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Stability for the Brunn–Minkowski and
Riesz Rearrangement Inequalities, with
Applications to Gaussian Concentration
and Finite Range Non-local Isoperimetry

Eric Carlen and Francesco Maggi

Abstract. We provide a simple, general argument to obtain improvements of concentration-type in-
equalities starting from improvements of their corresponding isoperimetric-type inequalities. We
apply this argument to obtain robust improvements of the Brunn–Minkowski inequality (for Min-
kowski sums between generic sets and convex sets) and of the Gaussian concentration inequality.
_e former inequality is then used to obtain a robust improvement of the Riesz rearrangement in-
equality under certain natural conditions. _ese conditions are compatible with the applications to
a ûnite-range nonlocal isoperimetric problem arising in statistical mechanics.

1 Introduction

In this paper we present a general argument to deduce robust improvements of the
Brunn–Minkowski inequality and of the Gaussian concentration inequality starting
from the corresponding quantitative isoperimetric inequalities. We then exploit the
former result to obtain a robust improvement of the Riesz rearrangement inequality
in the case of a strictly decreasing interaction kernel that acts on nested sets. Finally,
we discuss how this last result can be applied to provide a quantitative geometric de-
scription of near-minimizing droplets for theGates–Lebowitz–Penrose free energy, a
problem arising in statistical mechanics that motivated this research.

1.1 Stability for the Brunn–Minkowski Inequality

If E and F are Lebesguemeasurable sets in Rd , E + F = {x + y ∶ x ∈ E , y ∈ F} is their
Minkowski sum, and ∣G∣ denotes the (outer) Lebesguemeasure of a set G ⊂ Rd , then
the Brunn–Minkowski inequality ensures that

(1.1) ∣E + F∣1/d ≥ ∣E∣1/d + ∣F∣1/d .
Henstock and Macbeath [HM53] proved that if 0 < ∣E∣∣F∣ < ∞, then equality holds
in (1.1) if and only if E and F are equivalent to their convex hulls, which in turn, up
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Stability for the Brunn–Minkowski and Riesz Rearrangement Inequalities 1037

to translations, are homothetic to each other. A natural question is then how to relate
the size of the gap between the le�-hand side and the right-hand side of (1.1) to the
distance of (suitably scaled and translated copies of) E and F from a suitably chosen
convex set. _is problem has been solved in the case that both E and F are convex
sets in [FMP09, FMP10]. In that case, it was shown that

(1.2) ∣E + F∣1/d ≥ ( ∣E∣1/d + ∣F∣1/d){ 1 + α(E; F)2

C(d)σ(E; F)1/d } ,

where σ(E; F) = max{∣E∣/∣F∣, ∣F∣/∣E∣}, and where α(E; F) is deûned as

α(E; F) = 1
2
inf{ ∣E∆(x0 + rF)∣

∣E∣ ∶ x0 ∈ Rd , rd =
∣E∣
∣F∣ } .

(_e factor 1/2 is included so as to have α(E; F) ∈ [0, 1)). We shall ûnd it convenient
to restate (1.2) as

(1.3) C(d)δ(E; F) ≥ α(E; F)2 ,

where we have set

δ(E; F) = σ(E; F)1/d{ ∣E + F∣1/d
∣E∣1/d + ∣F∣1/d − 1} .

_e advantage of formulation (1.3) of (1.2) is that δ(E; F) and α(E; F) are both scale
invariant quantities,meaning that

δ(λE; λF) = δ(E; F), α(λE; µF) = α(E; F), ∀λ, µ > 0.

(Note that, in general, if λ /= µ, then δ(λE; µF) may diòer from δ(E; F).) Our ûrst
main result is a quantitative improvement of (1.1) in the spirit of (1.2) in the casewhere
one of two sets E and F is a convex setwith positivemeasure. In the following theorem
we thus ûx K to be an open, bounded, convex set in Rd containing the origin.

_eorem 1.1 For every d ≥ 1 there exists a positive constant C(d) with the following
property. If E ⊂ Rd is a Lebesguemeasurable set with 0 < ∣E∣ <∞, then

α(E;K) ≤ C(1)δ(E;K), if d = 1,(1.4)

α(E;K)4 ≤ C(d)max{ 1,
∣K∣
∣E∣ }

m
δ(E;K), if d ≥ 2.(1.5)

Here we can take C(1) = 2, m = (4d + 2)/d, and

C(d) = d
log(2)(

√
25dC0(d)
d

+ d2d−1 + 2d)
4
, if d ≥ 2,

where C0(d) is deûned as in (1.8).

Remark 1.1 _e estimate (1.4) for the one-dimensional case d = 1 is sharp in the
decay rate of α(E;K) as δ(E;K) → 0. On the other hand, if E is a convex set with
0 < ∣E∣ <∞, then by (1.2) we have α(E;K)2 ≤ C(d)δ(E;K) for every d ≥ 2, and this
inequality is sharp in the decay rate of α(E;K) as δ(E;K)→ 0; see [FMP10, Section 4].
It is thus natural to conjecture that the power 4 on the le�-hand side of (1.5) should
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be replaced by the power 2. Moreover, it should be possible to remove the corrective
factor max{1, ∣K∣/∣E∣}m on the right-hand side of (1.5). In any case, in the application
of this result to be discussed here, we will have ∣K∣ < ∣E∣, in which case the factor is 1.

Remark 1.2 Improvements of the Brunn–Minkowski inequality (1.1) in the general
casewhen neither of the two sets is assumed to be convex have been recently obtained
by Figalli and Jerison in [FJ14a, FJ14b]. For example, in [FJ14a] it was shown that if
E ⊂ Rd and ∣E + E∣ ≤ ∣2E∣(1+ δ(d)), then, with co(E) denoting the convex hull of E,

c(d)( ∣co(E) ∖ E∣
∣E∣ )

8⋅16d−1
⋅d !⋅(d−1)!

≤ ∣E + E∣
∣2E∣ − 1,

where δ(d) and c(d) are positive computable constants.

To prove_eorem 1.1, we exploit known quantitative improvements of the (Wulò)
isoperimetric inequality (associated with the convex set K) through the use of the
coarea formula. Precisely, given an open bounded convex set K containing the origin,
one sets

∥ν∥∗ = sup{x ⋅ ν ∶ x ∈ K} , ν ∈ Sn−1 ,

and correspondingly introduces a notion of anisotropic perimeter by setting

PK(E) = ∫
∂E

∥νE∥∗dHd−1 = lim sup
r→0+

∣E + rK∣ − ∣E∣
r

in case E is an open set with Lipschitz boundary in Rd . _e most important case is
that in which K = B = {x ∈ Rd ∶ ∣x∣ < 1}, in which case ∥ ⋅ ∥∗ is simply the Euclidean
norm, and we obtain the (usual) perimeter

P(E) ∶= PB(E) =Hd−1(∂E) = lim sup
r→0+

∣E + rB∣ − ∣E∣
r

.

(HereHs is the s-dimensional Hausdoròmeasure on Rd , and rF = {rx ∶ x ∈ F}. We
also set sB = Bs and Bx ,s = x + Bs for every x ∈ Rd and s > 0.)

It iswell known that the Brunn–Minkowski inequality implies theWulò inequality

(1.6) PK(E) ≥ d∣K∣1/d ∣E∣(d−1)/d , 0 < ∣E∣ <∞,

where equality holds if and only if ∣E∆(x + rK)∣ = 0 for some x ∈ Rd and r > 0. In
[FMP10] a quantitative improvement of (1.6) was proved, in the form

(1.7) PK(E) ≥ d∣K∣1/d ∣E∣(d−1)/d( 1 + α(E;K)2

C0(d)
) , if 0 < ∣E∣ <∞,

where

(1.8) C0(d) =
181d7

4(2 − 21−(1/d))3/2 .

(See [FMP08] for the case K = B of (1.7).) Our starting point in the proof of _eo-
rem 1.1 is then the remark that if ∣E∣ = ∣K∣ and r > 0, then by the coarea formula (and
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provided E is closed, see Lemma 2.1)

∣E + rK∣ − (∣E∣1/d + ∣rK∣1/d)d = ∣E + rK∣ − ∣K + rK∣(1.9)

= ∫
r

0
PK(E + sK) − PK(K + sK)ds.

_e integrand here is positive for every s ∈ (0, r); indeed, ∣E + sK∣ ≥ ∣K + sK∣ by
the Brunn–Minkowski inequality, and thus PK(E + sK) ≥ PK(K + sK) by theWulò
inequality (1.6). If instead of theWulò inequality (1.6) one applies its improved form
(1.7), then one gets

(1.10) ∣E + rK∣ − (∣E∣1/d + ∣rK∣1/d)d ≥

d∣K∣1/d ∫
r

0
∣E + sK∣(d−1)/d α(E + sK;K)2

C0(d)
ds.

_e main diõculty in proving _eorem 1.1 is that α(E + sK;K) may decrease to
zero very rapidly as s increases. For example, suppose K = B, and E is the ball of
radius 2 that has been “perforated” by removing a large number of small disjoint balls
of radius atmost є from the interior; think of a Swiss cheesewithmany tiny holes. We
can arrange this construction so that ∣E∣ = ∣B∣. _en, for s > є, onehas α(E+sB;B) = 0,
while

δ(E , sB) = 1
sd

( 2 + s
1 + s

− 1) .

