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Abstract

The unsolved problem of whether there exists a positive constant c such that the number k(G) of conjugacy
classes in any finite group G satisfies k(G) ≥ c log2 |G| has attracted attention for many years. Deriving
bounds on k(G) from (that is, reducing the problem to) lower bounds on k(N) and k(G/N), N EG, plays
a critical role. Recently Keller proved the best lower bound known for solvable groups:

k(G) > c0
log2 |G|

log2 log2 |G|
(|G| ≥ 4)

using such a reduction. We show that there are many reductions using k(G/N) ≥ β[G : N]α or k(G/N) ≥
β(log[G : N])t which, together with other information about G and N or k(N), yield a logarithmic lower
bound on k(G).
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1. Introduction

Let k(G) denote the number of conjugacy classes of the finite group G. Answering a
question of Frobenius, E. Landau observed in 1903 that for a fixed k0 only a finite
number of finite groups G satisfy k(G) = k0. In 1968 Erdős and Turán [ET] (and
independently Newman [Ne]) made this explicit by proving that k(G) > log2 log2 |G|
always holds. Ongoing since around 1910, the classification of finite groups according
to their number of conjugacy classes is now complete for k ≤ 14 [VS, VV1, VV2]. Of
the more than 350 nonisomorphic groups with k(G) ≤ 14, 25 satisfy k(G) < log2 |G|.
Exactly five of the latter are solvable, and these satisfy k(G) > 4

5 log2 |G|. In fact
all groups with k(G) ≤ 14 satisfy k(G) > log3 |G|, and thus k(G) > log3 |G| whenever
|G| ≤ 315. Perhaps k(G) > log3 |G| for all finite groups G.

A simple induction beginning with k(G/Z(G)) shows that k(G) > log2 |G| whenever
G is nilpotent. In 1985 Cartwright [Ca] proved that k(G) ≥ 3

5 log2 |G| when G is
supersolvable, but there are important families of groups, for example Frobenius
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groups as well as G with |G| = pαqβ or G′ nilpotent, for which the best known bound
so far is k(G) > c log2 |G|/log2 log2 |G|. On the other hand, for each prime p there
is a p-group P of order pp with k(P) < (log2 |P|)

3. But no collection {G} is known
with |G| → ∞ and k(G) < (log2 |G|)

2. See [Be3] for a more complete history and
bibliography.

Keller [Ke] proved in 2011 the best general lower bounds to date, improving on
those of Pyber [Py] 20 years ago. Keller proved that:

(i) there exists an (explicitly computable) constant ε1 > 0 such that for every finite
group G with |G| ≥ 4,

k(G) >
ε1 log2 |G|

(log2 log2 |G|)7
.

Moreover:

(ii) if G is solvable (|G| ≥ 4), then

k(G) >
ε1 log2 |G|

log2 log2 |G|
.

Pyber had obtained like bounds with exponent 8 instead of 7 in (i), and a
denominator of (log2 log2 |G|)

3 in (ii) (see [Be3]). One of the main results underlying
these improvements is when G is solvable and the Frattini subgroup Φ(G) = 1. Here
Pyber proved that (when |G| ≥ 4)

k(G) ≥ |G|γ/(log2 log2 |G|)
2
,

where γ is a positive constant (γ < 2−12). Keller’s improvement finds a polynomial
lower bound when Φ(G) = 1: k(G) ≥ |G|β, where β is a positive constant.

2. Background and preliminaries

Perhaps the simplest reduction arises when G itself is nilpotent. Here Z(G) , 1
and G/Z is nilpotent. For any group G and N EG, k(G) = kG(G − N) + kG(N) ≥
k(G/N) + kG(N) − 1, where kG(S ) is the number of G-conjugacy classes that partition
the normal subset S , so k(G) ≥ k(G/Z) + |Z| − 1. Thus if k(G/Z) ≥ log2[G : Z], then
k(G) ≥ log2 |G|. When G is supersolvable, Cartwright [Ca] began his proof that k(G) ≥
3
5 log2 |G| with a reduction lemma having the hypothesis that k(G/M) ≥ 3

5 log2[G : M]
and k(G/N) ≥ 3

5 log2[G : N], assuming the existence of certain normal subgroups M,
N of G. Next is Pyber’s reduction lemma, which also plays a key role in Keller’s recent
results mentioned above (here log(·) = log2(·)):

L 2.1 [Py, Lemma 2.2]. Let G be any group (|G| ≥ 4) and N EG with N
nilpotent. If k(G/N) ≥ 2x(log[G:N])1/t

for constants 0 < x ≤ 1, t ≥ 1, then

k(G) ≥
( xt

2

) log |G|
(log log |G|)t

.
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From Pyber’s lemma with t = 1 we conclude that when N is a nilpotent normal sub-
group of G and k(G/N) ≥ [G : N]α (0 < α ≤ 1), then k(G) ≥ α/2 log2 |G|/log2 log2 |G|.
As we will see, there are general situations where N EG and k(G/N) ≥ β[G : N]α (or
even k(G/N) ≥ β(log[G : N])t) which, together with other information about N or k(N),
yield logarithmic lower bounds for k(G).

In 2004 (see [Be3]) the author presented several general ‘logarithmic reductions’
including [Be3, Lemma 4.5]. Suppose that N EG, α, β > 0 and (β/(1 + α))β/(1+α) ≤ b
(the base of the logarithm). If:

(i) k(N) ≥ |N|α;
(ii) k(G/N) ≥ β log[G : N]; and
(iii) |G|α−((1+α)/β) ≥ log |G|,

then k(G) ≥ log |G|. But (iii) implies that β/(1 + α) > 1/α, so the smaller α is the
larger the base b. Here we remove any relation between b and the other parameters
(except in one useful situation). We know that when |G| ≤ 315 then k(G) > log3 |G|, so
assuming that |G| is large is natural. But the requirement of (iii) that β > (1 + α)/α
and that |G| be ‘large enough’ depending on α, β will be avoided in many important
situations.

We often use the following lemma.

L 2.2.

(a) When G is solvable, F′(G) ≤ Φ(G) < F(G) [Hu, III, 3.11, 4.2].
(b) If |G| =

∏
pαi

i and s = max{αi} ≥ 3, then the nilpotence class c(Φ) ≤
(s − 1)/2 [HP].

(c) If G is nilpotent with nilpotence class c, then k(G) ≥ c|G|1/c − c + 1 [Sh].

We will also use results from [Be2, Be3]. The first part of Lemma 2.3(a) also
appears in [Ca].

L 2.3. Suppose that N EG. Then:

(a) k(G) ≥ k(G/N) + (k(N) − 1)/[G : N]; (Note that equality occurs if and only if G
is a Frobenius group with kernel N.)

(b) if k(N) ≥ |N|α and k(G/N) ≥ [G : N]β (α, β > 0), then k(G) ≥ |G|αβ/(α+β+1);
(c) k(G/N ∩G′) = [N : N ∩G′]k(G/N).

