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GLACIER SLIDING DOWN AN INCLI ED WAVY BED 

By L. W. MORLAND 

(School of Mathematics and Physics, University of East Anglia, Norwich NR4 7Tj , England) 

ABSTRACT. The treatments by Nye and Kamb of glacier slid ing over a wavy bed with sma ll slope, 
which assume the ice to be approximated by a Newtonian fluid of high viscos ity, are complem ented by the 
inclusion of the glac ier depth and the inclination of the bed to the horizonta l. The driving force of the 
motion, gravity. is therefore present in the fl ow equatio ns and defines immedia tel y the mean drag on the 
bed. A geothermal hea t flux is a lso included in order to es ti mate its possible e ffec t on the flow. A complex 
va riable method is used to determine the veloc ity and temperature fi elds to second order in the bed slope. 
These fields satisfy the zero shear trac tion a nd pressure-melting- regela tion conditions to the sam e order on 
the ac tual bed profile. It is the ba lance of the second-order te rm which determines explicitly the (ze ro order) 
basa l-sliding veloc ity and surface velocity in terms of the geometry and physical properties of b o th ice and 
bed. An explicit solution is illustrated fo r a sinusoida l b ed , and a simple crite rio n for the onset o f cavitation 
is obta ined. 

REsuME. Glissement d'llIl glacier sur 1111 lit inclille olldute. Les theori es de Nye e t Kamb pour le glissemcnt 
d'un glacier sur un lit ondule a fa ibl e pente, ass imila nt la g lace a un fluid e newtonien a haute viscosite, sont 
completees par la prise en compte d e l'epaisseur du g lac ie r e t cle I' inclina iso n du li t sur l'horizontale. La 
force qui provoq ue le mouvement, la gravite , es t clonc prese nte clans les eq u a tio ns de l'ecoulement e t definit 
immediatement le frottement moyen sur le lit. On introduit ega lement un flux d e cha leur geoth ermique 
pour es timer son effet poss ible sur l'ecoulement. Une m e thode a va ria ble complexe es t utilisee pour deter
miner les champs de vitesse et de tempe rature jusqu 'au second OI'cl re clans la pente du lit, qui sa tisfassent les 
conditions d'un cisai llement nul et d e press ion-fusion- congela tion jusqu'a ce t o rdre sur le profil reel du lit. 
C'est le terme du second OI·dre qui d etermine explicitem ent le glissement a u fo nd (voisin cle zero) , la vitesse 
et la vitesse en surface d 'apres les propositions geometriques e t physiques du lit et de la glace. Une solution 
explicite est donnee en exemple pour un li t sinusoidal e t o n obt ien t un critere si mple pour le d eclenchement 
de la cavitation . 

ZUSAMMENFASSU NG. Gletschergleiten uber eill gelleigtes, gewelltes Bell . Nye's und Kamb's Beh andlung des 
G letschergle itens iibe r ein gewelltes Be tt geringcr Neigung unter der Annahme, das Eis sei anna hernd eine 
Newtonsche Flussigkeit hoher Viskos itat, wird durch die Einbeziehung de l' Eisdicke unci del' Neigung des 
Be ttes gegen die Horizontale erganz t. Die Schwerkraft a ls Triebkraft d e l' Bewegung geht daher in die 
Fliessgleichungen ein uncl bes timmt unmillelbar den mittle ren Schub a uf d as Be tt. Weiter wird ein geo
thermischer Warmefluss eingefUhrt, urn seinen moglich cn Einfluss aul' das F liessen abschatzen z u konnen. 
Z ur Bestimmung d er Geschwindigkeits- und T empera turfe lde r bis zur 2 Ordnung der Bettneigung, welche 
d ie Bedingungen fur das Verschwinden des Scherzuges und fUr R cgda ti on unte r Druckschmelze bis zu diesel' 
Ordnung auf dem tatsach lichen Bet tprofil erfUllen. wird e ine komplexe Variationsmethode hera ngezogen. 
Die Ausgewogenheit der Glieder 2 Ordnung ist es, die explizi t die basale G le itgeschwindigke it (nullter 
Ordnung) und die .Oberflachengeschwindigkeit als Funktion der geometrischen und physika lisch en Eigen
scha ften von Eis und Belt bestimmt. Eine explizi te Losung qird fUr ein sinusfo rmiges Bett \'orge l ... gt; c1abei 
e rgibt sich ein einfaches Kriterium fur das Einselzen d e l' K av ita tion. 

I. INTRODUCTION 

The overall motion of a temperate glacier con sists of a relative deformation or flow 
through the ice mass together with basal sliding over the bed (which may make a significant 
contribution to the observed surface velocity). The internal flow is governed by the constitu
tive response of the ice whereas basal sliding depends on conditions at the ice- bed interface. 
Specifically it is the presence of a thin water layer, caused by pressure melting and refl'eezing 
as the ice flows over undulations, which "lubricates" the bed and a ll ows slip to occur. 