_us,while “Swiss cheese” sets E are such that α(E+ sB;B) can go to zero rapidly as s
increases away from zero, such sets have a large Brunn–Minkowski deûcit. _e proof
of_eorem 1.1 thatwe give turns on showing that if α(E+ sB;B) ismuch smaller than
α(E;B) for small s, then δ(E , sB) is sizable for small s.

_emain ideamay be obscured by the details in the proof given in Section 2, and
so we provide a sketch of a proof for the special case K = B, ∣E∣ = ∣B∣, and d ≥ 2. In
this special case, we easily deduce from the deûnition of δ(E;B), (1.10), ∣E + rB∣ ≥ ∣B∣,
and theHölder inequality, that

(1.11) C(d)
√
δ(E;B) ≥ ∫

1

0
α(E + rB;B)dr.

Next, by (the elementary) Lemma 2.2, one ûnds that

(1.12) ∣α(E;B) − α(F;B)∣ ≤ 2∣E∆F∣
max{∣E∣, ∣F∣}

for every E , F ⊂ Rd with positive and ûnite Lebesgue measure. In particular, for
F = E + rB, we have

α(E + rB;B) ≥ α(E;B) − 2
∣E + rB∣ ∣E∆(E + rB)∣ ≥ 2

∣B∣ ∣E∆(E + rB)∣.

Now pick є ∈ (0, 1) and restrict the domain of integration in (1.11) from r ∈ (0, 1)
to r ∈ (0, є) and use the lower bound on α(E + rB;B), with C(d) replaced by
max{C(d), 2/∣B∣} for convenience, to obtain

C(d){
√
δ(E;B) + ∫

є

0
∣E∆(E + rB)∣dr} ≥ ∫

є

0
α(E;B)dr ≥ єα(E;B).
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_e key step is to bound ∫
є

0
∣E∆(E + rB)∣dr in terms of δ(E;B) and є. Note that

∫
є

0
∣E∆(E + rB)∣dr = ∫

є

0
( ∣E + rB∣ − ∣E∣)dr = ∫

є

0
dr∫

r

0
P(E + tB)dt,

where, again by the integration formula (1.9) and by P(E + tB) ≥ P(B + tB),

∫
r

0
P(E + tB)dt = ∫

r

0
(P(E + tB) − P(B + tB))dt + ∫

r

0
P(B + tB)dt

≤ ∣E + B∣ − ∣B + B∣ + C(d)r ≤ C(d)(δ(E) + r).

Integrating over r ∈ (0, є) we eventually prove

єα(E;B) ≤ C(d){
√
δ(E;B) + єδ(E;B) + є2} ,

and then optimize the choice of є by setting є = δ(E;B)1/4.

1.2 Improvements of the Gaussian Concentration Inequality

_e strategy for proving _eorem 1.1 thatwe have just described is applicable in other
situations. We illustrate this by considering the Gaussian concentration inequality.
Let us denote by γd the Gaussian measure on Rd , so that

γd(E) =
1

(2π)d/2 ∫E e
−∣x ∣2/2dx , E ⊂ Rd .

Given ν ∈ Sd−1 and s ∈ R, we set Hν(s) = {x ∈ Rd ∶ x ⋅ ν < s}, H(s) = He1(s),

(1.13) ϕ(s) = γd(Hν(s)) =
1√
2π ∫

s

−∞

e−z
2
/2dz,

and for every E ⊂ Rd we let sE ∈ R be such that

γd(E) = ϕ(sE).
With this notation, the Gaussian concentration inequality says that

(1.14) γd(E + rB) ≥ γd(H(sE) + rB), ∀r > 0,

with equality if and only if E = Hν(sE) for some ν ∈ Sd−1. We now want to im-
prove this inequality to a quantitative statement, and we do this by exploiting Gauss-
ian isoperimetry. Let us recall that given an open set E with Lipschitz boundary, the
quantity

Pγ(E) =
1

(2π)(d−1)/2 ∫∂E
e−∣x ∣

2
/2dHd−1 = lim sup

r→0+

γd(E + rB) − γd(E)
r

is the Gaussian perimeter of E, and we have the Gaussian isoperimetric inequality,

(1.15) Pγ(E) ≥ Pγ(H(sE))

with equality if and only if E = Hν(sE) for some ν ∈ Sd−1.
An important point of contrast with theWulò inequality (1.6) is that while

PK(rK) = d∣K∣r(d−1)/d
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is monotone increasing in r, Pγ(H(s)) is not monotone in s. In fact,

lim
s→±∞

Pγ(H(s)) = 0.

_e quantitative analysis of (1.15) was initiated in [CFMP11,MN15] using a natural
Gaussian analog of α(E; F) deûned by

αγ(E) = inf
ν∈Sd−1

γd(E∆Hν(sE)) .

_e best result to date is that

(1.16) Pγ(E) − Pγ(H(sE)) ≥
es

2
E/2

c(1 + s2E)
αγ(E)2 , c = 80π2√2π,

proved in [BBJ14].
A key property of (1.16) is that it is dimension independent, andwe deûnitely desire

that this strong property be re�ected in a quantitative version of (1.14). To this end,
given E ⊂ Rd and r > 0, we set

(1.17) δrγ(E) = max{ 1,
1
r
} sup

0<t<r
γd(E + Bt) − γd(H(sE) + Bt), r > 0.

Notice that the factor 1/r is needed if r is very small, because in that regime one needs
to consider an isoperimetric type deûcit. _e same feature appears in the Euclidean
case; see (2.16). _e supremum over t ∈ (0, r) in the deûnition of the deûcit is neces-
sary because of the non-monotonicity of Pγ(H(s)) as a function of s, as noted above.

Next, given λ ∈ (γd(E), 1), we deûne

rE(λ) = sup{ r > 0 ∶ γd(E + rB) < λ} .

With this notation in force, we have the following theorem.

_eorem 1.2 Given E ⊂ Rd with γd(E) < 1 and λ ∈ (γd(E), 1), one has

(1.18) αγ(E)4 ≤ C∗(λ)δrE(λ)γ (E),

where, by deûnition,

C∗(v) = (5 + 1280π3)2( 1 + ϕ−1(v)) 2
, ∀v ∈ (0, 1).

Remark 1.3 Notice that (1.18) degenerates as we allow λ → 1−.

_e relation between (1.14) and (1.15) is similar, but not entirely analogous, to the
one existing between the Brunn–Minkowski inequality (1.1) (with F = K convex) and
theWulò inequality (1.6). Indeed, we can still write the deûcit in (1.14) as an integral
of Gaussian isoperimetric deûcits, so that (1.9) now takes the form

(1.19) γd(E + rB) − γd(H(sE) + rB) = 1√
2π ∫

r

0
Pγ(E + tB) − Pγ(H(sE) + tB)dt.

However, now we cannot infer the non-negativity of the integrand by isoperimetry
(compare with argument (1.9)), because of the non-monotonicity of Pγ(H(s)) in s.
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Indeed, if we consider the decomposition

Pγ(E + Bt) − Pγ(H(sE) + Bt) = Pγ(E + Bt) − Pγ(H(sE+B t))
+ Pγ(H(sE+B t)) − Pγ(H(sE) + Bt),

(1.20)

then the ûrst term in the sum on the right-hand side is non-negative by (1.15), while
the sign of second term depends on the values of γd(E) and γd(E + Bt). In partic-
ular, it is not clear if the le�-hand side of (1.19) is increasing in r, in contrast to the
Euclidean case. _e possible lack of this monotonicity property is the ultimate reason
for including the supremum over t ∈ (0, r) in the deûnition (1.17) of δrγ(E).

1.3 A Finite Range Non-local Perimeter Functional

We will apply _eorem 1.1 to a ûnite range non-local perimeter functional that arises
in statistical mechanics. In mathematical terms, our main result is _eorem 1.5, a
quantitative version of the Riesz rearrangement inequality in a case that is relevant to
statistical mechanics. We now brie�y discuss the variational problem that motivates
_eorem 1.5.

Let Λ denote the d-dimensional torus with period L, and hence volume Ld . For
smooth functions m on Λ, the van der Waals free energy functional is

F(m) = ∫
Λ
W(m(x))dx + θ

2 ∫Λ
∣∇m(x)∣2dx ,

where W(m) = 1
4m

2(1 − m)2. _e function m(x) speciûes the mixture of two
“phases” (think liquid and vapor, for example) at x, so that where m(x) = 1, the sys-
tem is in one phase, and where m(x) = 0, it is in the other (and thus m(x) ∈ (0, 1)
corresponds to somemixture of the phases).

Let n ∈ (0, 1), and consider the problem of determining

(1.21) inf{ F(m) ∶ ∫
Λ
m(x)dx = nLd} .

For θ = 0, the problem is trivial. Let D be anymeasurable subset of Λ with ∣D∣ = nLd ,
and deûne

m(x) =
⎧⎪⎪⎨⎪⎪⎩

1 x ∈ D,
0 x ∉ D.