As mentioned, it follows from the classification of finite groups according to their
number k of conjugacy classes (now complete for k ≤ 14) that k(G) > log3 |G| when
|G| ≤ 315. Using this and Lemma 2.3(a), we have the following corollary.

C 2.4. Suppose that N EG, together with (i) k(N) ≥ |N|α (0 < α ≤ 1) and
(ii) k(G/N) ≥ (1 + α) log[G : N]. Then (a) k(G) ≥ (α − log log |G|/ log |G|) log |G|;
and (b) when log(·) = log3(·), (i), (ii) and (iii) |N|α−c ≥ log |N| (0 < c < α) imply that
k(G) ≥min{c, 0.39} log |G|.
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P. (a) If |N|1+α ≥ |G| log |G|, then assumption (i) and Lemma 2.3(a) imply that
k(G) > k(N)/[G : N] ≥ |N|1+α/|G| ≥ log |G|. Otherwise |N|1+α < |G| log |G| and thus
(1 + α) log |G| − (1 + α) log |N| > α log |G| − log log |G|. Also, (ii) and Lemma 2.3(a)
yield k(G) > k(G/N) ≥ (1 + α) log[G : N] ≥ α log |G| − log log |G|, so

k(G) >
(
α −

log log |G|
log |G|

)
log |G|.

(b) Since log3 log3 n/log3n decreases for n ≥ 20, when |N| ≥ 20 then (iii) yields

α − c ≥
log3 log3 |N|

log3 |N|
>

log3 log3 |G|
log3 |G|

that is,

α −
log3 log3 |G|

log3 |G|
> c,

so from (a) k(G) > c log3 |G|. For |N| ≤ 19, N is abelian (α = 1) except possibly
when |N| = 2n (3 ≤ n ≤ 9). We check (for example, [VV1]) that for such N,
k(N) > |N|3/5 except when N = Alt(4), where k(N) = 4 > |N|0.557. Since |G| > 315,
log3 log3 |G|/ log3 |G| < 0.165. Thus for |N| ≤ 19, k(N) ≥ |N|α, where

α −
log3 log3 |G|

log3 |G|
> 0.557 − 0.165 > 0.39.

The conclusion follows. �

If G is nilpotent-by-nilpotent (both N and G/N are nilpotent), Keller’s general
result gives k(G) ≥ ε1 log2 |G|/log2 log2 |G|, where ε1 is a small constant. Given more
information about k(N), we improve this in many cases. Recall, for example, that
when N is nilpotent of nilpotence class c, then k(N) ≥ |N|1/c [Sh].

C 2.5. If N EG, G/N is nilpotent and k(N) ≥ |N|α (0 < α ≤ 1) then k(G) ≥
α logb |G| − logb logb |G| (b = 24/3).

P. Since G/N is nilpotent, k(G/N) ≥ 3
2 log2[G : N] [Ca]. When b = 24/3,

3
2 log2 n = 2 logb n ≥ (1 + α) logb n, so assumptions (i) and (ii) of Corollary 2.4 are
met. Thus k(G) ≥ α logb |G| − logb logb |G|. �

We return to G/N nilpotent and k(N) ≥ |N|α in Corollary 3.11(c), finding a
logarithmic lower bound with coefficient depending on α, but without having to
assume that |G| is large enough, depending on α.

As mentioned earlier, the best bound known when G′ is nilpotent is [Ca] k(G) ≥
log2 |G|/log2 log2 |G|, but the author knows of no such example with k(G) < log2 |G|.
Taking into account the prime factorisations of |G| and |G′|, we note the following
improvements. Corollary 2.6(a) generalises [Be3, Proposition 4.10(b)], removing any
restriction on how large |G| is.
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C 2.6. Suppose that G′ is nilpotent.

(a) If |G| =
∏

pαi
i and s := max{αi}, then k(G) ≥ |G|1/2s+1.

(b) If |G′| =
∏

pβi

i and r := max{βi} ≥ 2, then k(G) ≥ |G|1/2r−1.

P. (a) Since G′ is nilpotent, G′′ ≤ F′ ≤ Φ(G) (Lemma 2.2(a)), so G/Φ is
metabelian and, by [Be2], k(G/Φ) ≥ [G : Φ]1/3. By Lemma 2.2(c), k(Φ) ≥ |Φ|1/c where
c is the nilpotence class of Φ. If s ≤ 2, then all Sylow subgroups of G′ are abelian, G′

is abelian and k(G) ≥ |G|1/3. If s ≥ 3, then by Lemma 2.2(b), k(Φ) ≥ |Φ|2/s−1. Using
Lemma 2.3(b) with α = 2/(s − 1) and β = 1/3 gives the result.

(b) The nilpotence class c(G′) is the maximum of the classes of its Sylow
p-subgroups. The class of a group of order pn, n ≥ 2, is at most n − 1, so c(G′) ≤ r − 1.
Again by Lemma 2.2(c), k(G′) ≥ |G′|1/c ≥ |G′|1/r−1. From Lemma 2.3(b) with N = G′,
α = 1/(r − 1) and β = 1, the result follows. �

R 2.7. When G is solvable, |G| =
∏

pαi
i and αi ≤ 2, each Sylow subgroup of G

is abelian and the derived length d(G) ≤ 3 [Ta]. Since k(G) ≥ |G|1/2
d−1 [Be2], here

k(G) > |G|1/7. Furthermore, when n =
∏

pαi
i and s(n) := max{αi}, Niven [Ni] proved

that the average order of s(n) lies between 1 and 2, that is, limn→∞(1/n)
∑n

j=1 s( j) is
approximately 1.7.

3. New reductions

We begin with a general reduction related to Pyber’s lemma above, when t = 1.
Instead of assuming that N is nilpotent, we make an assumption on k(N) which leads
to the conclusion that k(G) ≥ log |G| when |G| is large enough. Unless otherwise
noted, log(·) = logb(·), where b ≥ 2. Note that Lemma 3.1 may be used when N ≥G′,
putting k(G/N) ≥ β[G : N]α where for example α = 1/2, β =

√
2 when [G : N] = 2 and

α = 1 − 1/n, β = 1 + 1/n (n ≥ 2) when [G : N] ≥ 3.

L 3.1. Suppose that N EG, with

(i) k(G/N) ≥ β[G : N]α (0 < α < 1 < β) and
(ii) k(N) ≥ (log |N|)1+1/α.

Then k(G) ≥ log |G| for all |G| large enough (depending only on α, β). In particular,
when N is solvable and Φ(N) is abelian, together with (i), the conclusion follows for
all |G| large enough, depending only on α, β.

