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1. Introduction 

The aim of this contribution is to survey a relatively new form of convection, 

which is very easy to investigate in the laboratory, plays an important role in 

the oceans and many chemical engineering situations and is likely to prove 

essential in the understanding of some areas of stellar convection. Thermosolutal 

convection (or double-diffusive convection as it is often called) owes its exis­

tence to the presence of two components of different molecular diffusivities which 

contribute in an opposing sense to the locally vertical density gradient. The 

different sets of components studied have covered a wide range including 

a. heat and salt - two components relevant to the oceans and a number of 

laboratory experiments; 

b. heat and helium - two components relevant to certain stellar situations; 

c. salt and sugar or two different solutes - components useful for laboratory 

investigations; and 

d. heat and angular momentum - components which are likely to be relevant to 

some stellar situations. In each case, the most rapidly diffusing component has 

been listed first. Thus, while in the paper the terminology of heat and salt 

will be used, different components can be envisaged by reference to the above 

examples.* 

Aside from its many applications, thermosolutal convection has received 

considerable attention because it can induce motions very different from those 

predicted on the basis of purely thermal convection, that is, convection with 

only one component. In particular, diffusion, which is known to have a stabil­

izing influence in thermal convection, acts in a destabilizing manner in thermo­

solutal convection. By the action of diffusion, instabilities can arise and 

vigorous motion take place in situations where everywhere throughout the fluid 

heavy fluid underlies relatively lighter fluid. 

*Ed. Spiegel paraphrases this by the maxim: for salt, think helium. Is this his 
secret of gourmet cuisine? 
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An example of naturally occurring thermosolutal convection which highlights 

its counter-intuitive nature is afforded by Lake Vanda. Situated in Antarctica, 

approximately 5 km long, lj km wide and 65 m deep, Lake Vanda has a permanent ice 

cover of 3 - 4 m. Just below the ice the water temperature is 4.7 C and the 

temperature increases with depth, often in a step-like fashion, until at the 

bottom the temperature is 24.8°C (Figure 1). There is a corresponding increase in 
-3 "3 

density, from 1.004 gm cm just beneath the ice to a maximum of 1.10 gm cm 

TEMPERATURE °C 

Figure 1. The temperature profile in Lake Vanda as a function of depth indicated 
in meters (taken from Huppert and Turner, 1972). Note the existence of a layer 
of uniform temperature (7.6°C) between 14.2 and 37.9 m which has been partially 
omitted from this figure. 

at the bottom, due to the presence of salt. Vigorous convective motions take 

place in the upper portions of the lake, maintaining the regions of uniform 

properties, which are the hallmark of thermosolutal convection. Any model of the 

lake based solely on considerations of temperature, or density, is doomed to 

failure. Only by incorporating thermosolutal effects can a successful model be 

derived (Huppert and Turner, 1972). 

The plan of this survey is as follows. The two fundamental mechanisms of 

thermosolutal convection are described physically in §2. These form the foundation 

of the quantitative analysis of a suitable Rayleigh - Bernard convection problem, 

whose linear and nonlinear aspects are discussed in §3. The mechanism by which a 

series of layers and interfaces can be maintained, as in Lake Vanda, is considered 

in §4. In §5 a few ways in which a series of layers and interfaces can originate 

are described. The structural stability of such a series is investigated in §6. 

Conclusions are presented in §7. 
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2. The Fundampntal Mechanisms 

The first of the two fundamental mechanisms of thermosolutal convection occurs 

in a fluid for which the temperature and salinity both decrease with depth, while 

the (overall) density increases with depth, as indicated in figure 2a. In this 

0 
I 

9 
(a) T S p (b) T 

Figure 2. Typical temperature, salinity and density profiles for: (a) the finger 
situation and (b) the diffusive situation, including a sketch of the motion of a 
disturbed parcel of fluid. 

statically stable situation, the dynamic instability that arises can be examined 

by considering a parcel of fluid displaced vertically downward. Initially warmer 

and saltier than its surroundings, the parcel comes to thermal equilibrium before 

its excess salinity can be diffused. It is thus heavier than its surroundings and 

continues to descend. The ensuing motion consists of adjacently rising and 

falling cells, interchanging their heat, and to a much smaller extent their salt, 

much like a heat exchanger. The kinetic energy of the motion is extracted from the 

potential energy stored in the salt field. Experiments indicate that in typical 

conditions, the plan form of the cells, called salt-fingers, is squarish with a 

horizontal length scale of {(ag/ic v) (dT/dz)} , where a is the coefficient of 

thermal expansion, g is the acceleration due to gravity, tc_ is the coefficient of 

thermal diffusivity, v is the kinematic viscosity and (dT/dz) is the mean 

(positive) vertical temperature gradient. This length scale, discussed further 

in the next section, represents a balance between dissipative effects acting pre­

ferentially on small scale motions and the increasing inefficiency of diffusing 

heat over ever larger horizontal distances. 