Any such function is aminimizer. Wemay think ofD as a “droplet” of them = 1 phase
in a sea of the m = 0 phase. For θ = 0, the shape of the droplet is irrelevant.
For θ > 0, surface tension plays a role and tries to minimize the perimeter of the

droplet. Aclassic argument ofModica andMortolla, thatwenow brie�y sketch, shows
how isoperimetry comes into play. Use the co-area formula and then the arithmetic-
geometricmean inequality to write

F(m) = ∫
R
∫
{m=h}

( 1
4
(1 − h2)h2

∣∇m(x)∣ + θ2

2
∣∇m(x)∣)dHd−1dh

≥ ∫
R

θ√
2
∣1 − h2∣Hd−1({m = h})dh
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whereHd−1 is d − 1 dimensional Hausdoròmeasure. It is possible to nearly saturate
the arithmetic-geometric mean inequality by choosing m to cross the boundary be-
tween the phases with a certain proûle, and then, to nearlyminimize F, the quantita-
tive isoperimetric inequality forces the phase boundary to be nearly spherical, at least
when n is small enough that the droplet cannot wrap around the torus. _us, near
minimizers of the van der Waals free energy functional, which by the rules of statis-
tical mechanics are what one is likely to observe in equilibrium, are “round droplets”.
_ere is a cost to any departure from this optimal shape that is determined through
the quantitative isoperimetric inequality.

_e van der Waals free energy function is purely phenomenological; it cannot be
derived from any underlying particle system. However, other free energy functionals,
such as the Gates–Penrose–Lebowitz free energy functional [LP66,GP69], do arise
from particle systems, and are thereforemore physically signiûcant. While they have
a similar structure, the gradient term in F is replaced by a ûnite range non-local in-
teraction functional that we now describe.

Let J∶ [0,∞)→ [0,∞) be a decreasing Lipschitz function supported in [0, 1] such
that

∫
Rd

J(∣x∣)dx = 1.

On square integrable functions m(x) on Rd , we deûne the functional PJ by setting

(1.22) PJ(m) = ∫
Λ×Λ

J(∣x − y∣)∣m(x) −m(y)∣2dxdy.

If one replaces the gradient term in F(m) by PJ(m), one obtains a variant of the
Gates–Penrose–Lebowitz free energy functional [LP66,GP69]:

G(m) = ∫
Λ
W(m(x))dx +PJ(m) .

(_e actual GPL functional has a diòerent “double well” potential function W in it,
but this does notmatter here.) Wewould like to solve theminimization problem(1.21)
with G in place of F.

_e functionalPJ(m) can be thought of as a ûnite range non-local perimeter func-
tional in the following sense: Let m be the characteristic function of a set D of with
∣D∣ = nLd , n ∈ (0, 1). Should the boundary of D be smooth enough (being locally
the graph of a smooth function at a uniform scale much larger than the interaction
range of J), we would then have PJ(m) ≍ Hd−1(∂D). _is motivates the intuition
that PJ is a non-local perimeter functional and suggests that as for the van der Waals
free energy functionals, near minimizers for G will necessarily be “droplets” D that
are almost spherical, at least when n is small enough that the droplets cannot wrap
around the torus.

However, theModica–Mortola strategy cannot be directly applied to the functional
G, since the absence of gradients prevents one from making the same argument with
the co-area formula. What we do instead is to investigate the behavior of PJ under
spherically symmetric decreasing rearrangements. _e ûrst thing we do is to special-
ize to the case inwhich m is supported in a setwhose diameter is less than L, inwhich
case we can extend m and the integration in (1.22) to all of Rd . (See [CCE+09] for
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the reduction to this case in the statistical mechanics problem.) We then have the
functional

PJ(m) = ∫
Rd×Rd

J(∣x − y∣)∣m(x) −m(y)∣2dxdy,

and are in a position to apply rearrangement inequalities.

1.4 Riesz Rearrangement and Lieb’s Theorem

If E is a measurable subset of Rd with ûnite measure, then we let E∗ denote the ball
in Rd centered at 0 with ∣E∗∣ = ∣E∣. If f is a non-negative function on Rd such that
for each λ ≥ 0, ∣{ f > λ}∣ < ∞, the symmetric decreasing rearrangement of f is the
function f ∗ given by

f ∗(x) = ∫
∞

0
1{ f>λ}∗(x)dλ .

By construction, f ∗ is measurable, and for all λ > 0, ∣{ f ∗ > λ}∣ = ∣{ f > λ}∣, and so
for any non-negative function G on R+,

∫
Rd

G( f ∗(x))dx = ∫
Rd

G( f (x))dx .

In particular, the double well potential energy term in the GPL free energy G is con-
served in passing fromm tom∗, as it takes the form ∫Rd W(m(x))dx. _e interaction
energy PJ(m) is instead decreased as a consequence of the following deep theorem
about symmetric decreasing rearrangements (for a proof, and for more discussion of
rearrangements; see [HLP34,LL01]).

_eorem 1.3 (Riesz rearrangement inequality) Let f , g, and h be non-negative in-
tegrable functions on Rd . _en

∫
Rd ∫Rd

f (x)g(x − y)h(y)dxdy ≤ ∫
Rd ∫Rd

f ∗(x)g∗(x − y)h∗(y)dxdy .

To apply this to the functional PJ , note that since ∫Rd J(∣x∣)dx = 1,

∫
Rd×Rd

J(∣x − y∣)m(x)2dxdy = ∫
Rd

m2 = ∫
Rd

(m∗)2 ,

and thus

PJ(m) −PJ(m∗) = 2(IJ(m∗) − IJ(m)) ,
where

IJ(m) = ∫
Rd×Rd

m(x)J( ∣x − y∣)m(y)dxdy.

_us,_eorem1.3 implies thatPJ(m)−PJ(m∗) ≥ 0. In particular, ifm is aminimizer,
then equality holds in the Riesz inequality with f = h = m and g = J. Should this
necessary condition for optimality imply that m is radially decreasing, then one could
try to perturb it in order to infer that near minimizers are nearly spherical.

Generally speaking, the cases of equality in the Riesz rearrangement inequality
have been fully determined by Burchard [Bur96]. _e matter is quite complex, as
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there are many ways that equality can hold without f , g, and h being translates of
their rearrangements. For example, suppose that f = 1F , g = 1G , and h = 1H where
F, G, and H are Borel sets of ûnite measure. Deûne A = {y ∈ Rd ∶ y + G ⊂ F}.
_en,with ⋆ denoting convolution, 1G ⋆ 1F(y) = ∣G∣ everywhere on A. _en ifH ⊂ A,
H∗ ⊂ A∗, and there will be equality in Riesz’s inequality regardless of the “shapes” of
F, G, and H.

_ings are diòerent, however, when one of the functions involved, say g, is sym-
metric decreasing and, in addition, every ball (centered at the origin) is a super-level
set of g. _e following theorem is due to Lieb [Lie77].

_eorem 1.4 (Lieb’s theoremon cases of equality in theRiesz rearrangement inequal-
ity) Let f , g and h be non-negative integrable functions on Rd . Suppose that g = g∗,
and that for every r > 0, there is a λr > 0 so that

{g > λr} = rB .

_en whenever

(1.23) ∫
Rd ∫Rd

f (x)g(x − y)h(y)dxdy = ∫
Rd ∫Rd

f ∗(x)g∗(x − y)h∗(y)dxdy,

there is an a ∈ Rd so that f (x) = f ∗(x − a) and h(y) = h∗(y − a) almost everywhere
in x and y.

Lieb’s proof of this theorem was by induction on the dimension. A diòerent proof,
based on the Brunn–Minkowski inequality,will allow us tomake two extensions. _e
ûrst is relatively simple and could be done within the framework of Lieb’s proof. We
relax the requirement that every centered ball is a super-level set of g. _emore signif-
icant extension is a quantitative version asserting, roughly speaking, that when (1.23)
holds with near equality instead of equality, then f and h are still nearly translates
of their rearrangements. _e quantitative version of the Brunn–Minkowski inequal-
ity proved in this paper is the basis of this. To explain the connection between this
inequality and Lieb’s _eorem, we now sketch a proof of _eorem 1.4 based on the
Brunn–Minkowski inequality.

_e starting point is the layer-cake representation (see [LL01])

∫
Rd
f ⋆ g(x)h(x)dx = ∫

∞

0
dr∫

∞

0
ds∫

∞

0
dt∫

Rd
1Fr ⋆ 1Gs(x)1H t(x)dx ,

where for f , g, and h as above and r, s, t > 0, we have set

Fr = { f > r}, Gs = {g > s}, and Ht = {h > t}.
For each ûxed r, s, the continuous function 1Fr ⋆ 1Gs(x) is supported on the closure
of the Minkowski sum Fr + Gs . (One must be careful about sets of measure zero as
explained in Section 4.) One way to prove Lieb’s theorem is to prove that for ûxed
r, t > 0, there is a set A ⊂ R+ of strictly positivemeasure such that when t ∈ A,

∫
Rd

1Fr ⋆ 1Gs(x)1H t(x)dx < ∫Rd
1F∗r ⋆ 1G∗

s (x)1H t(x)dx .

(Here, since g = g∗, we have Gt = G∗

t .)
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Without loss of generality, we can suppose that ∣Fr ∣ < ∣Ht ∣. Note that F∗r is a ball
of radius (∣Fr ∣/∣B∣)1/d , G∗

s is a ball of radius (∣Gs ∣/∣B∣)1/d , and H∗

t is a ball of radius
(∣Ht ∣/∣B∣)1/d . By hypothesis, there exists an s such that

( ∣Fr ∣
∣B∣ )

1/d
+ ( ∣Gs ∣

∣B∣ )
1/d

= ( ∣Ht ∣
∣B∣ )

1/d
.