P. Since k(G) > max{k(G/N), k(N)/[G : N]}, the conclusion follows from
hypothesis (i) when β[G : N]α ≥ log |G|, that is, when |N| ≤ β1/α|G|/(log |G|)1/α. So
we may assume that |N| > β1/α|G|/(log |G|)1/α. From k(G) > k(N)/[G : N] it follows
from hypothesis (ii) that

k(G) >
β1/α(log(β1/α) + log |G| − 1

α
log log |G|)1+1/α

(log |G|)1/α
.
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But β1/α > β > 1, so k(G) > log |G| as long as

β
(
log |G| −

1
α

log log |G|
)1+α

≥ (log |G|)1+α,

that is, when
log |G|

log log |G|
≥

1 + (β1/(α+1) − 1)−1

α
,

which is true for all sufficiently large |G|, depending only on α, β.
Now suppose that N is solvable and Φ(N) is abelian. From (i) we have

k(G) > k(G/N) > [G : N]α ≥ log |G|, if |N| ≤ |G|/(log |G|)1/α. So assume that |N| >
|G|/(log |G|)1/α. Now Φ(N) is abelian, so [Be3, Proposition 2.3] k(N) ≥ (log |N|)1+1/α

(that is (ii) holds) when |N| is large enough, and hence when |G| is large enough,
depending only on α. (This also follows from Keller’s Theorem 3.1, applied to
N/Φ(N), and Lemma 2.3(b) above with N replaced by Φ(N) and G replaced by N.) �

C 3.2.

(a) Suppose that N EG with G/N nilpotent of nilpotence class c(G/N) ≥ 2 and
k(N) ≥ (log |N|)c+1. Then k(G) ≥ log |G| as long as |G| is large enough,
depending only on c.

(b) Suppose that G′ is nilpotent and |G| ≥ 256.

(i) If k(Φ(G)) ≥ (log2 |Φ|)
4, then k(G) ≥ log2 |G|.

(ii) If Φ(G) has nilpotence class c(Φ) ≤ 1
4 log2 |Φ|/ log2 log2 |Φ|, then k(G) ≥

log2 |G|.

P. (a) Since G/N is nilpotent of class c, k(G/N) ≥ c[G : N]1/c − (c − 1) [Sh], and
the latter is greater than or equal to (1 + 1/c)[G : N]1/c for c ≥ 2. In Lemma 3.1
set β = 1 + 1/c and α = 1/c. From the proof we see that k(G) > log |G| as long as
log |G|/log log |G| ≥ (1 + (β1/(1+α) − 1)−1)/α, that is,

log |G|
log log |G|

≥

(
1 +

((
1 +

1
c

)1/(1+1/c)

− 1
)−1)

c.

(b) (i) When G′ is nilpotent G′′ ≤ F′(G) ≤ Φ(G) (Lemma 2.2(a)), so (G/Φ)′′ = {1}.
Thus k(G/Φ) ≥ ( 9

2 [G : Φ])1/3 [Be1], and the conclusion follows from Lemma 3.1 with
N = Φ, α = 1/3 and β = (9/2)1/3, after checking that |G| is large enough. (ii) Since
k(Φ) ≥ |Φ|1/c (Lemma 2.2(c)) the conclusion follows from the assumed upper bound
on c(Φ), and (i). �

When G′ is nilpotent, so far we only know that k(G) ≥ log2 |G|/log2 log2 |G| [Ca].
It is thus worthwhile to record further reduction theorems in this area which conclude
that k(G) ≥ log |G|. We may assume that G′ is not abelian, since then k(G) ≥
( 9

2 |G|)
1/3 [Be1], and we will often need the following lemma.
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L 3.3 [Be3, Corollary 3.2(a)–(c)].

(a) If N EG and N is nonabelian, then kG(N) − 1 ≥ 2|CG(N)|/[G : N]. Thus for any
N EG, kG(N) − 1 ≥ (|N| − 1)/[G : CG(N)].

(b) If G is solvable and N is a minimal normal subgroup of G such that (i) k(G/N) ≥
log[G : N] and (ii) [G : F] ≤ (|N| − 1)/log |N|, then k(G) ≥ log |G|.

(c) If G′ is nilpotent and N is a minimal normal subgroup of G such that k(G/N) ≥
log[G : N] and (|N| − 1)/log |N| ≥ log |G|, then k(G) ≥ log |G|.

L 3.4. Suppose that N EG, with k(G/N) ≥ (1 + ε) log[G : N] and |N| ≤ (log |G|)t

(ε, t > 0). Then k(G) ≥ log |G| for |G| large enough, depending only on ε, t. In fact, if
also k(G) ≥ t(1 + 1/ε) log log |G| then k(G) ≥ log |G|, without restriction on |G|.

P. Since k(G) > k(G/N) ≥ (1 + ε) log[G : N], and |N| ≤ (log |G|)t, we have k(G) >
(1 + ε)(log |G| − t log log |G|). The conclusion follows when the latter is greater than
or equal to log |G|, which is equivalent to log |G|/log log |G| ≥ t(1 + 1/ε). This is true
for all large enough |G|, depending only on ε, t. And when it is false, assuming
k(G) ≥ t(1 + 1/ε) log log |G| yields k(G) > log |G|. �

T 3.5.

(a) Suppose that CG(G′) �G′ and k(G/CG(G′)) ≥ log[G : CG(G′)]. Then k(G) ≥
log |G| when |G| ≥ 213 (in base 3 we may assume that |G| > 315).

(b) Given ε > 0, for all large enough solvable groups G (depending only on ε), if
k(G/CG(G′)) ≥ (1 + ε) log[G : CG(G′)] then k(G) ≥ log |G|.

P. (a) Since CG(G′) EG, when |CG(G′)| ≤ |G|1/2 we are done using our
assumptions on CG(G′) and [Be3, Corollary 3.9(a)]. On the other hand, when
|CG(G′)| ≥ |G|1/2, by Lemma 3.3(a),

k(G) > kG(G′) − 1 ≥
2|CG(G′)|
[G : G′]

≥
2|G|1/2

[G : G′]
.

But k(G) ≥ [G : G′] + 1, so we may assume that [G : G′] < log |G| − 1. Since 2|G|1/2 ≥
log2

2 |G| − 1 for |G| ≥ 213, we conclude that k(G) > log |G|.
(b) Using Lemma 3.4, if |CG(G′)| ≤ (log |G|)2 then our hypothesis yields k(G) ≥

log |G|. Next assume that |CG(G′)| ≥ (log |G|)2. From Lemma 3.3(a),

kG(CG(G′)) − 1 ≥
|CG(CG(G′))|(|CG(G′)| − 1)

|G|
≥
|CG(G′)| − 1

[G : G′]
≥

(log |G|)2 − 1
[G : G′]

.