The regelation mechanism was proposed first by W eertman ( 1957) who modelled the bed 
as a regular array of rectangular obstacles. The latent heat released by freezing on the low
pressure down-stream face is condu cted through the obstacle to melt the ice on the high
pressure up-strea!TI face. An energy argument and an assumed value for the shear stress at the 
bed then lead to a basal-sliding velocity due to pressure-melting which is expressed in terms 
of the obstacle and spacing lengths. An es timate of the creep-rate is made by using Glen's 
law for the ice response and by making further assumptions about the stresses on the obstacle. 
Next , an expressIOn for the sliding velocity due to a creep process is inferred . 
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The two estimates of sliding velocity, one based on regelation and the other on creep, 
decrease and increase with the length scale of the obstacle, respectively. Weertman proposes, 
therefore, that since all length scales will exist in practice, sliding is controlled by the length 
giving the same velocity for both mechanisms. Equating the two expressions gives the sliding 
velocity in terms of the drag and a roughness parameter- a ratio of obstacle length to spacing. 
The theory is extended in a similar manner (Weertman, 1964) to account for cavitation on 
the down-stream faces. Later, Weertman (1971) defends this simple "semi-quantitative" 
theory against the criticisms ofNye ( 1969, 1970) and Kamb (1970). However, the theory of 
Weertman relies crucially on estimates of stress and a sliding velocity deduced from an 
inferred mean creep rate. There is also the difficulty of relating obstacle size and spacing to a 
more general bed profile; further, there is no demonstration that a flow field with the required 
features exists . A more elaborate treatment in the same spirit is proposed by Lliboutry (1968) 
who considers a sinusoidal bed profile, accounts for cavitation, and discusses various basal 
friction laws, in other words, the relationships between the mean drag, the normal pressure, 
and the sliding velocity. 

Nye (1969, 1970) and Kamb (1970) focus upon the need for an exact flow and heat 
conduction solution which satisfies the regelation conditions at the ice-bed interface. For this 
purpose Nye assumes that the ice response can be approximated as a Newtonian (incom
pressible) fluid of high viscosity and that the bed profile is periodic with small slope. Because 
of this the Reynolds number is very low, inertia terms are negligible, and slow steady viscous 
flow is assumed . Further, the water layer thickness is negligible compared with the length 
scale of the undulations, so the layer is treated as a surface distribution of heat sources (sinks) 
which coincide with the bed surface and which give rise to the latent heat of freezing (melting). 
The interface conditions are linearized to define a half-space problem for the ice flow after 
ignoring the upper glacier surface and introducing a small slope parameter Eo This problem 
is treated by Fourier analysis, first for a plane flow and then for three-dimensional flow. 
Second-order expressions in E are obtained for the flow field over a sinusoidal bed. Expressions 
for the mean drag are deduced and the results are extended by the statistical analysis of a 
general bed profile. The solution assumes that no cavitation occurs. Kamb (1970) obtains 
the same linear solution, demonstrating that the ice motion may be neglected in the heat 
conduction, but uses this as a starting point for an approximate treatment when the ice 
satisfies the more realistic non-linear Glen law. 

The present paper complements the solution of Nye and Kamb for Newtonian plane flow 
(small bed slope) by incorporating explicitly the depth h of the glacier and the inclination 
Cf. of a (mean) bed line to the horizontal, both parameters assumed uniform over the length 
scale of interest. Thus, gravity (which is the driving force for the glacier motion) is included 
in the balance equations for slow viscous flow, and a flow solution is determined without 
the need to introduce an artificial shear stress at some distance from the bed (Nye, 1969). 
Furthermore, the solution satisfies an upper-surface condition of normal atmospheric pressure 
Pa within the approximate expansion scheme. It is supposed that there is no net longitudinal 
stress gradient, only a periodic variation induced by the bed undulation, and that the flow 
is steady, that is, no rigid body acceleration of order g sin Cf. parallel to the bed occurs; this is 
consistent with normal flow conditions. The mean drag on the bed is therefore 

T = pgh sin Cf., ( I) 

where p is the ice density. 
Since shear stress in a thin water layer at the bed is negligible compared with T, one 

boundary condition on the bed is that of zero tangential traction. This is an idealized condi
tion which assumes that neither draining nor pinching-out of the water layer occur, and 
that there is no cavitation so that the ice boundary is everywhere the bed surface. The drag 
is the longitudinal resultant of the pressure acting over the undulations. The other bed 
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conditions link the ice flow and heat conduction through the pressure-melting and regelation 
relations. For completeness a uniform geothermal heat flux acting normal to the bed is 
included at large distances from the bed, so that its effect on the flow can be estimated for 
levels which are observed typically. The effect is shown to be smal l. T he fl ow solution 
determines explicitly the basal sliding velocity Vb, and surface veloci ty Vs, in terms of h, ex, 
and the bed geometry for given ice and bed properties. An illustration for a sinusoidal bed 
profile shows that Vb is very sensitive to the wavelength of the undulation. The variations 
of Vb with seasonal changes of melt water (Lliboutry, 1968) cannot be described by this model 
of the bed conditions. 