_en 1F∗r ⋆ 1G∗
s is supported in a ball of radius (∣Fr ∣/∣B∣)1/d +(∣Gs ∣/∣B∣)1/d ,which is the

radius of H∗

t . Hence,

1F∗r ⋆ 1G∗
s (x)1H∗

t
(x) = 1F∗r ⋆ 1G∗

s (x),

and consequently,

(1.24) ∫
Rd

1F∗r ⋆ 1G∗
s (x)1H∗

t
(x)dx = ∫

Rd
1F∗r ⋆ 1G∗

s (x)dx = ∣Fr ∣∣Gs ∣.

However, if Fr is not a ball, the Brunn–Minkowski inequality says that the support of
1Fr ⋆ 1Gs has ameasure that is strictly larger than that of Ht . Hence the set

{x ∉ Ht and 1Fr ⋆ 1Gs(x) > 0}

has positivemeasure. _erefore,

(1.25) ∫
Rd

1Fr ⋆ 1Gs(x)1H t(x)dx = ∣Fr ∣∣Gs ∣ − ∫
Rd/H t

1Fr ⋆ 1Gs(x)dx .

Comparing (1.24) and (1.25), we see that

∫
Rd

1Fr ⋆ 1Gs(x)1H t(x)dx < ∫Rd
1F∗r ⋆ 1G∗

s (x)1H∗
t
(x)dx

when Fr is not (equivalent to) a ball. By a dominated convergence argument, this
strict inequality remains valid when s is replaced by s′ ∈ [s, s + a] for some a > 0.
From here it is easy to prove_eorem 1.4.

_e two features of this proof that are relevant to us are the following: (1) it is
“localizable” in t, r and s, in the sense that ifwe consider r and s lying in some interval,
then we only need values of t such that ∣Gt ∣ matches (∣Er ∣1/d + ∣Fs ∣1/d)d , and not any
arbitrary positive number; (2) it is based on the Brunn–Minkowski inequality, for
which we have a quantitative improvement.

_e main diõculty to be overcome in proving a quantitative version is that while
the quantitative Brunn–Minkowski inequality gives us an estimate on themeasure of
the set (Fr + Gs) ∩ Hc

t , it is evident from (1.25) that what we really need is a lower
bound on

(1.26) ∫
Rd/H t

1Fr ⋆ 1Gs(x)dx .

Even if (Fr +Gs)∩Hc
t has a largemeasure, 1Fr ⋆ 1Gs may well be small on this set, and

then the integral may be small.
Indeed, if Gs is a ball of radius ρ, then 1Fr ⋆ 1Gs(x) = Fs ∩ Bρ(x), and so if Fr is

the union of many small and well separated components, think of a cloud of dust,
then ∥1Fr ⋆ 1Gs∥∞ will be very small. However, in this case, we will be far from having
equality in the Riesz rearrangement inequality.
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_is suggests making a decomposition of any set E (here, Fr), as follows. Given
λ, τ > 0 we set

Eλ ,τ = E/Dλ ,τ , Dλ ,τ = {x ∈ E ∶ ∣E ∩ Bx ,τ ∣
∣Bx ,τ ∣

< λ} .

For small λ, and any τ, Dλ ,τ is the “dusty” component of E. _e key to obtaining a
lower bound on the integral in (1.26) is to show that for appropriately chosen λ and
τ, the dusty component of Fr must be very small whenever

∫
Rd

1Fr ⋆ 1Gs(x)1H t(x)dx ≈ ∫Rd
1F∗r ⋆ 1G∗

s (x)1H∗
t
(x)dx .

_is proof of Lieb’s _eorem via the Brunn–Minkowski inequality also shows that
the heart of thematter is a geometric inequality for super-level sets. Indeed, consider
a function m with values in [0, 1] and notice that if Et = {m > t}, then m(x) =
∫

1
0 1E t(x)dt and

IJ(m) = ∫
1

0
∫

1

0
EJ(Et , Es)dsdt,

where we have set

EJ(E , F) = ∫
E
∫
F
J(∣x − y∣)dxdy, E , F ⊂ Rd .

_en deûning δJ(E , F) by

(1.27) δJ(E , F) = EJ(E∗ , F∗) − EJ(E , F),

we obtain

IJ(m∗) − IJ(m) = ∫
1

0
dt∫

1

0
δJ(Et , Es)ds.

Notice also that for s < t, Et ⊂ Es , so we are interested in EJ(E , F) when E ⊂ F.
Under mild conditions of the distribution function of m, for each t one can bound
from below the length of the interval of those values of s, with s < t, such that

1
4
≤ ( ∣Es ∣

∣B∣ )
1/d

− ( ∣Et ∣
∣B∣ )

1/d
≤ 3

4
,

and in the statistical mechanical application, we are chie�y interested in “droplets”
that are large compared with the unit ball. _e following theorem is our quantitative
version of Lieb’s _eorem. _e application to statistical mechanics that motivates it
will bemade elsewhere.

_eorem 1.5 Let us consider a decreasing Lipschitz function J∶ [0,∞)→ [0,∞)with
spt(J) ⊂ [0, 1] such that

∫
Rd

J(∣x∣)dx = 1, −J′ ≥ r
k

on [0, 3/4], ∥J∥C0(Rd) ≤ k,

for some k > 0. For subsets E , F of Rd , let δJ(E; F) be deûned by (1.27).
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If E ⊂ F ⊂ Rd are such that

1
4
≤ ( ∣F∣

∣B∣ )
1/d

− ( ∣E∣
∣B∣ )

1/d
≤ 3

4
, ∣E∣ ≥ 2∣B∣,

then one has

(1.28) ∣E∣1−1/dα(E;B)8(d+2) ≤ C(d , k)δJ(E; F).

Remark 1.4 Note the factor of ∣E∣1−1/d on the le�-hand side of (1.28), which is pro-
portional to Hd−1(∂E∗). _at is, the size of the “remainder term” is a multiple, de-
pending on the asymmetry α(E;B), of the perimeter of E∗. _is is the size we would
expect, since we aremeasuring the deûcit under rearrangement of a ûnite range non-
local perimeter functional.

2 Improvement in the Brunn–Minkowski Inequality

In this section we prove _eorem 1.1. Recall that K is a bounded open convex set
containing the origin so that

K = {x ∈ Rd ∶ ∥x∥ < 1},
where ∥ ⋅ ∥∶Rd → [0,∞) is the convex one-homogenous function on Rd deûned as

∥x∥ = inf { t > 0 ∶ x
t
∈ K} , x ∈ Rd .

Let us consider the convex one-homogenous function ∥ ⋅ ∥∗∶Rd → [0,∞) deûned by
setting

∥y∥∗ = sup{x ⋅ y ∶ ∥x∥ < 1} , y ∈ Rd .

Given a set of locally ûnite perimeter E inRd and a bounded open set A ⊂ Rd , we set

PK(E;A) = ∫
A∩∂∗E

∥νE∥∗dHd−1 ,

where ∂∗E denotes the reduced boundary of E andwhere νE is themeasure theoretic
outer unit normal to E (see [Mag12, Chapter 16] for these deûnitions). When E is an
open setwith Lipschitz boundary, one can replace ∂∗E with the topological boundary
in this deûnition. Notice that because we do not assume that K = −K, it may well be
that ∥y∥∗ /= ∥ − y∥∗, and thus that PK(E;A) /= PK(Rd ∖ E;A).

Given this notion of anisotropic perimeterwe can consider the isoperimetric prob-
lem of determining

(2.1) inf {PK(E) ∶ ∣E∣ = m} , m > 0.

It turns out that if r > 0 is such that ∣rK∣ = m, then {x + rK}x∈Rd is the family of
minimizers in (2.1). By taking into account that

(2.2) PK(K) = d∣K∣,
this assertion can in fact be reformulated as the so-calledWulò inequality (1.6). By
repeating verbatim the classical proof of the coarea formula (see, for example, [Mag12,
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_eorem 13.1]) we ûnd that

∫
A
∥ −∇u(x)∥∗dx = ∫

R
PK({u > t};A)dt

(as elements of [0,∞]), whenever u∶Rd → R is a Lipschitz function and A is an open
set. If we use sub-level sets instead of super-level sets of u, we ûnd of course that

(2.3) ∫
A
∥∇u(x)∥∗dx = ∫

R
PK({u < t};A)dt.

Setting Ks = sK = {sx ∶ x ∈ K}, s > 0, we now prove the following lemma.

Lemma 2.1 If E is a closed set in Rd , then

(2.4) ∣E + Kr ∣ = ∣E∣ + ∫
r

0
PK(E + Ks)ds.

Proof If we set

gE(x) = inf {∥x − y∥ ∶ y ∈ E} , x ∈ Rd ,

then gE is a Lipschitz function with

(2.5) ∣gE(x) − gE(y)∣ ≤ ∥x − y∥, ∀x , y ∈ Rd ,

and {gE = 0} = E, {gE < s} = E+Ks for every s > 0. Let x be a point of diòerentiability
for gE . By (2.5), we certainly have

(2.6) ∣∇gE(x) ⋅ e∣ ≤ ∥e∥, ∀e /= 0.

Now if gE(x) > 0, then there exists z ∈ E such that gE(x) = ∥x − z∥ and for 0 < h <
∥x − z∥ and e0 = −(x − z)/∥x − z∥, we easily ûnd that

gE(x + he0) ≤ ∥x + he0 − z∥ = ∥x − z∥( 1 − h
∥x − z∥) = gE(x) − h,

which gives ∇gE(x) ⋅ e0 ≤ −1, or, in other terms

(2.7) ∇gE(x) ⋅ (−e0) ≥ 1, for some e0 with ∥ − e0∥ = 1.