Again, we may assume that [G : G′] < log |G| − 1, so k(G) > log |G| + 1. �

We have remarked that no collection of groups is known for which |G| → ∞ and
k(G) < (log |G|)2. If 0 < δ < 1, then for all |G| large enough (depending only on δ)
k(G′) > (log |G′|)2 implies that k(G) > δ log |G| [Be3, Lemma 3.5]. In Corollary 3.7
(another application of Lemma 3.1) we prove that, for each n ≥ 2 and all |G| large
enough depending only on n, if k(G(n)) ≥ (log |G(n)|)2n

then k(G) ≥ log |G|. We must
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first extend a result of [Be2] that if G has derived length d, then k(G) ≥ |G|1/2
d−1.

Lemma 3.6 is a slight improvement over a result of M. Herzog communicated to the
author.

L 3.6. If G is a finite solvable group of derived length d, then

k(G) ≥
(3
2
−

1
2d

)
|G|1/(2

d−1). (3.1)

P. If d = 1, then (3.1) holds with equality. In [Be1] we proved that k(G) ≥ ( 9
2 |G|)

1
3

when G is metabelian, and since ( 9
2 )

1
3 > 5/4, (3.1) is true when d = 2. Thus we

may suppose that d ≥ 3 and (3.1) holds with d − 1 replacing d. Using our inductive
assumption,

k(G′) ≥
(3
2
−

1
2d−1

)
|G′|1/(2

d−1−1).

Lemma 2.3(a) with N = G′ yields

k(G) ≥ [G : G′] +
k(G′)|G′|
|G|

−
1
2
.

Setting |G′| = x, |G| = g and

a = 1 +
1

2d−1 − 1
, b =

3
2
−

1
2d−1

,

we arrive at

k(G) ≥
g
x

+
b
g

xa −
1
2
. (3.2)

Let f (x) = (g/x) + (b/g)xa. Then f ′(x) = −(g/x2) + (ab/g)xa−1, and since f ′′(x) > 0
for x > 0 the solution x0 to f ′(x) = 0 corresponds to a minimum for f (x). From
f ′(x0) = 0 we obtain (g/x0)2 = abxa−1

0 , that is, x0 = (g2/ab)1/(a+1). Thus g/x0 =

(ab)1/(a+1)g1−2/(a+1) = (ab)1/(a+1)g1/(2d−1). Furthermore,

b
g

xa
0 =

b
g

( g2

ab

)a/(a+1)

=
(ab)1/(a+1)

a
g1−2/(a+1),

so, from (3.2), k(G) ≥ (ab)1/(a+1)(1 + (1/a) − (1/2))g1/(2d−1).
It remains only to show that when d ≥ 3, (ab)1/(a+1)( 1

2 + (1/a)) ≥ 3
2 − 1/2d. First

check that

ab =

(
1 +

1
2d−1 − 1

)(3
2
−

1
2d−1

)
=

( 3
2

)
2d−1 − 1

2d−1 − 1
,

which decreases to 3
2 as d→∞. Also 1/(a + 1) increases as d→∞. Thus (ab)1/(a+1) >( 3

2

) 3
7 > 9

8 , and finally

(ab)1/(a+1)
(1
2

+
1
a

)
>

9
8

(1
2

+
1
a

)
=

9
8

(3
2
−

1
2d−1

)
>

3
2
−

1
2d
,

since d ≥ 3. �
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C 3.7. For each n ≥ 2, let {G}n denote the class of solvable groups G for
which k(G(n)) ≥ (log |G(n)|)2n

. If G ∈ {G}n and |G| is large enough (depending only on
n), then k(G) ≥ log |G|.

P. Since G/G(n) has derived length n, by Lemma 3.6 we have k(G/G(n)) ≥ (3/2 −
1/2n)[G : G(n)]1/2n−1. In Lemma 3.1 set N = G(n), α = 1/2n − 1, and β = 3/2 − 1/2n

(which is greater than 1 since n ≥ 2). Also 1 + 1/α = 2n, and hypotheses (i) and (ii)
are satisfied. Thus log |G|/log log |G| ≥ (2n − 1)(1 + ((3/2 − 1/2n)1−1/2n

− 1)−1) yields
k(G) ≥ log |G|. �

The logarithmic reductions in [Be3, Lemma 4.5 and Theorem 4.8], while assuming
that k(N) ≥ |N|α and k(G/N) ≥ β log[G : N], also require that |G| be ‘large enough’,
depending on the parameters involved. Theorem 3.9 below shows that by relating
α, β and [N : N ∩G′] in a single inequality, the requirement that |G| is large
can be avoided. This has important consequences. First we need the following
lemma.

L 3.8. If k(G/N) ≥ β log[G : N] and β ≥ log |G|/log log |G|, then k(G) ≥ log |G|.

P. We always have k(G) ≥ k(G/N), so we may assume (using our hypothesis)
that β ≤ k(G/N)/ log[G : N] < log |G|/log [G : N]. If [G : N] ≥ log |G|, it follows that
β < log |G|/log log |G|, contradicting our assumption. If [G : N] < log |G| then β ≤

[G : N]/log [G : N] < log |G|/log log |G|, since x/log x increases for x ≥ 3 and we
may assume that log |G| > k(G) ≥ 4. Again β < log |G|/log log |G|, contradicting our
assumption. �

T 3.9. Suppose that N EG, with

(i) k(N) ≥ |N|α (0 < α ≤ 1) and
(ii) k(G/N) ≥ β log[G : N] (β > 0).

If also either

(iii) (βα − 1)[N : N ∩G′] ≥ 1 + α or
(iv) |G|α−(1+α)/β[N:N∩G′] ≥ log |G|,

then k(G) ≥ log |G|.

P. From Lemma 2.3(a),

k(G) ≥ k(G/N) +
k(N) − 1
[G : N]

>
k(N)

[G : N]
,

so (i) yields k(G) > |N|1+α/|G|. By Lemma 3.8 and (ii) we may assume
that |G|1/β ≥ log |G|, so if |N|1+α/|G| ≥ |G|1/β we are done. If |N|1+α < |G|1+1/β
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then [G : N] > |G|(α−1/β)/(α+1), so by Lemma 2.3(c) and (iii),

k(G) ≥ k(G/N ∩G′) = [N : N ∩G′]k(G/N)

≥ β[N : N ∩G′] log[G : N]

> β[N : N ∩G′]
(
1 −

1 + 1/β
1 + α

)
log |G|

=
(βα − 1)[N : N ∩G′]

1 + α
log |G| ≥ log |G|.

Concerning (iv), note that as before (i) yields k(G) > |N|1+α/|G|, and we may assume
that |N|1+α/|G| < log |G|, that is, [G : N] > (|G|α/ log |G|)1/(1+α). From (ii) we obtain

k(G/N) ≥
β

1 + α
(α log |G| − log log |G|).

By Lemma 2.3(c),

k(G) ≥ k(G/N ∩G′) = [N : N ∩G′]k(G/N)

≥

(
β

1 + α

)
[N : N ∩G′](α log |G| − log log |G|).