The small parameter E ~ I is chosen as the maximum bed slope (relative to the inclined 
bed line), and for mathematical completeness the bed profile is extended p eriodically to 
infinity. Dimensionless coordinates are introduced through a length scale A d efined so as to 
make the maximum amplitude of the dimensionless bed profile unity from a given bed line. 
T he profile is assumed to be sufficiently differentiable for expansion procedures to a req uired 
order in E. The coeffic ients of leading terms a re restri cted to order unity by this choice of 
coordinates. It is assumed that ).. /h is suffi c ientl y sma ll for the upper surface conditions to be 
satisfi ed to the required order in Eo In fact, the perturbation in the fl ow from a basic lam ina r 
flow is found to decay exponenti a lly with h eight so that this is not a strong res tri ction. T he 
approach h ere is to seek half-plane solutions to the perturbat ion flow eq uat ions in the ice and 
the hea t conduction equations in the ice and bed which sat isfy, to the req uiloed order in E, the 

_ boundary conditions on the actua l bed surface. T hat is, the bed surface conditions are 
not applied on the boundary of a half-pl ane as in the earli e r so lutions, which can therefore be 
correct only in the leading term of the expansions. 

A complex variable m ethod is used and so lu tions to order E2 obtained explic itl y, though the 
expansions g iven determine valid solutions to order E3 with a furth er itera tion. The evalua tions 
are elementary for a profil e which can be adequately modell ed by a low-order truncated 
Fourier seri es, and the solution is illustrated for a sinusoidal bed . A simpl e cavita ti on criterion 
is found \\·hi , h dC'pmds only nn " and E. T o all ordn of th l' first po\\Tr of E. th , vC'lo,ily-field 

Q 

Fig. I. Glacier flow orer a W{//)' bed. 
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perturbation agrees with the solution ofNye ( 1969). However, whereas the present E2 terms 
are bounded, Nye has an unbounded term due to the artificial shear stress at infinity which is 
introduced to drive the motion. The determination of a parameter to order one, which in 
turn determines the basal sliding velocity, occurs in the balance of order E2 terms, so it is 
essential to construct a consistent expansion scheme to order E2. Furthermore, with classical 
boundary conditions of zero velocity there are no bounded half-plane solutions for flow which 
are non-trivial (Langlois, 1964), so the present solution verifies that the present boundary 
conditions define a well-posed flow problem. 

2 . BED PROFILE AND BOU NDARY CONDITIONS 

Figure I displays the idealized flow problem. Coordinates (x,y) are chosen along a bed 
line and normal to the bed respectively, with the x-axis inclined at angle IX to the horizontal. 
The glacier flows in the xcdirection, Us is the surface velocity at y = h, and Ub is the basal 
sliding velocity defined · as the x-velocity in a flow continued onto y = o. The bed profile 
is given by 

Yb = J(x), 

where J(x) is smooth, sufficiently differentiable for subsequent expansions, and supposed to 
extend periodically as x -+ ± 00. This allows a well-posed mathematical problem; a different 
profile distant from the region of interest will not affect the local flow field. If J (x) can be 
described adequately by a low-order truncated Fourier series the later solution is easily 
evaluated. Following Nye ( 1969,1970) and Kamb (1970) it is assumed that the bed slope is 
everywhere small; thus, 

E =/j' (X) /max ~ I. (3) 

Now we introduce the dimensionless coordinates (X, Y ) with a length scale A; 

in which the bed profile becomes 

We then choose 

where 

Thus 

x = AX, } (4) 
y = AY, 

Tb = J(AX )/ A = EF(X ). 

Jm = /J(x)/max. 

F(X) = J(AX)/fm, } 
/F(X)/ ~ I, 

/F'(X) / ~ I. 

(5) 

(6) 

That is, the length scale A is defined so that the contributions of F(X ) and F'(X) to the expan
sion coefficients are necessarily of order unity. The only restriction on the amplitude Jm is 
Equation (6) with the strong inequality represented by Equation (3). My approach is to seek 
flow solutions in the half-plane y > 0 (Y > 0 ) which give correct values on the surface 
T = Yb, to a required order in E. Strictly, Tb should lie inside the half-plane Tb ~ 0 as 
shown, but half-plane heat conduction solutions for the bed must be evaluated on Tb, and 
hence continued outside their domain if Yb > o. The smoothness conditions onJ(x) required 
for the expansion procedure allow such extensions, so the bed liney = 0 can be set anywhere 
in the vicinity of the bed surface. However, changing the bed liney = 0 for a given profile 
shape changesJm and the scale length A, so that it must be confirmed that this scale change 
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leaves the physical solution invariant. The change is equivalen t to a uniform shift of the profile 
in the y-direction (either direction), so consider 

Yb =f(x)+cfm (c = 0 (1)), 

Ac = If(X) +cl = ~ = 0 (1), 
,\ fm IlH1X C 

Thus 

Fc' (X ) = F' ( AcX jA) 
A 

Fe" (X) = A
C 
F" ( AcX j A) . .. , 

and if w(x) is any physical variable represented by 

W (X) = W(AX ) Wc (X) = W( AcX), 

on the two scales, then 

Wc (X ) = W ( AcXjA) Wc' (X ) = (AcjA) W' ( AcXjA). 

(8) 

(9) 

(10) 

It will be seen that the subsequent solution is invariant under the transformations shown in 
Equations ( I I ) and (13), and , by Equation (9), any order of magnitude statement concerning 
A applies also to Ac. 