The second fundamental mechanism occurs in a fluid whose temperature, 

salinity and (as before) overall density increases with depth, as indicated in 

figure 2b. Displacement of the typical fluid particle vertically downwards now 

places it in a warmer, saltier and more dense environment. As before, the thermal 

field of the parcel begins to equilibrate with its surroundings more rapidly than 

does the salt field. The parcel is then lighter than its surroundings and rises. 

But due to the finite value of the thermal diffusion coefficient, the temperature 

field of the parcel lags the displacement field and the parcel returns to its 
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original position lighter than it was at the outset. It thus rises through a 

distance greater than the original displacement, whereupon the above process 

continues and leads to a series of growing oscillations, or overstability, which is 

resisted only by the effects of viscosity. This oscillatory form of motion has 

been experimentally documented (Shirtcliffe, 1969) and some of its characteristics 

explored by Moore and Spiegel (1966) in an imaginative paper which develops an 

analogy between this form of thermosolutal convection and the motion of a flaccid 

balloon in a thermally stratified fluid. For sufficiently large temperature 

gradients, steady motion can occur because a large temperature field can overcome 

the restoring tendency of the salinity field. The criteria at which this first 

occurs are discussed in the next section. 

3. The Rayleigh-Benard problem 

The fundamental mechanisms of the previous section form the basis of all 

quantitative calculations. The most straightforward and hence frequently considered 

calculation relates to the extension of the classical Rayleigh-Be'nard problem: 

what is the motion of a fluid confined between two horizontal planes across which 

there is a temperature difference AT and a salinity difference AS? A major 

motivation behind such studies is the expectation that just as the purely thermal 

problem has successfully explained a variety of phenomena, as summarised by 

Spiegel (1971), so also will the thermosolutal extension. And indeed this expect­

ation has already been partially fulfilled. 

All calculations so far performed have essentially assumed two-dimensional 

motion, dependent on one horizontal co-ordinate, x, and the vertical co-ordinate z. 

Considering this restriction and non-dimensionalising all lengths with respect to 
2 

D, the separation between the planes, time with D /K and expressing the velocity 

q* in terms of a streamfunction IJJ by 

q* = (KT/D) (3zlK - 3 ^ ) , (3.1) 

the temperature T* by 

X* = T + AT (1 - z + T) (3.2) 
o 

and the salinity S* by 

S* = S + AS (1 - z + T) (3.3) 

o 

where T and S are constant reference values, we can write the governing 

Boussinesq equations of motion as 
cfXV23J)-cf1J(i|>,V2iJ0 = -R.,3 T+R„ 3 S+V%, (3.4) 

t I X £> X 

3 T + 3 IJJ-J(^,T) = V2T (3.5) 

3tS + 3 ty -JOhS) =TV2S (3.6) 

where the Jacobian, J, is defined by 

https://doi.org/10.1017/S0252921100112473 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100112473


243 

J(f,g) = 3xf3zg - 3zf3x g. (3.7) 

We have also assumed the linear equation of state 

p* = PQ (1 - aT* + BS*), (3.8) 

where a and (3 are taken to be constant, in the expression for the body-force term 

in (3.4). 

Four non-dimensional parameters appear in (3.4)-(3.6): the Prandtl number 

(J=V/K ; the ratio of the diffusivities T = K /K , where K is the saline diffusivity, 

which is less than <„; the thermal Rayleigh number R_ = agATD /(K„v); and the 

saline Rayleigh number R = BgASD / ( K v ) . 

To these equations must be added a series of boundary conditions. Mainly 

because of their mathematical simplicity, the most frequently used conditions are 

those obtained by assuming that both horizontal planes are stress free and per­

fectly conducting to both heat and salt. That such an assumption is a reasonable 

one for a model which is to apply in the interior region of a star can be fairly 

well defended (and often has been). One aspect of the defence incorporates the 

belief that the use of other, possibly more realistic, conditions is likely to 

lead to only slight quantitative differences. Indeed, Huppert and Manins (1973), 

in a series of experiments described below, give an example of this. Mathematically, 

free-free boundary conditions, as the above are often loosely called, are expressed 

b y i|>«32 \\i = T - S = 0 ( z = 0 , l ) . (3.9) 
zz 

a) Linear Disturbances 

The equations governing infinitesimal motions are obtained by deleting the 

nonlinear Jacobian terms of (3.4)-(3.6). The resulting differential system has 

constant coefficients and a solution in terms of the lowest normal modes 

if»(x, z, t) = i> sirnrax \ (3.10a) 