The latter is greater than or equal to log |G| when(
αβ[N : N ∩G′]

1 + α
− 1

)
log |G| ≥

β[N : N ∩G′]
1 + α

log log |G|,

which is (iv). �

Note that G′ is nilpotent in Corollary 2.6(a), where we used k(G/Φ) ≥
[G : Φ]1/3 along with s = max{αi} in |G| =

∏
pαi

i to conclude that k(G) ≥ |G|1/2s+1. In
particular, k(G) ≥ log |G| when (2s + 1) log log |G| ≤ log |G|. We always have k(G) ≥
log log |G| [ET], but here if we also know that k(G) ≥ (2s + 1) log log |G|, then again
k(G) ≥ log |G|.

Assuming only that G is solvable, Keller [Ke, Theorem 3.1] has proved that when
Φ(G) = 1 then k(G) ≥ |G|β for some universal constant β > 0 (a specific value for β is
not provided). In Corollary 3.10 we use k(G/Φ) and s = max{αi} to conclude that k(G)
has a logarithmic lower bound, in three different ways. As discussed in Remark 2.7, if
s ≤ 2 then k(G) > |G|1/7 when G is solvable.

C 3.10. Suppose that G is solvable, |G| =
∏

pαi
i (pi distinct primes, αi ≥ 1)

and s = max{αi} ≥ 3.

(a) If k(G/Φ) ≥ [G : Φ]α, α > 0 and k(G) ≥ (s + 1) log log |G|, then k(G) ≥ α log |G|.
(b) If k(G/Φ) ≥ [G : Φ]α and k(G) ≥ s1+ε (ε > 0), then k(G) ≥ log |G| when G is

sufficiently large (depending only on α, ε).
(c) If k(G/Φ) ≥ s log[G : Φ], then k(G) ≥ log |G|.
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P. Since s ≥ 3, we use Lemma 2.2(b) and (c) as in the proof of Corollary 2.6(a)
to conclude that k(Φ) ≥ |Φ|2/(s−1).

(a) From Lemma 2.3(a),

k(G) ≥ k(G/Φ) +
k(Φ) − 1
[G : Φ]

> max
{
k(G/Φ),

k(Φ)
[G : Φ]

}
.

If |Φ| is ‘large’, that is, |Φ| ≥ |G|1−1/(s+1), then

k(G) >
k(Φ)

[G : Φ]
≥
|Φ|2/(s−1)

[G : Φ]
=
|Φ|(s+1)/(s−1)

|G|
≥ |G|1/(s−1).

When s − 1 ≤ log |G|/log log |G| we conclude that k(G) > log |G|. If s − 1 ≥
log |G|/log log |G| then by assumption k(G) ≥ (s + 1) log log |G| > log |G|. Finally, if
|Φ| is ‘small’, that is, [G : Φ] ≥ |G|1/s+1, then k(G) > k(G/Φ) ≥ [G : Φ]α ≥ |G|α/s+1, and
the latter is greater than or equal to log |G| as long as α/s + 1 ≥ log log |G|/log|G|.
Otherwise, α/(s + 1) ≤ log log |G|/log|G| and it follows from our assumption that
k(G) ≥ (s + 1) log log |G| ≥ α log |G|.

(b) If |Φ| ≥ |G|1−1/s, then k(G) > |Φ|(s+1)/(s−1)/|G| ≥ |G|1/s. If s ≤ log |G|/log log |G|
then k(G) > log |G|. Otherwise

s >
log |G|

log log |G|
and k(G) ≥ s1+ε >

( log |G|
log log |G|

)1+ε

≥ log |G|,

when log |G| ≥ (log log |G|)1+1/ε . On the other hand, if |Φ| < |G|1−1/s, then k(G) >
k(G/Φ) ≥ [G : Φ]α > |G|α/s. Here if s ≤ α(log |G|/ log log |G|) then k(G) > log |G|.
Otherwise

s > α
( log |G|
log log |G|

)
and k(G) ≥ s1+ε > α1+ε

( log |G|
log log |G|

)1+ε

,

so k(G) > log |G| when log |G| ≥ (log log |G|/α)1+1/ε .
(c) Since k(Φ) ≥ |Φ|2/(s−1) and k(G/Φ) ≥ s log[G : Φ], set N = Φ, α = 2/(s − 1) and

β = s in Theorem 3.9. Then α(β − 1) = 2, that is, βα − 1 = 1 + α so (i)–(iii) are satisfied
and k(G) ≥ log |G|. �

C. Theorem 3.9 implies that if (i) k(N) ≥ |N|α, (ii) k(G/N) ≥ β log[G : N]
(β > 0) and N �G′, then either (iii) or (iv) yield k(G) ≥ log |G|: (iii) β ≥ (1 + 3/α)/2
(≥2), (iv) N is abelian, β > 1 and |G|1−1/β ≥ log |G| (or k(G) ≥ β/(β − 1)
log log |G|). But whether or not N ≤G′, |G| need not be large, as we see next.

C 3.11. Suppose that N EG and k(N) ≥ |N|α (0 < α ≤ 1).

(a) If k(G/N) ≥ β log[G : N], β ≥ 1 + 2/α (≥ 3), then k(G) ≥ (β/(1 + 2/α)) log |G|.
(b) Suppose that k(G/N) ≥ (1 + α) loga[G : N], (a := 1/α > 1). Then

k(G) ≥
( a + 1
2a2 + a

)
loga |G| >

α

2
loga |G|.

(Note that (a + 1)/(2a2 + a) < 2α/3.)
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(c) Suppose also that G/N is nilpotent. If α = 1 then k(G) ≥ 3
4 log2 |G| [Ca]. If α = 1

2
then k(G) ≥ 3

10 log2 |G|. In general, let n ≥ 1 be the smallest integer such that
k(N) ≥ |N|1/2

n
. Then k(G) ≥ (1/n2n+1) log2 |G|.

P. (a) Suppose k(G/N) ≥ β logb[G : N]. Choose c such that β logb[G : N] =

(1 + 2/α) logc[G : N], that is, β/(1 + 2/α) = logc[G : N]/ logb[G : N] = logc b. Then
hypotheses (i)–(iii) of Theorem 3.9 are satisfied (whether N ≤G′ or not) where ‘β’ in
the Theorem equals 1 + 2/α, and the base of the logarithm is c. Thus k(G) ≥ logc |G| =
(β/(1 + 2/α)) logb |G|.

(b) Here we set b := (aa)(2a+1)/(a+1). Since a := 1/α,

1 + α

1 + 2/α
=

a + 1
2a2 + a

= logb a.

Thus

k(G/N) ≥ (1 + α) loga[G : N]

=

((
1 +

2
α

)
(logb a)

)
loga[G : N]

=

(
1 +

2
α

)
logb[G : N].

With β := 1 + 2/α, hypotheses (i)–(iii) of Theorem 3.9 are satisfied, so

k(G) ≥ logb |G| =
loga |G|
loga b

=

( a + 1
2a2 + a

)
loga |G|.

(c) Since G/N is nilpotent, k(G/N) ≥ 3
2 log2[G : N] [Ca], so we set a = 2 and α = 1

2
in (b), obtaining k(G) ≥ 3

10 log2 |G| when k(N) ≥ |N|1/2. If k(N) ≥ |N|1/2
n

we use a = 2n

and α = 1/2n in (b). Thus

k(G/N) ≥ 3
2 log2[G : N] ≥ (1 + α) loga[G : N]

so, again using (b), we conclude that k(G) > (α/2) loga |G|. Finally, log2n |G| =
(1/n) log2 |G| and α/2 = 1/2n+1. �

It follows from Theorem 3.9 that when N EG, N �G′ and N is abelian,
with k(G/N) ≥ (1 + ε) log[G : N] (ε > 0), then k(G) ≥ log |G| for |G| large enough
(depending only on ε). But what if N ≤G′? Generally, when G is solvable and N
is a minimal normal subgroup of G, Theorem 3.12 gives the same conclusion.

T 3.12. For each ε > 0 and all solvable groups G with |G| large enough
(depending only on ε), if N is a minimal normal subgroup of G and k(G/N) ≥
(1 + ε) log[G : N], then k(G) ≥ log |G|.

P. For ease of presentation we give a proof when log(·) = log2(·), but a careful
examination of the proof shows that Theorem 3.12 holds in any base at least 2.
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Among solvable groups we first consider G for which [G : Φ] ≥ |G|1/
√

log2 |G|.1 It is

always true that F′(G) ≤ Φ(G), so [G : F′] ≥ [G : Φ] ≥ |G|1/
√

log2 |G|. Among such G,
and with γ the constant from Pyber’s theorem, suppose G large enough so
that (log2 log2 |G|)

3 < γ(log2 |G|)
1/2, and thus [G : Φ] > |G|(log2 log2 |G|)

3/γ log2 |G|. Since
Φ(G/Φ) = {1}, by Pyber’s theorem,

k(G) > k(G/Φ) ≥ [G : Φ]γ/(log2 log2[G:Φ])2

> |G|(log2 log2 |G|/ log2 log2[G:Φ])2(log2 log2 |G|/ log2 |G|) > log2 |G|,

the desired result.
Next we consider those solvable groups G satisfying [G : Φ] < |G|1/

√
log2 |G|, and

hence [G : F] < |G|1/
√

log2 |G|. By assumption, N is a minimal normal subgroup of G

and k(G/N) ≥ (1 + ε) log2[G : N]. If (|N| − 1)/log2|N| ≥ |G|
1/
√

log2 |G|, then

|N| − 1
log2 |N|

> [G : F],

and from Lemma 3.3(b) we conclude that k(G) ≥ log2 |G|. So finally we assume that

(|N| − 1)/log2|N| < |G|
1/
√

log2 |G|. If |N| ≤ 25, then

k(G) > k(G/N) ≥ (1 + ε) log2[G : N] ≥ (1 + ε)(log2 |G| − log2 25),

and the latter is greater than or equal to log2 |G| if |G| ≥ 52(1+1/ε). If |N| ≥ 25, then

|N|1/2 ≤
|N| − 1
log2 |N|

< |G|1/
√

log2 |G|,

which implies that [G : N] > |G|1−2/
√

log2 |G|, and

k(G) > k(G/N) ≥ (1 + ε) log2[G : N] > (1 + ε)(log2 |G| − 2
√

log2 |G|).

Here k(G) > log2 |G| when |G| ≥ 24(1+1/ε)2
. �

As mentioned earlier, Theorem 3.12 holds when the base of the logarithm is 2 or
greater. For example, we have the following corollary.

C 3.13. For all solvable groups G with |G| large enough, if N is a minimal
normal subgroup of G and k(G/N) ≥ 3

4 log2[G : N], then k(G) ≥ log3 |G|.

P. As in the theorem, first consider solvable G for which [G : Φ] ≥ |G|1/
√

log3 |G|.
Since G may be assumed nonnilpotent, [G : Φ] ≥ 6 so( log2 log2[G : Φ]

log3 log3[G : Φ]

)2

< 10.

1 With considerably more effort (see Proposition 2.3 and its corollary in [Be3]), we have shown that under
the latter condition on |Φ|, for all large enough |G| (depending only on t > 0) k(G) > (log2 |G|)

t. Even more
follows from Theorem 3.1 of Keller [Ke], but the proof here is much simpler and this is all we need.
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(Note that log2 log2 n = log2 log2 3 + (log2 3) log3 log3 n always holds.) Set β0 :=
γ/10 (γ being Pyber’s constant), so by Pyber’s theorem,

k(G) > k(G/Φ) ≥ [G : Φ]γ/(log2 log2[G:Φ])2

> [G : Φ]β0/(log3 log3[G:Φ])2

> [G : Φ]β0/(log3 log3 |G|)
2

≥ |G|β0/(log3 log3 |G|)
2
√

log3 |G|.

If |G| is so large that (log3 log3 |G|)
3 ≤ β0

√
log3 |G|, then

k(G) > |G|β0/
√

log3 |G|(log3 log3 |G|)
2
≥ |G|log3 log3 |G|/log3 |G| = log3 |G|.

Working in base 3, when [G : Φ] < |G|1/
√

log3 |G| the remainder of the proof goes
through, since Lemma 3.3(b) makes no reference to the base. �

E 3.14.

(a) Let G be solvable, with N ≤ M EG, N minimal normal in G, M/N abelian and
G/M nilpotent. Then G/N is abelian-by-nilpotent so k(G/N) ≥ 3

4 log2[G : N]
[Ca]. By Corollary 3.13, k(G) ≥ log3 |G| for |G| large enough.

(b) Suppose that G is solvable, N is a minimal normal subgroup of G and G/N
is supersolvable. Then k(G/N) ≥ 3

5 log2[G : N] = (1 + 1
5 ) log4[G : N] [Ca]. By

Theorem 3.9, for |G| large enough, k(G) ≥ log4 |G| =
1
2 log2 |G|.

In [Be3, Proposition 2.3] we proved that for all solvable groups G with abelian
Frattini subgroup Φ(G), if |G| is large enough (depending only on t > 0) then k(G) >
(log2 |G|)

t, and Keller [Ke, Theorem 4.1] proved that k(G) > |G|β/2+β. Here we obtain
a (log |G|)t lower bound for k(G) assuming only that the nilpotence class of Φ(G) is
‘small enough’ with respect to log |G|, and |G| is large enough, depending only on t.

T 3.15. For all solvable groups G with |G| large enough (depending only on
t ≥ 1), if the class c(Φ) satisfies c ≤

√
log |G|(1 − 1/log log |G|) then k(G) > (log |G|)t.