An alternative coordinate transformation 

proposed by Nye (1970) to make the bed surface r == 0 requires 

a a } or -- of 

o 0 0 0 0 
oX -- aX- rb' (X) oY = ox+O(€) aY' 

and 

so continuing beyond the leading terms gives differential equations of a more complicated 
form and the biharmonic feature of the theory is lost. Expansion about r = 0 of solutions 
of the original equations is therefore the more appropriate approach. 

It is assumed that the regelation process takes place everywhere on the surface producing 
a continuous thin water layer. The possible sh ear stress in su ch a water layer is negligible 
compared with T so that one boundary condition for the ice at the bed surface is 

r = rb : Is = 0, (16) 

where (s, n) denotes the local tangent and normal (inward to the ice) coordinates at a point 
on the bed surface, with the s-tangent direction inclined at angle (J to the bed line y = o. 
The condition represented by Equation ( 16) is an idealization w hich requires that the water 
layer is nowhere " pinched-out" or drained away, and which assumes that the ice surface 
remains in contact with the surface layer; that is, no appreciable cavitation occurs. In terms 
of the stress tensor cr, 

Is = cos 28 crXy+t sin 28 (cryy - crxx), 

where 

tan 8 =j'(x) = €F' (X). ( 18) 

The bed surface is everywhere at the pressure-melting point. Let Po be a m ean pressure 
level for the bed, and (Po, T o) a pressure-melting point. T hen , for temperatures T close to 
To there is a linear relation between temperature and pressure-melting point for ice 
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where C = 0.7 X 10- 7 °C m 2 N-I (Nye, 1969) . Kamb ( 1970) points out that the hydrostatic 
pressurep is the correct stress in Equation (19) . Thus, if Tis the temperature in the ice and 
S the temperature in the bed, temperature continuity at the bed surface gives 

If Vn is the normal component of ice velocity on the bed surface (directed into the ice so 
that a positive value denotes local freezing and a negative value indicates melting), then 
there is a surface distribution of heat sources with density per unit length of bed LVn , unit 
length normal to the plane, where L is the latent heat (Nye, 1969) and L = 2.8 X 108 J m - 3. 

Let N = n/ A be the normal coordinate in (X, r) coordinates, then the ice and bed tempera
ture fields satisfy the surface flux condition 

where k j , kb are the thermal conductivities of the ice and bed respectively. kj = 2.0 
J m - I s- J °C- I and kb- = rki where r has a range from 1 to 2 for typical bed rocks; the value 
r = 1.6 appropriate to granite is used in a later calculation. 

The stress in the ice is given in terms of the two velocity components Vx , Vy , by the 
constitutive law, so Equations (16), (20) and (21) are four bed surface conditions for Vx , Vy , 

T, S. On the glacier surface 

r = h/ A: cryy =-Pa, crXY=o, (22 ) 

where pa is atmospheric pressure. Strictly, the free-surface condition (Equation (22)) is 
compatible with the restriction y = h only if Vy == 0 there, but it will be shown that this is 
valid to any order in E under the weak restriction 

A/h = 0 (1), 

since the solution gives exponential decay in r for Vy . The flow is represented as the sum of a 
laminar flow satisfying Equation (2 2) exactly, but not Equation (16), and a perturbation 
which is not assumed to be small near the bed, only aty = h, so that Equation (22 ) is satisfied 
to the required order. The perturbation is constructed as a half-plane solution and Equation 
(23) is the requirement. Similarly, the ice and bed are treated as half-planes for the heat 
conduction solutions satisfying Equations (20) and (21) on the bed surface. A geothermal 
heat flux Q normal to the bed is included by the conditions 

AQ 
S ~ -y;; r 

as r -'>- 00, } 

as r -+ - 00. 

A typical value for Q of 4 X 10- 2 J m - 2 s- J (Paterson, 1969) is used for later estimates. 

3. FLOW EQUATIONS 

The ice is assumed to be an incompressible Newtonian fluid of high viscosity /1-. A value 
for fL of 3 X 10I2 N m - 2 s (Nye, 1969) is used in the calculations. Thus 

oVx oVy 
- + - = 0 ox oy 

https://doi.org/10.3189/S0022143000013733 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000013733


GLACIER FLOW DOWN A SLOPE 

Momentum balance for slow viscous plane flow under gravity requires that 

2crxx caXY . I 
--+ --+ pg sm 0( = 0 , I 

dX ry f 
~ ~ 

c crxy cayy 
- ..,- + --- pg cos 0( = 0. 

ex ?y 

Let 

where 

pg sin 0( h2 
K = 

2fLUs 

and also 

2fLUs P = Po- pg cos 0( AY + -A- P, 

where 

453 

In these equations u and v are dimensionless velocity components (with unit Us) while P is a 
dimensionless pressure (with unit 2fLUs/ A) superposed on a laminar flow which balances the 
body force (gravity) and which satisfies the upper surface condition (Equation (22)), Po is 
the overburden pressure on a bed line r = 0 in th e laminar fl ow. T and S are dimensionless 
temperatures (with unit 2fLCUs/ A) in the ice and bed superposed on a uniform flux field 
satisfying Equation (24) . They satisfy the steady heat conduction eq uations in their respective 
domains 

