angular momentum shell interacting through a pairing and a
quadrupolar force in an oblate nucleus [58]. Several schemes were then pro-
posed to implement DMRG in different symmetry channels, including the
particle-hole [297], the z-component of the total angular momentum [298],
and the total angular momentum symmetries [299, 300]. Their applications
led to accurate treatment for quite a number of nuclei, including 28Si [301],
56Ni [298, 301], and 48Cr [299, 301]. Further improvement to the accu-
racy could be achieved by optimally arranging the order of the proton and
neutron orbitals according to the criterion that minimizes the sum of the dis-
tance between any two orbitals weighted by their quantum mutual information
[302]. It reduces the DMRG error for the ground-state energy of 56Ni by one
order of magnitude [301, 302].

Classical Statistical Models

In the formalism of path integral, a d-dimensional quantum system is mapped
onto a (d + 1)-dimensional classical statistical model. This correspondence
between quantum and classical models implies that a method developed in a d-
dimensional quantum system can be extended, with certain modifications, to a
(d + 1)-dimensional classical system and vice versa.

As the partition function of a classical statistical model can be always repre-
sented as a network product of local tensors, various tensor network RG methods,
including TMRG [68, 70, 303], coarse-graining TRG [128, 133, 134], and SRG
[129, 131], have been developed in studying these systems in the past decades.
Among them, TMRG [68] is a direct generalization of DMRG. In a classical
system, the transfer matrix plays a similar role to the Hamiltonian in a quantum
system. TMRG [68] is a method for diagonalizing transfer matrices based on the
reduced thermal density matrix. As an exactly soluble system, the Ising model often
serves as an ideal system for testing each method.

Tensor network methods have been applied to investigate nearly all two-
dimensional classical statistical models, especially their critical behaviors around
the phase transition points. This includes, for example, the Ising model [303, 304],
Potts model [305, 306, 307, 308], clock model [309, 310, 311], vertex model
[312, 313], self-avoiding-walk model [314], XY model [315, 316], Heisenberg
model [317], and lattice gauge models with different symmetries [203, 204]. A
number of three-dimensional classical statistical models have also been studied
with tensor network methods [110, 131, 135, 318, 319, 320].
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Quantum Information

The reduction of the Hilbert space carried out in DMRG or other tensor network
renormalization group methods is a problem of quantum data compression. In
the language of quantum information, it is to find an optimal scheme to mini-
mize the quantum information loss or to carry out an optimal lossy quantum data
compression. The von Neumann entropy, or the entanglement entropy, is the most
fundamental measure in quantum information. It quantifies the nonlocal quantum
correlations between a subsystem and its complement. In fact, the entanglement
entropy was used in the DMRG calculations even before this terminology was
formally introduced into the field of DMRG [34, 258].

By exploring the entanglement structures of quantum states, we understand why
tensor network states approximate ground states of quantum lattice models with
short-range interactions so well [47, 111]. At the heart of this insight is the area
law of entanglement entropy [37], which confines the space of physical interest
to a small corner of the whole Hilbert space. In other words, the area law places
strong bounds on quantum entanglement that a many-body system can generate in
its ground state. It translates directly to the amount of memory and time required
to compute a quantum state in actual calculations.

In one dimension, if the entanglement of a bipartite system is bounded or grows
logarithmically with its size, an efficient simulation with tensor network methods
is possible. This explains why DMRG works so well in one dimension because
the entanglement of one-dimensional ground states is bounded by the area law in
a gapped system or grows logarithmically with the lattice size in a critical system
[47]. However, the simulation of the time evolution may not be efficient even in
one dimension since the bipartite entanglement grows linearly with time.

In two dimensions, the boundary grows with the system size. It is impossible to
catch this fast-growing entanglement by using an MPS or other one-dimensional
tensor network state to represent a ground-state wave function when the system
size becomes sufficiently large. To resolve this problem, a two-dimensional repre-
sentation of quantum states, like PEPS [111] or PESS [114], has to be introduced
to spread the entanglement onto all bonds on the boundary.

Quantum information also plays a vital role in the DMRG calculations of quan-
tum lattice models with nonlocal interactions, such as the Hubbard model in
momentum space [56], and quantum chemical systems [57]. In treating nonlo-
cal quantum models with DMRG, the ordering of the lattice sites or molecular
orbitals seriously affects the accuracies of converged results. An optimal scheme is
to order the single-particle states or orbitals by minimizing their overall distances
determined by their mutual quantum information [258].
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On the other hand, tensor networks provide a natural framework for a funda-
mental understanding of inherent entanglement structures of physical systems.
Particularly, tensor networks, such as PEPS, could be used to explore the rela-
tionship between the edge and bulk states through the so-called entanglement
Hamiltonians [321]. The entanglement Hamiltonian He is defined from the reduced
density matrix. Its eigenvalues encode essential information about the boundary
states. If the system is gapped and not topologically ordered, He is usually a
boundary Hamiltonian with local interactions. In a critical system, however, He

is generally a Hamiltonian with long-range interactions.
Tensor networks also provide a neat and unique representation for classifying

topological phases in a gapped system [322]. As a short-range correlated state or a
gapped state is well described by an MPS in one dimension, it was shown that all
quantum states are equivalent to trivial product states in the absence of any sym-
metry [323]. This means no topological order without symmetry protection in one
dimension. A topologically nontrivial phase may exist in a phase space restricted
by symmetries. This symmetry-protected topological state is short-range entan-
gled. However, by definition, an intrinsic topologically ordered state is long-ranged
entangled.

Machine Learning

Tensor networks were initially introduced to provide an efficient tool for attacking
quantum many-body problems. One emerging application direction of tensor net-
works in a seemingly unrelated field is machine learning. Deep neural networks can
characterize complex learning tasks such as image classification or speech recogni-
tion. The reason why the neural networks work so well could be understood using
the language of quantum entanglement [324]. On the other hand, quantum wave
functions could be modeled by making use of fully connected neural networks and
restricted Boltzmann machines [325]. It was shown that a Boltzmann machine is
essentially equivalent to a tensor network [326].

Tensor networks, including MPS [327], PEPS [328] and the tree tensor network
[329, 330], provide a natural way to parameterizing machine learning models. It
was used for a variety of tasks, such as supervised learning for images with MPS
[327, 331], MPO [332], or PEPS [328], mixed unsupervised and supervised learn-
ing with multiscale tensor networks [329]. Compared with other machine learning
approaches, tensor networks offer clear theoretical insight and interpretation, more
sophisticated training algorithms and strategies originally developed for solving
quantum many-body problems, a dramatic reduction in memory needed, and a few
other advantages.
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However, caution should be taken in applying tensor networks to machine learn-
ing since neural networks are characterized by nonlinear functions, whereas tensor
networks are generally linear. It is still unclear how the entanglement is embedded
in the data set. In a study on the supervised image classification using the MNIST
data set of handwritten digits, it was found that the entanglement grows very fast
with the number of images in the training data set, and the bond dimension of MPS
used for training should be as high as the image number in order to capture the
actual image structures [333]. Nevertheless, other kinds of tensor networks can be
exploited to resolve this problem by block isolating or squeezing entanglement in
these kinds of data sets [333].

https://doi.org/10.1017/9781009398671.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009398671.002