P. As in the proofs of Proposition 2.3 and its corollary in [Be3], when [G : Φ] ≥

|G|1/
√

log |G| we use Pyber’s theorem to prove that when |G| is large enough, depending
only on t, k(G) > (log |G|)t.

Suppose on the other hand that [G : Φ] < |G|1/
√

log |G|. By assumption, Φ(G) has
nilpotence class c, so

k(Φ) ≥ |Φ|1/c > |G|(1/c)(1−1/
√

log |G| ).

Now

k(G) ≥ k(G/Φ) +
k(Φ) − 1
[G : Φ]

>
k(Φ)

[G : Φ]
>
|G|(1/c)(1−1/

√
log |G| )

[G : Φ]
.
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Again using our assumption that [G : Φ] < |G|1/
√

log |G|,

k(G) > |G|(1/c)(1−1/
√

log |G|)−1/
√

log |G|.

Thus k(G) > (log |G|)t as long as

1
c

(
1 −

1√
log |G|

)
>

t log log |G|
log |G|

+
1√

log |G|
,

that is, as long as

c(
√

log |G| + t log log |G|) < log |G| −
√

log |G|. (3.3)

Finally, for all large enough |G| (depending only on t), (t log log |G|)2 <
√

log |G|,
that is,

(t log log |G| − 1)(t log log |G| +
√

log |G|) < (
√

log |G| − 1)(t log log |G|),

which is equivalent to

1 −
1

t log log |G|
<

√
log |G| − 1

t log log |G| +
√

log |G|
.

By hypothesis,

c ≤
√

log |G|
(
1 −

1
log log |G|

)
≤

√
log |G|

(
1 −

1
t log log |G|

)
,

since t ≥ 1. But the latter is less than (log |G| −
√

log |G|)/(
√

log |G| + t log log |G|)
so (3.3) is indeed satisfied, and k(G) > (log |G|)t in each case. �

R 3.16. Keller [Ke, Theorem 3.1] proved that when Φ(G) = 1, k(G) ≥ |G|β,
where β < 1 is a positive constant. Thus k(G) > k(G/Φ) ≥ [G : Φ]β, and if |Φ| ≤

|G|1−1/
√

log |G| we have k(G) > |G|β/
√

log |G| > (log |G|)t for all sufficiently large |G|

(depending only on t). On the other hand, if |Φ| > |G|1−1/
√

log |G|, then (as shown

in the proof above) k(G) > |G|(1/c)(1−1/
√

log |G|)−1/
√

log |G|. For c ≤ 2
3

√
log |G| it is

straightforward to show that this lower bound for k(G) is (for all large enough |G|)
greater than ((c/2)|G|1/c)β/3, the lower bound given in [Ke, Theorem 4.1].

We are now able to generalise the last statement of Lemma 3.1, no longer assuming
that Φ(N) is abelian.

C 3.17. Suppose N is solvable and N EG, with

(i) k(G/N) ≥ β[G : N]α (0 < α < 1 < β) and
(ii) the nilpotence class c(Φ(N)) ≤

√
log |N|(1 − 1/log log |N|).

Then k(G) ≥ log |G| when |G| is large enough (depending only on α, β).
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P. We will show that hypothesis (ii) of Lemma 3.1 is also satisfied for the pair
(G, N), and thus the conclusion follows. By hypothesis (i), k(G) > k(G/N) > [G : N]α,
and the latter is greater than or equal to log |G| when |N| ≤ |G|/(log |G|)1/α. So
suppose that |N| ≥ |G|/(log |G|)1/α. According to the proof of Theorem 3.15 (with
N replacing G and t = 1 + 1/α), we only need

√
log |N|/(log log |N|)2 > (1 + 1/α)2

to ensure that k(N) ≥ (log |N|)1+1/α and hence that hypothesis (ii) of Lemma 3.1 is
also satisfied. Since |N| ≥ |G|/(log |G|)1/α and

√
log x/(log log x)2 is an increasing

function for log log x > 4, we conclude that when |G| is large enough (depending on α),
hypothesis (ii) of Lemma 3.1 is satisfied along with hypothesis (i), and the desired
conclusion follows. �

4. k(G/N) ≥ (log[G : N])t

Up to this point we have assumed that either k(G/N) ≥ β[G : N]α or k(G/N) ≥
β log[G : N], β a positive constant. But sometimes (the best) we may assume is that
k(G/N) ≥ (log[G : N])t, t ≥ 2. (Again, we note that no collection {G} is known with
|G| → ∞ and k(G) < (log |G|)2.)

L 4.1. Let N EG, N nilpotent and k(G/N) ≥ (log[G : N])t, t ≥ 2. If N has
nilpotence class c ≥ 1, then k(G) > (log |G|)t−1 for all such G with |G| large enough,
depending only on c, t.

P. We prove that with these hypotheses k(G) > (log |G|)t−1 as long as {|G|, c, t}
satisfy

(log |G|)1−1/t((log |G|)1/t − (c + 1)) ≥ c(t − 1) log log |G|. (4.1)

With log(·) = logb(·), we first note that (log[G : N])t > (log |G|)t−1 if and only if
[G : N] > b(log |G|)1−1/t

. So we assume that |N| ≥ |G|/b(log |G|)1−1/t
, which is equivalent to

|N|1+1/c

|G|
≥

|G|1/c

b(1+1/c)(log |G|)1−1/t .

But k(N) ≥ |N|1/c, and hence, by Lemma 2.3(a), k(G) > |G|1/c/b(1+1/c)(log |G|)1−1/t
. Thus

k(G) > (log |G|)t−1 as long as |G| ≥ (log |G|)c(t−1)b(c+1)(log |G|)1−1/t
, which is equivalent

to (4.1). �

Note. Suppose that N is abelian (c = 1). It is easy to check that (4.1) follows from
|G| ≥ b3t

and

1 −
1
t
≥

log log log |G| + log(t − 1)
log log |G|

.

If b = 3, the latter follows from |G| ≥ 33t
and t ≥ 2. If b = 2, (4.1) follows from |G| ≥ 222t

and t ≥ 2.

C 4.2. Suppose that N is a nilpotent normal subgroup of G and the nilpotence
class c of N satisfies 2c + 1 ≤ (log |G|)1/2. If also k(G/N) ≥ (log[G : N])2, then k(G) >
log |G| for all such G with |G| large enough.
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P. Our assumption on c yields (4.1) of Lemma 4.1, with t = 2. Hence k(G) >
log |G|. �

Q 4.3. When Φ(G) = 1 (or more generally when F(G) is abelian) does
k(G/F) ≥ (log[G : F])2 hold? If so, then k(G/F) ≥ (log[G : F])2 always, since
Φ(G/Φ) = 1 and F(G/Φ) = F(G)/Φ(G) (is abelian) so G/F(G) �G/Φ/F(G/Φ). In
general, Corollary 4.2 implies that when |G| is large enough, k(G/F) ≥ (log[G : F])2

and the nilpotence class c(F) satisfies c ≤ ((log |G|)1/2 − 1)/2, then k(G) ≥ log |G|.

C 4.4. If k(G/N) ≥ (log[G : N])t (t ≥ 2), then k(G/N′) ≥ log[G : N′]t−1,
whenever [G : N′] is large enough, depending only on t.

P. In Lemma 4.1, replace G by G/N′ and N by N/N′. The conclusion follows as
long as [G : N′] satisfies (4.1) with respect to t, when c = 1. �

L 4.5. Let y > x ≥ be, t ≥ 2, and

(i) (log x)1−1/t((log x)1/t − 2) ≥ (t − 1) log log x, where log(·) = logb(·).

Then

(ii) (log y)1−1/(t−1)((log y)1/(t−1) − 2) ≥ (t − 2) log log y.

P. Note that (ii) is automatically satisfied when t = 2, since y > b2. So assume that
t ≥ 3, and we first check that (i) =⇒ (ii) follows from

(log y)(1 − 2(log y)−1/t−1)
(t − 2) log log y

>
(log x)(1 − 2(log x)−1/t)

(t − 1) log log x
≥ 1. (4.2)

Since log x/log log x is an increasing function for x ≥ be,

log y
log log y

>
log x

log log x
.

Also, log y > (log x)(t−1)/t implies that 1 − 2(log y)−1/t−1 > 1 − 2(log x)−1/t, and (4.2)
follows. �

T 4.6. Suppose that G is solvable, N EG and k(G/N) ≥ (log[G : N])d(N)+1,
d(N) the derived length of N. Then k(G) ≥ log |G|, as long as [G : N′] is large enough,
depending only upon d(N).

P. We will prove that k(G) ≥ log |G| as long as (4.1) of Lemma 4.1 is satisfied,
with [G : N′] replacing |G| and d(N) + 1 replacing t, always with c = 1.

When N is abelian, the conclusion follows from Lemma 4.1, with c = 1 and t = 2.
When d(N) = 2 the assumption is that k(G/N) ≥ (log[G : N])3. If [G : N′] satisfies (4.1)
with t = 3, then from Corollary 4.4 k(G/N′) ≥ (log[G : N′])2. Here N′ is abelian so we
may again apply Lemma 4.1 with c = 1, t = 2 and conclude that k(G) ≥ log |G| as long
as |G| satisfies (4.1) with t = 2. From Lemma 4.5 with t = 3, [G : N′] replacing x and
[G : N′′] = |G| replacing y, we see that |G| indeed satisfies (4.1) with t = 2.
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Assume for an inductive proof that the theorem is true whenever d(N) = n. Now
let d(N) = n + 1 and k(G/N) ≥ (log[G : N])d(N)+1 = (log[G : N])n+2. Suppose also that
[G : N′] satisfies (4.1) with t = n + 2. From Corollary 4.4,

k(G/N′) ≥ (log[G : N′])n+1 = (log[G : N′])d(N′)+1.

From our inductive hypothesis (d(N′) = n), k(G) ≥ log |G| as long as [G : N′′] satisfies
(4.1) with t = n + 1. But Lemma 4.5, with t = n + 2, [G : N′] replacing x, and [G : N′′]
replacing y, guarantees that [G : N′′] indeed satisfies (4.1) with t = n + 1. Thus the
theorem is also true when d(N) = n + 1. �

As mentioned, Keller [Ke, Theorem 3.1] proved that when G is solvable and
Φ(G) = 1, k(G) ≥ |G|β, where β < 1 is a positive constant. We now use this to
significantly improve the result of [Be2, Theorem 1] that if G has derived length d(G),
then k(G) ≥ |G|1/2

d−1, shifting attention to d(F(G)).

T 4.7. Suppose that G is a solvable group with Fitting subgroup F(G). Then
for each n ≥ 1,

k(G/F(n)(G)) ≥ [G : F(n)(G)]1/(1+1/β)2n−1 (4.3)

where β is the constant from Keller’s theorem. In particular,

k(G) ≥ |G|1/(1+1/β)2d−1

where d = d(F) is the derived length of F(G).

P. From Keller’s theorem, k(G/Φ) ≥ [G : Φ]β. If F(G) is abelian, so is Φ(G), and
using Lemma 2.3(b) with N = Φ and α = 1 we obtain the inequality for k(G) when
d = 1. If N EG and N ≤ Φ(G), then Φ(G/N) = Φ(G)/N and F(G/N) = F(G)/N [Hu,
III. 3.4, 4.2]. Thus

k((G/F′)/Φ(G/F′)) = k(G/Φ) ≥ [G : Φ]β = [G/F′ : Φ(G/F′)]β,

and Φ(G/F′) is abelian (Lemma 2.3(a)). As before, now with N = Φ(G/F′), we
conclude that k(G/F′) ≥ [G : F′]1/(1+2/β), and thus inequality (4.3) with n = 1. If, in
addition, F′(G) is abelian, another use of Lemma 2.3(b) with N = F′(G), α = 1 and β
replaced by (1 + 2/β)−1 yields the desired inequality when d = 2.

To complete the proof of (4.3) by induction, we assume that n ≥ 2, and for all
solvable groups G,

k(G/F(n−1)(G)) ≥ [G : F(n−1)(G)]1/(1+1/β)2n−1−1. (4.4)

First note that F′(G/F(n)) = (F/F(n))′ = F′/F(n) so F′′(G/F(n)) = F′′/F(n) . . . and
finally F(n−1)(G/F(n)) = F(n−1)/F(n) is abelian. Next substitute G/F(n)(G) for G in (4.4),
and use G/F(n−1) � (G/F(n))/F(n−1)(G/F(n)) to obtain

k((G/F(n))/F(n−1)(G/F(n))) ≥ [(G/F(n)) : F(n−1)(G/F(n))]1/(1+1/β)2n−1−1.

Since F(n−1)(G/F(n)) is abelian we use Lemma 2.3(b) with N = F(n−1)(G/F(n)), α = 1
and β replaced by 1/(1 + 1/β)2n−1 − 1 to obtain inequality (4.3). �
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Setting β0 = β/(β + 1) immediately leads to the following corollary.

C 4.8. If 2d(F) ≤ β0(log |G|/ log log |G| + 1), then k(G) ≥ log |G|.

R 4.9. If G is a nilpotent group of nilpotence class c, then d(G) ≤ blog2 cc + 1
[Hu, III. 2.12], so k(G) ≥ log2 |G| when

c(F(G)) ≤
β0

2

( log |G|
log log |G|

+ 1
)
.

This may be compared to Corollary 4.2, and more importantly to Theorem 3.15, and
Corollary 3.2(b)(ii).
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