V 2T = 0, V 2S = o. (32) 

Here the ice motion is neglected (Kamb, 1970) and V' is the two-dimensional Laplacian in 
(X, Y) coordinates. Thus, absorbing constants into To: 

T --+o 

S--+o 

as r --+ 00, } 

as Y --+ - 00, 

and Equation (20) can be written as the two relations 

where 

and 

T = - p+Brb , 

T-S= DYb , 

B = --:- (cos o(+~)(~)' } sm 0( pgkiC h 

r-I K Q (A)2 
D = -r- sin IX pgkjC It 

D = 0 if Q = 0 or if the two conduc tivities are equal, that is, r = kb /k; = I. With the values 
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given earlier, Q/( pgk;C) = 31.66, and to a good approximation the cos ex term in B can be 
neglected and 

r-I 
D ~ --B, 

r 
~ ~(~)2 B ~. h. 

SIn ex 

This reduction is not appropriate if Q is appreciably smaller than the adopted value, when the 
full expressions given by Equations (36) must be used. The flux condition, Equation (:21), 
becomes 

where 

aT as 
2N- r aN = 

- 2 (~)2 Vn 
A", Us' 

wk;C 
A",2 = -L- = 0 .0060 m 2, 

for the adopted values. A value for A", of 0.077 m is equivalent to the Nye ( 1969) value for 
k", - , (in his notation). By Equation (27) 

The flow formulae (Equations (25)-(29) ) reduce to 

ap 2P 
\!2P = 0, ax = !\!2u , cr=!\!2v, 

which are the equations for slow viscous plane flow for a velocity field (u, v) and pressure P 
in the absence of body force and in the case where the viscosity is 0.5 (Langlois, 1964). The 
dimensionless stress I: with unit 21-'-Us/ A is given by 

~xx = - 21-'-I..Us p+ :; , I: yy = - 2/kAUs P+ :~, } 
(42 ) 

(
I..) (1..)2 ( au av) ~Xy = K h - K h Y+t ax +a y · 

Thus there exist analytic functions <$ (z), !{l (z) of the complex variable Z = X + ir in 
h > y > rb such that 

v- iu = <$ (z) + ze/>'(z) + !{l (z), 
p .= 2lm {4>'(z)}, 

~yy-I:xx = - 2 Im {z4>" (z) + f (z)}, 

~Xy =- K G) [I -0) r] + Re {z,p" (z)+ !{l' (z) }. 

Similarly, from Equation (32 ), there exist analytic functions Xi (Z), n (z) with 

y > Yb : ~ = Re {XI (Z)}, } 
and _ 

Y < Yb : S = Re {n(z)} . 

4. FLOW SOLUTION 

(43) 

(44) 

(45) 

(46) 

Now let u, v, T extend smoothly in r > 0 onto Y = 0 (if Yb > 0 anywhere) and to 
infinity, and let S extend smoothly in r < 0 onto Y = 0 and to infinity, so that u, v, T, S 
and the stress components are half-plane fields given by the Equations (43) -(47). Define 
boundary values on Y = 0 such that 
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u(X, o) = U(X ), 1 
u( X, o) = V(X ), 

T (X, o) = 0 (X ), 
S(X, 0) = O (X ) . j 

455 

Note that U, r , 0 , n are not values o f the fi eld variables on the bed surface, but are intl'oduced 
to allow simple Cauchy integral representations of </> , f , Xi , n. It is assumed that they vanish 
or have sinusoidal behaviour as X ~ ± 00 . Also, we prescribe infinity conditions 

Y > 0: 

and 
Y < 0 : 

</>, if; and Xi ~ 0 as z -+ 00 , } 

Xb ~ ° as Z -+ 00 , 

to be consistent with Equation (33) and the requirem ent in Equation ( 22 ) . Then , Equations 
(43) and (47 ), subj ec t to Equations (48) and (49), give (Muskhelishvili , 1954) : 

I J V(t)-iU(t ) 
</> (z) = -. dt , . 

27Tl t-z 
-z 

I J V(t) + iU(t) 
f (z) = - . t dt - z </> ' (z), 

27Tl -z 

I J 0 (t ) Xi (Z) = -:- - d!, 
7T1 t- z 

if.< 

I J O(t) .' 
Xb (Z) = - ---:- -- dt, 

7Tl t - z 

Y > 0 , (50) 

Y > 0 , 

Y > 0, 

Y < o. 

Once U, V, 0, 0 are determined, Equations (50)-(53) and (43)-(47 ) give the physical fi eld 
variables . 

The following results are used repeatedly (Muskhelishvili , 1954) . If 

00 

J W (t) 
<D (z) = t - z dt, r > o ar Y < 0 , 

and W (t ) is differentiable and bounded at infinity, then 
00 

<J:l' (z) = J W' (t) dt , 
t- z r > ° or Y < 0, 

- X) 

with extension to higher derivatives , and 

c<D 
Tr' = i<D' (z), 

c -- ._-
n{<D(z)} = - i<D '( z). 

If W (t) is continuous and vanishes or behaves sinusoidally at infinity, 

:rJ 

f W (t) 
(J:l (z) ~ t - X dt ± 7Ti W (X ) as Y -+ {~ :+: , 

- X) 

(55) 

(56) 
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where J dcnotes the Cauchy princ ipal value. Also 

, 'l 

[fW(t) 
- - dt = H[W ](X ), 
1T t - X 
- z 

dH[vV] 
-- = H[VI " ] 

dX ' (58) 

where H[WJ is the Hilbert transform of W(t ) (ErdeIyi, [954), with the inversion theorem 

H[H[W]] = - W. 

Note the particular results 

H[I] = 0, H [sin kt ] = cos kX, 

[ J sin kt - -- dt = exp (ikX- kY) 
1T t - z 

[ J cos kt - -- dt = i exp (ikX- kY) 
1T t - z 

- , 

H [cos kt] = - sin kX, 

Y > 0 , 

(59) 

(60) 

(6 [ ) 

which arc the only evaluations r equired when F (X ) is a truncated Fourier series, and which 
show the exponential decay in r. The first expression of Equation (60) does not have the 
required conditions at infinity to satisfy the inversion theorem (Equation (59)). 

The bed surface conditions (Equations (16), (34), (35), and (38) ) can now be expressed 
in terms of Equations (43)-(47) and (50)-(53) ; that is, in terms of U, V, 8 and D . However, 
assuming sufficient smoothness, the value of each quantity on Y = r b(X) can first be approxi 
mated by a truncated Taylor series in r about r = 0 to the required order in I" at each X, 
and then the formulae used to evaluate quantities on r = o. If we adopt this process, and 
omit the lengthy but straightforward algebra using Equations (54)-(58), the bed surface 
conditions becom e 

K(A/h){ 1 - ( A/h)EF - 2E2(F')2}+ H[U'] - E{FH[V"] +2 (FU')'}+ E2{ -2 (F )2H[U'] + 
+ PV"'-iPH[Um] + 2FF'V"-4FF'H [U"]} + 0 (E3U, E3fi ) = 0 , (62 ) 

8+EFH[ 0'] -tE2P8" + 0 (1" 3 0 ) 
= EBF+H[V'] + U'+EF{H[U"] - V"} - tE2P{H[V"'] + U"'} + 0 (E3U, E3fi), (63) 

8 - Q+EFH[0 ' + Q'] - tE2P{0" - Q"} + 0 (E3 0 , E3 Q) = EDF, (64) 

{I - t E2 (F ')2 + 0 (E4)}{ -H[0' + rQ'] + EF( 0" - rD") + tE2PH[0'" + rQm] + 
+ 0 (1" 3 0, E3Q)}+ {EF' + 0 (E3)}{8' - rD' + EFH[8" + rD"] + 0 (1"38, 1"3 D) } 

= 2(1./ A ... )2 [V -1"(1 - K)F ' - E(FU )' + E2{ _ HF')2V+FF' V' - 2FF'H[U '] + 
+ t PV" - PH[U"]} + 0 (E3U, E3fi, E2K ( Ajh). (65 ) 

The argument X is omitted throughout. If we anticipate the conclusions that U, V, 0 and Q 
are 0 (1") or smaller, and that K( A/h) is 0 (1"2) or smaller, then Equations (62)- (65) contain 
explicitly the terms required to d erive expansions of U, V, 0 and Q to 0 (1"3); that is, an 
approximation n eglecting terms 0 (1"4) compared with a leading term 0 (1") . Thus, for a 
smooth bed, the error may be only 1% for I" ~ 0.2. Here terms to 0 (1"2) only are derived 
explicitly. It is supposed that Band D are order unity in the balance, but later calculation 
with the adopted physical parameters shows that these geothermal flux terms contribute 
little to the 0 (1") terms . 

Consider the balance for A = Op. .... ), that is 

w = (A/A ... ) = 0 (1). (66) 
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Alternative balances for smaller and larger w have been obtained explicitly, and have been 
shown to be appropriate limits of the solution based on Equation (66) . Let 

K(A/h) = yo+ y,E + y,E' + .. . , "I 

V = V ,, + V ,E + V,E2+ .. . , j 
with similar expressions for V, 8 and n , and compare coeffi cients of EO, E' , E2 in Equations 
(62)-(65) . The leading term of Equation (62 ) gives 

Yo+ H[ V o'] = 0 , (68) 

and by Equations (59) and (60), 

Yo = 0, Vu = 0 , (69) 

since a non-zero constant Vo leads to finite 1> (Z) and .p(Z) as r -)0 00 , which violates Equation 
(49) . By Equations (64), (65 ) and (63) in turn , 

no = 8 0 , "I 
- ( I+ r)H[0 0 '] = 2w 2 VO, r 

0 0 = H[Vo'] , j 
and eliminating 8 0 using Equations (58) and (59), 

Vo"- 2W2Vo/( 1 + r) = o. 

Both solutions of Equation (71 ) are unbounded a t one limit , X -7 ± 00 , so 

r'o = 0, "I 
8 0 = i1u = o. j 

With Equations (69) and ( 72), the E tel'm of Equation (62 ) is analogous to Equation (68) , 
glVll1g 

y, = 0 , V , = 0 . 

Now Equations (64), (63) and (65) give 

U, = 0, - DF, } 

8, = BF+ HP ','], 

where 

and 

(77 ) 
for the adopted values (r = 1.6) . >'01' = 0.088 m is the Kamb ( 1970) definition o f the critical 
length scale . Both complem entary fun ctions of Equation (75 ) are unbounded at one limit , 
X -+ ± 00, and V, is given by the bounded pa rti cul a r integral , simply a repeat ed quadrature 
once F' and H[F'] are known . 

:'-J'ow the E2 term of Equation (62 ) gives 

y,- FH[V,"] = - H[V2'l 

H[ V,'] and H[ [","] are periodic, but the produc t FH[ V, "] is in general the sum o f a constant 
term r and a periodic term W(X ), so the so lution of Equation (78) is 

y, = r , V,' = - H[W]. (79) 

This is demonstrated clearly by the subsequent sinusoidal bed calculation . Thus, 

KA /h = rE2+ 0 (E3). (80) 
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By Equation (75) r contains a term ( I - K), so an explicit relationship be tween K, A/h and EZ 

is obtained for a given F (X ), and in turn we obtain expressions for V s and Vb /Vs where by 
Equations (27) and (69) : 

The basal sliding velocity Vb is defined as the term of order unity in Vx on r = o. It will be 
shown in Figure 3 that the terms in Band D do not contribute to r , and hence do not affect 
Vs and Vb, and furthermore that 0 < K < I as expected. It should be noted that the second
order velocity term V z and the basal sliding velocity (of ord er unity) are d e termined together 
in an O(EZ) balance. 

Finally, to complete the second-order expansions, using Equations (64), (63) and (65), 

il2 = 0 z+ FH[0, ' + !.l, '] } (82 ) 

O2 = H[Vz']+ V z' - FV," - FH[0,'] , 

Vz" - w2 VZ = H[ Vz" ] - H[{FV/'}'] - H[ {FH[0 /]}' ] + 
+ {r/( I + r)}H[{FH[0, ' + Q/ ]}'] - { I /( I + r)}{ F( 0 ,' - d1/)}'. (83) 

The latter has a particular integral for VI which is bounded and periodic. The product 
terms in Equation (82 ) allow constants to a ppear in O2 and n z. These represent second-order 
corrections to To in the values of T and S on r ~· o. R ecall that Tu was d efin ed as the melting 
temperature corresponding to pressure Pu' 

5. SINUSOIDAL BED PROFILE 

The solution is now given explicitly fo r 

J (x ) = a sin kx 
E = ka 
A = I/k 

F(X) = sin X , 

}, 
wi th F(X ) = cos X covered by the shift X -+ X + 11'/2. The contributions of the harmonics 
in a truncated Fourier series will be indica ted. Only the Hilbert transforms (Equa tion (60)) 
are required . We se t 

r 
B - -- D = rl ( l - K)WZ, 

1+ ' 
as a result of which, Equation (75) becomes 

V/'-wzVr = - ( r -K)cij z (cos X+A sin X ), 

with the bounded particular integral 

( r - K)w2 
T', = (cos X + A sin X ). 

wZ + 1 

H ence 

( I - K)W2 

FH[T' ,"] = ( _ ) {1 - COS2X- Asin2X }, 
2 WZ+ I 

so that 

and 

( I - K)W2 
U2 = ( _ ) {cos 2X + A sin 2X}. 

4 w 2 + r 

(85) 

(86) 

(88) 

(89) 

(90 ) 
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Thus K, and hence Ub and Vs, are independent of A for F(X) = sin X. This applies for any 
combination a sin X + b cos X which becomes a sine function with a phase shift. If further 
harmonics are added, the cross products between different harmonics arising in FH[V/'] 
contribute no constant terms, so A cannot enter into Equation (89). The restriction of 
Equation (23) is met provided that K > 0 (,,2) for in ~ 0 (1), thus implying an upper bound 
to in (see Equation (9 1)). 

From Equations (28) and (8 1) and the leading term of Equation (89) , 

Ub 2(in 2+ I ) A ... /{ 2(w2+ I) A ... } 
O < - = I - K = 1+ < I, US Wh,,2 Wh,,2 

pg sin ex w2+ I 'iI.h 
Ub = ----

f.L in ,,2 
For a fixed ratio of hj,,2, the minimum value of Vb is given by: 

2 A ... pg sin cc 
(Ub)min = 2 ' 

f.L" 

and this occurs when A = A .... So, for A smaller or larger than A ... , the basal sliding velocity 
increases. Figure 2 shows the variation of Vb (in SI -units) with log (A/ 'iI. ) for th e physical 

2 

-1 o 

Fig. 2. Variatioll oJ basa! slidillg "('/ocit)' lh wilh bed .,ctd" ,\ (S/-1I1Iils) . 
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data given earlier. At fixed values of A, V b increases with h/"z. Figure 3 shows the variation 
of V b / Vs with log (A/ >. ... ) for different values of h"z. For example, hEz = 4 applies for h = 100 m 
and" = 0 .2, while h,,2 = 0.1 applies for h = 10 m and" = 0.1. However , the Newtonian 
approximation could have a serious effect on any quantitative predic tions of Vb and Vs, 
whereas the main purpose was to show that a fl ow fi eld , which determines Vb and which is 
compatible with the gravity drive, pressure-melting , and regelation boundary conditions, 
exists. Alternatively, given Cb. Cs and h. Equations ( ~:)I ) and (92 ) determine the bed para
meters" and A. 