Combining (2.6) and (2.7) with Rademacher’s theorem, we thus ûnd that ∥∇gE∥∗ =
1 a.e. on {gE > 0} so that, by the coarea formula (2.3) (applied to the open set
A = {0 < gE < r}),

∣{0 < gE < r}∣ = ∫
R
PK({gE < s};{0 < gE < r})ds.

Since we have

∣{0 < gE < r}∣ = ∣E + Kr ∣ − ∣E∣,

∫
R
PK({gE < s};{0 < gE < r})ds = ∫

r

0
PK({gE < s})ds,

the proof is complete.

We will also need the following elementary lemma.
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Lemma 2.2 If E , F ⊂ Rd are Lebesguemeasurable sets, with 0 < ∣E∣∣F∣ <∞, then

(2.8) ∣ ∣E∣α(E;K) − ∣F∣α(F;K)∣ ≤ ∣E∆F∣.

Proof Let x ∈ Rd be such that 2∣E∣α(E;K) = ∣E∆(x+rEK)∣,where rE = (∣E∣/∣K∣)1/d .
If rF = (∣F∣/∣K∣)1/d , then we have,

2∣F∣α(F;K) ≤ ∣F∆(x + rFK)∣
≤ ∣F∆E∣ + ∣(x + rEK)∆(x + rFK)∣ + 2∣E∣α(E; F).

Since K is star-shaped with respect to the origin, we have

∣(x + rEK)∆(x + rFK)∣ = ∣∣rEK∣ − ∣rFK∣∣ = ∣∣F∣ − ∣E∣∣ ≤ ∣E∆F∣,

and thus we conclude

∣F∣α(F;K) − ∣E∣α(E;K) ≤ ∣E∆F∣.

By symmetry, we ûnd (2.8).

Proof of_eorem 1.1 For the sake of brevity, we directly set α(G;K) = α(G) for
every G ⊂ Rd .

Step one: We start by showing that, in proving _eorem 1.1, we can directly assume
that E is a compact set. Indeed, let E be a Lebesgue measurable set, and consider a
sequence of compact sets {Eh}h∈N with Eh ⊂ E, ∣Eh ∣ > 0, and ∣E ∖ Eh ∣→ 0 as h →∞.
By Lemma 2.2 we have α(Eh)→ α(E) as h →∞, while the inclusion Eh +K ⊂ E +K
implies

δ(Eh ;K) ≤ σ(Eh ;K)1/d{ ∣E + K∣1/d
∣Eh ∣1/d + ∣K∣1/d − 1} ,

so that, in particular, lim suph→∞ δ(Eh ;K) ≤ δ(E;K). _erefore, if_eorem 1.1 holds
true on compact sets, then it holds true on Lebesguemeasurable sets.

Step two:We address the one-dimensional case d = 1. We want to prove that

2δ(E;K) ≥ α(E),

where K = (a, b) for some a < 0 < b and where E ⊂ R is compact. Exploiting the
scale invariance properties of δ and α, we can equivalently prove that

(2.9) 2max{ r, 1
r
}( ∣E + Kr ∣

∣K + Kr ∣
− 1) ≥ α(E), ∀r > 0,

where E is a compact set with ∣E∣ = ∣K∣. Let us now set

α = ∥ − 1∥∗ , β = ∥1∥∗
so that α, β > 0 and, if {(a i , b i)}m

i=1 is a family of bounded open intervals in R lying
at mutually positive distances, then

PK(
m
⋃
i=1

(a i , b i)) = m(α + β).
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Since E + Ks is a bounded open set in R for every s > 0, with E + Ks ⊂ E + Kr if s < r,
and since, by Lemma 2.1,

∞ > ∣E + Kr ∣ = ∣E∣ + ∫
r

0
PK(E + Ks)ds,

we deduce that E + Ks is a ûnite union of intervals for every s > 0. In particular, if we
set

N(r) = PK(E + Kr)
α + β , r > 0,

then N(r) ∈ N for every r > 0, N(r) is decreasing on r > 0, and N(r) ≥ 1 for every
r > 0. Since P(K + Ks) = 1 for every s > 0, by (2.4) we ûnd that

(2.10) ∣E + Kr ∣ − ∣K + Kr ∣ = (α + β)∫
r

0
(N(s) − 1)ds.

Let us now set
r0 = inf{r > 0 ∶ N(r) = 1}.

(Notice that, trivially, r0 <∞.) If r0 = 0, then E+Kr is an interval for every r > 0, thus
α(E) = 0 and (2.9) follows immediately. If r0 > r, then by (2.10), and since α(E) < 1,
we ûnd

(2.11) ∣E + Kr ∣ − ∣K + Kr ∣ ≥ (α + β)r(N(r) − 1) ≥ (α + β)r ≥ (α + β)rα(E).

Since α+β = PK(K) = ∣K∣ (by (2.2)) and ∣K+Kr ∣ = (1+ r)∣K∣,we conclude from (2.11)
that

∣E + Kr ∣
∣K + Kr ∣

− 1 ≥ r
1 + r

α(E), (r ≤ r0),

which is easily seen to imply (2.9). We are thus le� to consider (2.9) in the casewhere
r > r0. In this case from (2.10), the deûnition of r0 and, again, by α + β = ∣K∣, we ûnd
that

(2.12) ∣E + Kr ∣ − ∣K + Kr ∣ = (α + β)r0 = ∣K∣r0 ,

as well as

(2.13) ∣E + Kr ∣ − ∣K + Kr ∣ = ∣E + Kr0 ∣ − ∣K + Kr0 ∣.

Up to a translation, E + Kr0 = (−Ra, Rb) = KR for some R > 0. _erefore, by (2.13),

(2.14) ∣E + Kr ∣ − ∣K + Kr ∣ = ∣K∣(R − (1 + r0)) .

Adding up (2.12) and (2.14), and since E ⊂ E + Kr0 = KR , we ûnd

2(∣E + Kr ∣ − ∣K + Kr ∣) = ∣K∣(R − 1) = ∣KR ∖ K∣ ≥ ∣E ∖ K∣ = ∣E∆K∣
2

≥ ∣K∣α(E),

which in turn gives

∣E + Kr ∣
∣K + Kr ∣

− 1 ≥ α(E)
2(1 + r) , (r > r0).

Since this last inequality implies (2.9), we have completed the proof of step two.

https://doi.org/10.4153/CJM-2016-026-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-026-9


1052 E. Carlen and F. Maggi

Step three: We now prove the theorem in dimension d ≥ 2. By step one and by ex-
ploiting the scale invariance of δ and α, we need to prove that if E is a compact set in
Rd with ∣E∣ = ∣K∣, then

(2.15) α(E)4 ≤ C(d)max{1, r4d+2}δ(E;Kr), ∀r > 0,

where

(2.16) δ(E;Kr) = max{ r, 1
r
}( ∣E + Kr ∣1/d

∣K + Kr ∣1/d
− 1) , r > 0.

Let us thus ûx a value of r > 0, and set, for the sake of brevity,

η = ∣E + Kr ∣
∣K + Kr ∣

.

By (1.1), η ≥ 1. We claim that we can directly assume that

η ≤ 1 + κ(r),(2.17)

where

κ(r) = min{ r, 1
r
} .(2.18)

Indeed, κ(r) ∈ (0, 1] for every r > 0 and

(2.19) (1 + κ)1/d − 1 ≥ (21/d − 1)κ, ∀κ ∈ [0, 1].
_erefore, if (2.17) does not hold true, then, as α(E) < 1,

δ(E;Kr) = max{ r, 1
r
}(η1/d − 1) ≥ max{ r, 1

r
}((1 + κ(r))1/d − 1)

≥ (21/d − 1)max{ r, 1
r
}κ(r) = (21/d − 1) ≥ (21/d − 1)α(E;K)4 ,

and (2.15) follows provided

(2.20) C(d) ≥ 1
21/d − 1

.

We are thus reduced to considering the case where (2.17) holds true. In this case, by
(2.19) we ûnd that

(2.21) δ(E;Kr) ≥ max{ r, 1
r
}(21/d − 1)(η − 1).

Having this lower bound for δ(E;Kr) in mind, we now apply Lemma 2.1 to ûnd

∣E + Kr ∣ − ∣K + Kr ∣ = ∫
r

0
(PK(E + Ks) − PK(K + Ks))ds.

By applying the quantitativeWulò inequality (1.7) to E + Ks , we deduce that

∣E + Kr ∣ − ∣K + Kr ∣ ≥ n∣K∣1/d ∫
r

0
∣E + Ks ∣1/d

′ α(E + Ks)2

C0(d)
ds(2.22)

+ n∣K∣1/d ∫
r

0
( ∣E + Ks ∣1/d

′
− ∣K + Ks ∣1/d

′
)ds,
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where the second integral on the right-hand side of (2.22) is non-negative by the
Brunn–Minkowski inequality. By theHölder inequality, we thus ûnd that

C0(d)
d∣K∣1/d

( ∣E + Kr ∣ − ∣K + Kr ∣) ∫
r

0
∣E + Ks ∣1/d

′
ds(2.23)

≥ (∫
r

0
∣E + Ks ∣1/d

′
α(E + Ks)ds)

2

≥ ∣E + Kr ∣−2/d(∫
r

0
∣E + Ks ∣α(E + Ks)ds)

2
.