° I 
T(x, z, t) = T C O S T O X > eptsiwrz (3.10b) 

S(x, z, t) - S cosirax J (3.10c) 

leads to the dispersion relationship 

p3+(a+T+l)k2p2+ {(a+T+l)k4 - Tr2aa2k~2 (I^-Rg) }p (3.11) 

where 

fi 2 2 
+OTk +TT aa (RS

-TRT) = 0 t 

k2 = ir2(l+a2). (3.12) 

Since (3.11) is a cubic with real coefficients its zeros are either all real or 

consist of one real root and two complex conjugate roots. Exchange of stabilities, 

which arises when one of the roots equals zero, i.e. p= 0, or equivalently 
-1/2 

3 =0, occurs first for a= 2 and 
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R̂ , = RS/T + 27ir /4 (3.13) 

Overstability, which arises when the pair of complex-conjugate roots crosses the 

imaginary axis, that is p = 0, occurs first for the same wavenumber, a 

and 
«T 

(CT+T)RS/(CF+1) + 27ir
4(l+T)(l+Ta_1)/4. 

-1/2 

(3.14) 

10000 

5000 ._ 

-10000 -5000 5000 10000 

-10000 

Figure 3. The linear stability results for 0= 10 , T = 10 . Along (3.13) one 
of the temporal eigenvalues, p, is identically zero; along (3.14) two of the 
(complex conjugate) p are pure imaginary; and along C two complex conjugate 
eigenvalues coalesce on the real axis. 

In the R , R_ plane the linear stability boundary is a combination of (3.13) 

and (3.14), as depicted in figure 3, which presents a complete summary of the 

linear results for a = 10 , T = 10 

An investigation of the fastest growing mode evaluated by linear theory has 

been presented by Baines and Gill (1969), although owing to the linear constraint, 

the results are of at most academic interest. In agreement with the result 
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originally calculated by Stern (1960), Baines & Gill find that in the salt finger 

region, the unstable portion of the third quadrant in figure 3, the wavelength of 

the disturbance of most rapid growth is much smaller than the marginal value, 
3/2 
2 it, except very close to the marginal stability line (3.13). This is in accord 

with the physical description of §2, which indicates that a thinner mode acts as a 

better heat exchanger. 

The following experiment is an example to which results based on linear theory 

can be profitably applied. A uniform layer of hot, salty water is carefully placed 

over a uniform layer of relatively colder, fresher water. The temperature and 

salinity distributions across the initially paper-thin horizontal interface evolve 

by diffusion, leading to a situation similar to that considered at the beginning 

of this section. Equating the central gradient of the diffusing distribution to 

the temperature and salinity gradients which appear in the marginal stability 

criterion (3.12), Huppert & Manins (1973) calculate that under typical laboratory 
-1 4 

conditions, specifically R_, T Rg » 27TT /4, salt-fingering should occur if 

BAS/oAT > T3/2, (3.15) 

where AT, AS are the initial temperature and salinity differences across the inter­

face. The results of a series of experiments, conducted with a variety of pairs of 

solutes with different values of T, are in very good agreement with (3.15). 

b) Nonlinear Disturbances 

Fully nonlinear, but two-dimensional, investigations have been conducted by 

Straus (1972) for IL,, R < 0 and by Huppert & Moore (1976) for R^, R > 0. 

The former reduces the complexity of the governing equations by assuming that 

T •* 0, R + 0 with R /T fixed. 

In this limit, the inertial terms in the momentum equation and the advection of 

the disturbance temperature, but not the disturbance salinity are negligible. 

Straus calculates the solutions for a variety of different values of a as L, 

increases from the marginal stability value. He also tests the linear stability 

of these solutions. His principal conclusions are that as R_ increases, both 

extremes of the range of stable wavenumbers increase significantly. Beyond a 

specific R_, dependent upon R„/T, the range of stable wavenumbers no longer 

includes the wavenumber at marginal stability. The form of motion with the most 

stable wavenumber corresponds to the long thin cells of the (somewhat different) 

experiments and is close to that wavenumber which leads to a maximum salt flux. 

These results are interesting and suggestive, but the two-dimensional and small T 

assumptions might limit the generality of some of the specific conclusions. 

The calculations for RT, