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In modern biology, diffraction-limited microscopy is a powerful tool to observe microscopic structures 

and processes of biological specimens. However, diffraction-limited microscopy is unable to resolve 

nanoscale configurations of biomolecules below the diffraction limit, which severely limited its capability 

of analyzing intricate and subtle biological/pathological changes. Recently, Expansion Microscopy (ExM) 

has emerged as a ground-breaking new principle for scalable, nanoscale optical imaging of biological 

specimens1,2. Rather than optically magnify samples, ExM works by embedding biological tissue into a 

water-swellable polyelectrolyte hydrogel, enzymatically homogenizing them, and then isotropically 

expanding the tissue-hydrogel physically in pure water. Typical ExM protocols expand tissues by ~100 

folds in volume, thus enabling nanoscale optical imaging with resolution ~60 nm using diffraction-limited 

microscopes1,2. 

We further developed a clinically optimized form of ExM that supports nanoscale imaging of human tissue 

specimens fixed with formalin, embedded in paraffin, stained with hematoxylin and eosin, and/or fresh 

frozen. The method, called expansion pathology (ExPath), transforms clinical samples into an ExM-

compatible state, then utilizes an ExM protocol with protein anchoring and mechanical homogenization 

steps optimized for clinical samples3,4 (Fig.1) ExPath enables ∼60-nm-resolution imaging of diverse 

biomolecules in intact tissues using conventional diffraction-limited microscopes and standard antibody 

and fluorescent DNA in situ hybridization reagents. We use ExPath for optical diagnosis of kidney 

minimal-change disease, a process that previously required electron microscopy, and we demonstrate 

high-fidelity computational discrimination between early breast neoplastic lesions for which pathologists 

often disagree in classification. We also reported a new, fast variant, rapid expansion pathology, that can 

be performed on < 5-µm-thick tissue sections, taking < 4 h with immunostained tissue sections and < 8 h 

with unstained specimens5 (Fig. 2). In contrast, the conventional expansion pathology, can be completed 

in ~1 d with immunostained tissue sections and 2 d with unstained specimens. Both ExPath versions 

require only inexpensive, commercially available reagents and hardware commonly found in a routine 

pathology laboratory, thus these new techniques may enable the routine use of nanoscale imaging in 

pathology and clinical research. 

 
Figure 1. Schematic of ExPath/rExPath workflow. Adapted from Ref. 5. 
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Figure 2. Rapid ExPath imaging of lymph node specimens from patients. (A) Pre-expansion image of a 

normal human lymph node specimen acquired with a spinning disk confocal microscope. Green, IgD; 

Red, CD8. (B) rExPath image of the specimen of A acquired with the same confocal microscope. 

Expansion factor: 4.0. (C and D) Fields of view zoomed into the corresponding areas outlined by a dashed 

white box in A and B, respectively. White arrows indicate examples of pre-expansion overlapped IgD and 

CD8 patterns being resolved after expansion. (E) Pre-expansion image of a human lymph node specimen 

with HIV acquired with a wide-field fluorescence microscope. Green, CD8; Red, PD-1; Grey, p24; Blue, 

DAPI. (F) rExPath image of the specimen of E acquired with the same microscope. Expansion factor: 

4.58. (G and H) Corresponding fields of view zoomed into the areas outlined by a dashed yellow box in 

E and F, respectively. Yellow arrows indicate examples of p24 being localized with sub-diffraction limit 

precision. Scale bar (biological scale): (A and B) 5 µm; (C and D) 1 µm; (E and F) 10 µm; (G and H) 2 

µm. Adapted from Ref. 5. 
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