Now, by Wulò ’s inequality (1.6), by Lemma 2.1, and by (2.17),

n∣K∣1/d ∫
r

0
∣E + Ks ∣1/d

′
ds ≤ ∫

r

0
P(E + Ks)ds = ∣E + Kr ∣ − ∣E∣(2.24)

≤ η∣K + Kr ∣ − ∣K∣
≤ ∣K∣( (1 + κ(r))(1 + r)d − 1)
≤ 2d+1∣K∣max{r, rd}.

In particular, having shown that ∣E+Kr ∣− ∣E∣ ≤ 2d+1∣K∣max{r, rd},we certainly have

(2.25) ∣E + Kr ∣ ≤ 2d+2∣K∣max{1, rd}.

_us, by (2.23), (2.24), and (2.25), we ûnd that

( ∫
r

0
∣E + Ks ∣α(E + Ks)ds)

2
(2.26)

≤ C0(d)
d∣K∣1/d ( ∣E + Kr ∣ − ∣K + Kr ∣)

2d+1∣K∣max{r, rd}
d∣K∣1/d

× (2d+2∣K∣max{1, rd}) 2/d

= 2d+3+4/dC0(d)
d2 ( ∣E + Kr ∣ − ∣K + Kr ∣) ∣K∣max{r, rd}max{1, r2}

= 2d+3+4/dC0(d)
d2 (η − 1)∣K∣2(1 + r)d max{r, rd}max{1, r2}

≤ 25dC0(d)
d2 ∣K∣2 max{r, r2(d+1)}(η − 1),

where in the last inequality we have used (1+r)d ≤ 2d max{1, rd} and 2d+3+(4/d) ≤
5d. Let us now consider ε ∈ (0,min{r, 1}), and apply Lemma 2.2 to compare E and
E + Ks for s ∈ (0, ε). In this way we ûnd that

(2.27) ∫
ε

0
∣E + Ks ∣α(E + Ks)ds ≥ ε∣K∣α(E) − ∫

ε

0
∣E∆(E + Ks)∣ds,
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where

∫
ε

0
∣E∆(E + Ks)∣ds(2.28)

= ∫
ε

0
( ∣E + Ks ∣ − ∣E∣)ds = ∫

ε

0
ds∫

s

0
PK(E + Kt)dt

= ∫
ε

0
ds∫

s

0
(PK(E + Kt) − PK(K + Kt))dt + d∣K∣∫

ε

0
ds∫

s

0
(1 + t)d−1dt

≤ ε( ∣E + Kr ∣ − ∣K + Kr ∣) + ∣K∣( (1 + ε)d+1

d + 1
− 1
d + 1

− ε)

≤ ε( ∣E + Kr ∣ − ∣K + Kr ∣) + d2d−1∣K∣ε2

= ε(1 + r)d ∣K∣(η − 1) + d2d−1∣K∣ε2

≤ ε2d max{1, rd}∣K∣(η − 1) + d2d−1∣K∣ε2

where we have also used the elementary inequality

(1 + x)d+1

d + 1
− 1
d + 1

− x ≤ d2d−1x2 , ∀x ∈ [0, 1].

We now combine (2.26), (2.27), and (2.28) to prove that

(2.29) α(E) ≤ amax{r1/2 , rd+1}
√
η − 1
ε

+ 2d max{1, rd}(η − 1) + bε

for every ε ∈ (0,min{1, r}), where we have set

a =
√

25dC0(d)
d

, b = d2d−1 .

In the case r < 1, by (2.18), we have η − 1 ≤ r, and thus

ε = ( η − 1
r

)
1/4

r

is an admissible choice in (2.29); correspondingly, we ûnd

α(E) ≤ ar1/2 (η − 1)1/4

r3/4
+ 2d(η − 1) + b( η − 1

r
)

1/4
r

≤ (a + b + 2d r)( η − 1
r

)
1/4

.

Since, by (2.21), δ(E;Kr) ≥ (log(2)/d)((η − 1)/r)) when r < 1, we conclude that

α(E)4 ≤ (a + b + 2d)4 d
log(2)δ(E;Kr), if r ≤ 1.

_is implies (2.15) for every r ≤ 1, provided we set

C(d) = d
log(2)(

√
25dC0(d)
d

+ d2d−1 + 2d)
4
.
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(Notice that this value of C(d) satisûes (2.20).) If, instead, r > 1, then by (2.18) we
have r(η − 1) ≤ 1, and ε = (r(η − 1))1/4 , is admissible in (2.29), which gives

α(E) ≤ ard+(3/4)(η − 1)1/4 + 2d rd(η − 1) + br1/4(η − 1)1/4

≤ ( ard+(3/4) + 2d rd−(3/4) + br1/4)(η − 1)1/4 .

At the same time, by (2.21) we have δ(E;Kr) ≥ (log(2)/d)r(η − 1), so that

α(E)4 ≤ (ard+(3/4) + 2d rd−(3/4) + br1/4)4(η − 1)

≤ d
log(2)(a + b + 2d)4r4d+3 δ(E;Kr)

r
.

_is concludes the proof of (2.15), and thus of_eorem 1.1.

3 Improvement in the Gaussian Concentration Inequality

_is section is devoted to the proof of _eorem 1.2. As in the case of the proof of
_eorem 1.1, we shall need two preliminary facts. First, if E ⊂ Rd is closed, then

(3.1) γd(E + rB) − γd(E) =
1√
2π ∫

r

0
Pγ(E + Bt)dt;

second, if E , F ⊂ Rd , then

(3.2) ∣αγ(E) − αγ(F)∣ ≤ 2γd(E∆F).

Since the proofs are entirely analogous to the arguments of Lemmas 2.1 and 2.2, we
omit them. We notice that, since αγ(E) ≤ 1 for every E ⊂ Rd , (3.2) immediately
implies that

(3.3) ∣αγ(E)2 − αγ(F)2∣ ≤ 2∣αγ(E) − αγ(F)∣ ≤ 4γd(E∆F).

It will be convenient to set σE ∶ [0,∞)→ [sE ,∞),

γd(H(σE(t)) = γd(E + Bt) = γd(H(sE+B t)) , t ≥ 0,

i.e., σE(t) = sE+B t , and, in particular, σE(0) = sE . It is useful to keep in mind that
since ϕ(s) is increasing (see (1.13)), and since γd(E + Bt) ≥ γd(H(sE) + Bt) with
H(sE) + Bt = H(sE + t), we clearly have that

σE(t) ≥ sE + t, ∀t > 0.

However, taking into account that

(3.4) Pγ(H(s)) = e−s2/2 , ∀s ∈ R,

we easily see that Pγ(H(sE+B t)) − Pγ(H(sE) + Bt) has no deûnite sign, and that

(3.5) Pγ(H(sE+B t)) − Pγ(H(sE) + Bt) ≥ 0 if and only if σE(t) ≤ ∣sE + t∣.

Proof of_eorem 1.2 We ûx λ ∈ (γd(E), 1) and r < rE(λ). By an approximation
argument we may directly assume that E is closed, and since αγ(E) ≤ 1 and C∗ ≥ 1,
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we can deûnitely assume that δrγ(E) ≤ 1. Nextwe exploit (3.1) to deduce (1.19), which,
combined with (1.20) and (3.4), gives for every r > 0,

(3.6)
√

2πδrγ(E)+∫
r

0
e−(sE+t)2/2−e−σE(t)2/2dt ≥ ∫

r

0
Pγ(E+Bt)−Pγ(H(σE(t)))dt.

As noticed in (3.5), the integral on the le�-hand side could be positive depending on
the value of γd(E) and t. To estimate its size, we shall use the fact that

(3.7) ∣e−b
2
/2 − e−a

2
/2∣ ≤

√
2πmax{a, b}∣ϕ(a) − ϕ(b)∣ , ∀a, b > 0,

where ϕ is deûned as in (1.13). _e proof of (3.7) is immediate. If we set

α = e−a
2
/2 ∈ (0, 1), a =

√
log ( 1

α2 ) ∈ (0,∞), ψ(α) = ϕ(
√

log ( 1
α2 ))

and, similarly, β = e−b2/2, then by a simple computation ψ′(α) = −1
√

2π log(α−2)
, and

thus

∣ψ(β) − ψ(α)∣ ≥ ∣β − α∣√
2π log(min{α, β}−2)

, ∀α, β ∈ (0, 1),

which immediately gives us (3.7). If t is such that σE(t) ≤ ∣sE + t∣, then e−(sE+t)2/2 −
e−σE(t)2/2 ≤ 0. Otherwise, by (3.7) we ûnd

e−(sE+t)2/2 − e−σE(t)2/2 ≤
√

2πσE(t)δ t
γ(E),

and since ϕ(σE(t)) = γd(E + Bt) ≤ γd(E + rB) < λ thanks to r < rE(λ), we conclude
that

e−(sE+t)2/2 − e−σE(t)2/2 ≤
√

2πϕ−1(λ)δ t
γ(E).

By (3.6) we thus infer that
√

2π( 1 + ϕ−1(λ))δrγ(E) ≥ ∫
r

0
Pγ(E + Bt) − Pγ(H(σE(t)))dt

≥ ∫
r

0

eσE(t)
2
/2

c(1 + σE(t)2)αγ(E + Bt)2dt,

where in the last inequality we have used (1.16). By exploiting the trivial estimate

es
2
/2

1 + s2
≥ e

s2/4

4
, s > 0,

together with (3.3), we ûnd that for every ρ ≤ r,

√
2π( 1 + ϕ−1(λ))δr

γ(E) ≥
es

2
E/4

4c ∫
ρ

0
(αγ(E)2 − 4γd(E∆(E + Bt)))dt.

Now, since γd(H(sE) + Bt) − γd(E) = ϕ(sE + t) − ϕ(sE) ≤ t/
√

2π, one gets

∫
ρ

0
γd(E∆(E + Bt))dt ≤

ρ
max{1, 1/r}δ

r
γ(E) + ∫

ρ

0
γd(H(sE) + Bt) − γd(E)dt

≤ ρ
max{1, 1/r}δ

r
γ(E) +

ρ2

2
√

2π
,
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so that, in conclusion, for ρ ≤ r < rE(λ),

(3.8) αγ(E)2 ≤ 4
√

2πce−s2E/2(1 + ϕ−1(λ))
δrγ(E)

ρmax{1, 1/r} + 4δrγ(E) +
ρ

2
√

2π
.

If r > δrγ(E)1/2, thenwe choose ρ = δrγ(E)1/2 and thus obtain from (3.8) and δr
γ(E) ≤ 1,

αγ(E)2 ≤ (4
√

2πce−s2E/2(1 + ϕ−1(λ)) + 4 + 1
2
√

2π
)
√
δrγ(E).

If instead r ≤ δrγ(E)1/2, then r ≤ 1, and setting ρ = r, we obtain

αγ(E)2 ≤ (4
√

2πce−s2E/2(1 + ϕ−1(λ)) + 4)δrγ(E) +

√
δrγ(E)

2
√

2π
.

By taking into account that c = 80π2√2π, one ûnds

4
√

2πce−s2E/2(1 + ϕ−1(λ)) + 4 + 1
2
√

2π
≤ (5 + 1280π3)(1 + ϕ−1(λ)),

and the proof of (1.18) is complete.

4 Stability in the Riesz rearrangement inequality

_e goal of this section is proving _eorem 1.5. Let us recall that we are considering
a decreasing Lipschitz function J∶ [0,∞)→ [0,∞) with spt(J) ⊂ [0, 1] such that

(4.1) ∫
Rd

J(∣x∣)dx = 1, −J′ ≥ r
k

on [0, 3/4], ∥J∥C0(Rd) ≤ k,

for some k > 0, and that given E , F ⊂ Rd , we set

EJ(E , F) = ∫
F
∫
E
J(∣x − y∣)dxdy,

δJ(E , F) = EJ(E∗ , F∗) − EJ(E , F).

We actually assume that E ⊂ F ⊂ Rd , and denote by

rE ,F =
∣F∣1/d
∣B∣1/d −

∣E∣1/d
∣B∣1/d ,

the radius such that ∣E∗ + BrE ,F ∣ = ∣F∗∣. We assume that

(4.2)
1
4
≤ rE ,F ≤

3
4
, ∣E∣ ≥ 2∣B∣,

and aim to prove

∣E∣1−1/dα(E;B)8(d+2) ≤ C(d , k)δJ(E; F).

Proof of_eorem 1.5 Step one: Given λ, τ > 0 we set

Eλ ,τ = E/Dλ ,τ , Dλ ,τ = { x ∈ E ∶ ∣E ∩ Bx ,τ ∣
∣Bx ,τ ∣

< λ} .

We claim that for every λ > 0 and τ ∈ (0, rE ,F) one has

(4.3) kδJ(E , F) ≥ λτd+1 ∫
rE ,F

τ
∣(Eλ ,τ + (r − τ)B) ∩ F c ∣dr.
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(Later on we will specify the size of λ and τ, and they will both be small in terms of
α(E;B).) To prove (4.3), since rE ,F is the diòerence of the radii of F∗ and E∗, for every
r < rE ,F , one has

∫
Rd

(1rB ⋆ 1E∗)1F∗ = ∫
F∗

∣E∗ ∩ Bx ,r ∣dx = ∫
Rd

∣E∗ ∩ Bx ,r ∣dx(4.4)

= ∣E∗∣∣rB∣ = ∣E∣∣rB∣ = ∫
Rd

1E ⋆ 1rB .

By the layer-cake representation, J(∣x∣) = ∫
∞

∣x ∣ −J′(r)dr = ∫
1
0 −J′(r)1rB(x)dr, and by

(4.4) we ûnd

δJ(E , F) = ∫
1

0
−J′(r)(∫

Rd
(1rB ⋆ 1E∗)1F∗ − (1rB ⋆ 1E)1F)dr(4.5)

≥ ∫
rE ,F

0
−J′(r)(∫

Rd
(1rB ⋆ 1E∗)1F∗ − (1rB ⋆ 1E)1F)dr

= ∫
rE ,F

0
−J′(r)(∫

Rd
1E ⋆ 1rB − ∫

Rd
1rB ⋆ 1E(x)1F(x)dx)dr

≥ τ
k ∫

rE ,F

τ
(∫

F c
∣E ∩ Bx ,r ∣dx)dr,

where in the last inequality we have used (4.1). We now notice that

(4.6) ∣E ∩ Bx ,r ∣ ≥ λτd ∣B∣, ∀x ∈ Eλ ,τ + Br−τ ,∀τ < r.

Indeed, by assumption on x, there exists y ∈ Bx ,r−τ ∩Eλ ,τ so that, in particular, By ,τ ⊂
Bx ,r , and thus y ∈ Eλ ,τ implies ∣Bx ,r ∩ E∣ ≥ ∣By ,τ ∩ E∣ ≥ λ∣B∣τd . By combining (4.5)
with (4.6), we ûnd the lower bound (4.3).

Step two:We notice that the volumes of ∣E∣ and ∣F∣ diòer by a “surface term”,

(4.7) ∣F∣ − ∣E∣ ≤ C(d)∣E∣1−1/d .

Indeed, by deûnition of rE ,F and by (4.2), we have

∣F∣ − ∣E∣ ≤ ( ∣E∣1/d + 3
4
∣B∣1/d)

d
− ∣E∣ = d ∫

3∣B∣1/d/4

0
( ∣E∣1/d + t) d−1dt

≤ C(d)( ∣E∣1/d + ∣B∣1/d) d−1 ≤ C(d)∣E∣1−1/d .

Step three: Given τ ∈ (0, rE ,F), let us set ℓ = ∫τ/4≤∣x ∣≤τ/2 J(∣x∣)dx. (We shall pick τ so
that ℓ will be small in terms of α(E;B).) We claim that if

(4.8) δJ(E , F) ≤ ℓ2∣B∣1/d ∣E∣1−1/d ,

and λ is small enough in terms of d, then

(4.9) ∣Dλ ,τ ∣ ≤ C(d)(λ + ℓ)∣E∣1−1/d .

To this end, let us consider the truncated kernel

J1(r) =
⎧⎪⎪⎨⎪⎪⎩

J(r)/ℓ r ∈ (τ/4, τ/2),
0 r ∉ (τ/4, τ/2),
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and notice that

(4.10) τd ∫
∞

0
(−J′1(r))dr ≤ C(d).

Indeed,

τd ∫
∞

0
(−J′1(r))dr ≤ C(d)∫

τ/2

τ/4
(−J′1(r))∣rB∣dr ≤ C(d)∫Rd

J1(∣y∣)dy = C(d).

By a similar argument we ûnd that

(4.11) J1 ⋆ 1F∗(x) ≥ c(d), ∀x ∈ F∗ .
To see this, notice that since ∣F∗∣ ≥ ∣E∗∣ = ∣E∣ ≥ 2∣B∣, one has

∣F∗ ∩ Bx ,r ∣ ≥ c(d)∣rB∣, ∀x ∈ F∗ , r < 3
4
,

and thus

J1 ⋆ 1F∗(x) = ∫
τ/2

τ/4
(−J′1(r)) ∣F∗ ∩ Bx ,r ∣dr ≥ c(d)∫

τ/2

τ/4
(−J′1(r)) ∣rB∣dr

≥ c(d)∫
Rd

J1(∣x∣)dx = c(d),

as claimed. By (4.11) we have

(4.12) ∣Dλ ,τ ∣ = ∣E∗ ∖ (Eλ ,τ)∗∣ ≤ C(d)(EJ1(E∗ , F∗) − EJ1((Eλ ,τ)∗ , F∗)) .

We now notice that thanks to (4.8),

EJ1(E∗ , F∗) − EJ1(E , F) = ∫
∞

0
(−J′1(r))dr∫Rd

(1E∗ ⋆ 1rB)1F∗ − (1E ⋆ 1rB)1F

≤ 1
ℓ ∫

∞

0
(−J′(r))dr∫

Rd
(1E∗ ⋆ 1rB)1F∗ − (1E ⋆ 1rB)1F

≤ δJ(E , F)
ℓ

≤ ℓ∣B∣1/d ∣E∣1−1/d ,

while EJ1(Eλ ,τ , F) ≤ EJ1((Eλ ,τ)∗ , F∗) by the Riesz inequality, so (4.12) implies

∣Dλ ,τ ∣ ≤ C(d)( ℓ∣E∣1−1/d + EJ1(E , F) − EJ(Eλ ,τ , F))(4.13)

= C(d)( ℓ∣E∣1−1/d + EJ1(Dλ ,τ , F)) .