10 

-1 o +1 

Fig. 3. Variatioll 0/1111' ralio uJ o".III/ .,/idillg .. fiuei l )' / 1) JllrjilCl' ,'doeil )' with ol'd .wdl' ,1Jllr diUi-rwl1'<llues ~r hE' (SI-ullits ) . 

Substitution of the above expressions indicates that the right-hand side of Equation (83) 
is zero, and hence the bounded solution is 

f'z = o. 

The temperature term s are now given by Equa tions (74) and (82 ). The velocity components 
of the bed line are, to second order, 

( I - K)cijz "I 
U = "z 4(cij2 + I) {cos 2X+ A sin 2X}, f' 

( I - K)cijz 
J." = " {cosX+ A sin X }. 

W 2 + 1 

(95) 

Using the estimates contained in Equations (37), (39), (85) and (89), 

~ 0.54,,2 ( 2W) 0.54,,2 
.rI ~ h . ~ h' . sm cc cij2 + I SIn cc (96) 

Taking the extreme values It = 10 m, cc = 0.04 and" = 0.2, the maximum value of A is 
0.05, so that the contribution made by the geothermal flux is small. W e may recall that B 
and hence A, are even smaller if Q = 0, by Equation (36). 
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The substitution of Equation (95) into Equations (50) and (5 1) and the use of Equation 
(6 I) gives, to second order, 

which determine the velocity and stress fi elds through Equations (43) - (46) and Equations 
(27) - (30), and which show the exponential decay in r. In parti cular 

£wZ ( I - K) 
p = ( _ ) {2e- Y (cos X + A sin X ) + .:e- zY (sin 2X - A cos 2X )} . (98) 2 WZ+ I 

W e may note that 

2p..US W Z( I - K) 

-A- 2(wZ+ I) 
pg sin ah 

and hence the pressure fi eld becomes 

p = Pa + Pi;h Cosa { I - ~ r+ ta~ ae- I ' r2cOSX+ Ee - YSin 2X ] }, 
when rI is neglec ted. 

On the bed surface 

{ 
2 tan a } 

P b = Pa + pgh cos a I + - .:- [cos X + 0 (.:)] + 0 ( £) , 

(99) 

( 100) 

and since the present solution is valid on ly when the ice boundary coincides with the bed 
surface (that is, no cavitation occurs) we require Pb ;? 0 which implies tha t 

_ .: ( Pa) tan a ~ - I + h . 2 pg cos a 
( 102) 

The factor ( I + Pa /( pgh cos a)) is approximately equal to one for h ? 100 m , and even fo r a 
thin glacier h = 10 m (Equation ( 102)) only allows a .,:;;; Eo So, cavitation is predicted for 
moderate bed inclination. Kamb ( 1970) infers an instability criterion of a > .: from an 
argument involving the value of the absolute bed slope, but this appears to be invalid unless 
the resisting " pressure drag" is eliminated from the lee fl anks of the undulations by " tota l 
cavitation" there . While Equation ( 102 ) shows that cavitation does occur for a > £ (for a 
sinusoidal bed on the Newtonian approximation ), it is still reasonable to expec t tha t pressure 
over the contact section of lee flanks w ill be sufficient to provide the necessary drag, but a full 
solution which incorporates cavitation is needed in QI'd er to confirm this . 

6. CONCLUDING R EMA RKS 

W e now see tha t slow viscous plane fl ow over an inclined wavy bed has a bounded so lution 
consistent , a t leas t to the order of £z, with the perturbation on the laminar flow d ecaying 
rapidly wi th height. This is in contrast to calculations of half-plane fl ow which are subj ected 
to the classical zero velocity condition at the bed-line, The inclusion of gravity in the momen
tum balance provides the driving m echanism and al so defines the mean drag direc tly. 
Thus, the unbounded terms arising from the artificia l driving shear stress of Nye do no t arise. 
The terms in € agree with the first-order expansions of Nye and K a mb, but , whereas Nye 
derives a relationship between the mean drag and th e basal sliding velocity from the first
order solution , the present solution shows how the surface and basal velocities are govcrned 
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by the second-order balance and are given directly. It is shown that a uniform geothermal 
flux does not influence the basal-sliding velocity, and makes only a small contribution to the 
flow field. 

The application of boundary conditions to the bed surface instead of the half-plane 
boundary allows direct expansions beyond the first power in Eo The balance equations 
have been given up to terms in El so that a solution for moderate slopes ( E '7-'0.2) could be 
obtained. In the dimension less expansion analysis, coefficients should remain of order unity 
if the higher derivatives of the bed profile are also small. However, the complex variable 
method of conformal mapping offers a direct approach to the problem of flow over a hump of 
finite slope. 
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