Having in mind the decomposition EJ1(Dλ ,τ , F) = EJ1(Dλ ,τ , E) + EJ1(Dλ ,τ , F ∖ E),
we ûrst notice that

EJ1(Dλ ,τ , E) = ∫
Dλ ,τ

dx ∫
τ/2

τ/4
(−J′1(r))∣E ∩ Bx ,r ∣dr(4.14)

≤ ∫
Dλ ,τ

∣E ∩ Bx ,τ ∣dx ∫
τ/2

τ/4
(−J′1(r))dr

≤ λ∣Dλ ,τ ∣∫
τ/2

τ/4
(−J′1(r))∣Bτ ∣dr ≤ C(d)λ∣Dλ ,τ ∣,

where in the last inequality we have used (4.10). At the same time,

EJ1(Dλ ,τ , F ∖ E) = ∫
F∖E

dx ∫
τ/2

τ/4
(−J′1(r))∣Dλ ,τ ∩ Bx ,r ∣dr,
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where, given x ∈ F ∖ E, either we have Dλ ,τ ∩Bx ,r = ∅, or there exists y ∈ Dλ ,τ ∩Bx ,r ,
in which case, by r < τ/2, Bx ,r ⊂ By ,2r ⊂ By ,τ , and y ∈ Dλ ,τ ⊂ E, we obtain

∣Dλ ,τ ∩ Bx ,r ∣ ≤ ∣E ∩ By ,τ ∣ ≤ λ∣Bτ ∣.

We thus ûnd, thanks to (4.10) and (4.7), that

(4.15) EJ1(Dλ ,τ , F ∖ E) ≤ C(d)λ∣F ∖ E∣ ≤ C(d)λ∣E∣1−1/d .

By combining (4.13), (4.14), and (4.15) we thus ûnd

∣Dλ ,τ ∣ ≤ C(d)((ℓ + λ)∣E∣1−1/d + λ∣Dλ ,τ ∣) .

In particular, if λ is small enough depending on d, we obtain (4.9).

Step four: We complete the proof of the theorem. We start by choosing the values of
τ and λ. For a small value of a > 0 to be ûxed in the argument, and for some p ≥ 4,
let us set

(4.16) λ = τ = aα(E;B)p ≤ a.

(Recall that α(E;B) ≤ 1 by deûnition.) Since rE ,F ≥ 1/4, we can deûnitely entail
τ < rE ,F , and thus infer from (4.3) that

(4.17) kδJ(E , F) ≥ λτd+1 ∫
rE ,F−τ

0
∣(Eλ ,τ + Bs) ∩ F c ∣ds

holds. Now, since (τ/4, τ/2) ⊂ (0, 3/4), by (4.1) we ûnd

ℓ = ∫
τ/2

τ/4
(−J′(r))ωd rddr ≥

ωd
k ∫

τ/2

τ/4
rd+1dr ≥ τd+2

C(d , k) = α(E;B)
p(d+2)

C(d , k, a) .

Hence, by step three, either

(4.18) δJ(E , F) ≥ ℓ2∣B∣1/d ∣E∣1−1/d ≥ ∣E∣1−1/dα(E;B)2p(d+2)

C(d , k, a) ,

or (4.8) holds, and thus

(4.19) ∣Dλ ,τ ∣ ≤ C(d)(λ + ℓ)∣E∣1−1/d .

Let us now notice that, provided a is small enough in terms of d and k,

ℓ = ∫
τ/4≤∣x ∣≤τ/2

J(∣x∣)dx ≤ C(d)∥J∥C0(Rd)τd

≤ C(d , k)adα(E , B)pd ≤ aα(E , B)p ,

so that (4.16) and (4.19) give us

(4.20) ∣Dλ ,τ ∣ ≤ C(d)a∣E∣1−1/dα(E;B)p .

Summarizing, either (4.18) holds, and thenwe are done, or the bad setDλ ,τ is actu-
ally small in terms of α(E;B). In this latter casewe eòectively exploit the lower bound
(4.17) together with the quantitative Brunn–Minkowski inequality of _eorem 1.1 in
order to infer an estimate similar to (4.18).

https://doi.org/10.4153/CJM-2016-026-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-026-9


Stability for the Brunn–Minkowski and Riesz Rearrangement Inequalities 1061

_e argument goes as follows. By applying _eorem 1.1 to Eλ ,τ and Bs with s ∈
(0, rE ,F − τ), we ûnd that

(4.21)
α(Eλ ,τ ;B)4

C(d) ≤ max{ ∣Eλ ,τ ∣
∣Bs ∣

,
∣Bs ∣
∣Eλ ,τ ∣ }

1/d
{( ∣Eλ ,τ + Bs ∣

∣(Eλ ,τ)∗ + Bs ∣
)

1/d
− 1} .

By (4.20), ∣E∣ ≥ 2∣B∣, and provided a is small enough in terms of d,

∣Eλ ,τ ∣ ≥ ∣E∣( 1 − C(d)a∣E∣1/d ) ≥ 2∣B∣( 1 − C(d)a∣B∣1/d ) ≥ ∣B∣,

so that ∣Eλ ,τ ∣ ≥ ∣Bs ∣ for s ∈ (0, rE ,F − τ) and (4.21) gives us

(4.22) α(Eλ ,τ ;B)4 ≤ C(d) ∣E
λ ,τ ∣1/d
s

( ∣Eλ ,τ + Bs ∣
∣(Eλ ,τ)∗ + Bs ∣

− 1) ,

where we have also used the concavity of η ↦ η1/d . We notice that by (4.19) and by
∣E∣ ≥ 2∣B∣, if a is small enough depending on d, then

rE λ ,τ ,F − rE ,F =
∣E∣1/d
∣B∣1/d ( 1 − ( 1 − ∣Dλ ,τ ∣

∣E∣ )
1/d

)

≤ ∣E∣1/d
∣B∣1/d ( 1 − ( 1 − C(d)aα(E;B)

p

∣E∣1/d )
1/d

)

≤ C(d)aα(E;B)p .

In particular,

rE ,F − τ = rE ,F − aα(E;B)p > rE λ ,τ ,F − C∗(d)aα(E;B)p ,

for some speciûc constant C∗(d). In particular, if we set

I = [ rE λ ,τ ,F − 2C∗(d)aα(E;B)p , rE λ ,τ ,F − C∗(d)aα(E;B)p] ,

then for a small enough

(4.23) I ⊂ (0, rE ,F − τ), with H1(I) = C∗(d)aα(E;B)p ;

moreover, if s ∈ I, then ∣(Eλ ,τ)∗ + BrEλ ,τ ,F ∣ = ∣F∣ gives

∣(Eλ ,τ)∗ + Bs ∣1/d = ∣F∣1/d − (rE λ ,τ ,F − s)∣B∣1/d ≥ ∣F∣1/d − C(d)aα(E;B)p .

_at is (thanks to ∣F∣ ≥ ∣E∣ ≥ 2∣B∣),
∣(Eλ ,τ)∗ + Bs ∣ ≥ ∣F∣( 1 − C(d)aα(E;B)p) ,

and thus

∣Eλ ,τ + Bs ∣ − ∣(Eλ ,τ)∗ + Bs ∣ ≤ ∣(Eλ ,τ + Bs) ∖ F∣ + C(d)a∣F∣α(E;B)p .

By combining this inequality with (4.22) (and with ∣(Eλ ,τ)∗ + Bs ∣ ≥ ∣F∣/C(d)),

α(Eλ ,τ ;B)4 ≤ C(d) ∣E
λ ,τ ∣1/d
s∣F∣ ( ∣ (Eλ ,τ + Bs) ∖ F∣ + 2∣F∣a1/4α(E;B)p)

≤ C(d)
s

∣Eλ ,τ ∣1/d
∣F∣ ∣(Eλ ,τ + Bs) ∖ F∣ +

C(d)
s
aα(E;B)p .
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Of course, rE λ ,τ ,F ≥ rE ,F ≥ 1/4 so that if s ∈ I, then s ≥ 1/8, and thus we conclude by
p ≥ 4 and for a small enough in terms of d that

α(Eλ ,τ ;B)p ≤ C(d) ∣E
λ ,τ ∣1/d
∣F∣ ∣(Eλ ,τ + Bs) ∖ F∣.

On the one hand by (1.12) and by ∣E∣ ≥ 2∣B∣

∣α(Eλ ,τ ;B) − α(E;B)∣ ≤ 2∣Dλ ,τ ∣
∣E∣ ≤ C(d)aα(E;B)p ,

so that

α(Eλ ,τ ;B)p ≥ (α(E;B) − C(d)aα(E;B)p) p ≥ α(E;B)
p

2
,

while on the other hand, ∣Eλ ,τ ∣1/d ∣F∣−1 ≤ ∣E∣(1/d)−1 and thus

∣E∣1−1/dα(E;B)p ≤ C(d)∣(Eλ ,τ + Bs) ∖ F∣, ∀s ∈ I.

By (4.17), (4.23), and the choices of λ and τ, we thus ûnd

kδJ(E , F) ≥
∣E∣1−1/d

C(d , a) λτ
d+1α(E;B)2p = ∣E∣1−1/d

C(d , a)α(E;B)
(d+4)p .

By (4.18), setting p = 4, and recalling that a = a(d , k) we deduce that

∣E∣1−1/d min{α(E;B)4(d+4) , α(E;B)8(d+2)} ≤ C(d , k)δJ(E; F),

where the le�-hand side is actually equal to ∣E∣1−1/dα(E;B)8(d+2) as α(E;B) ≤ 1.
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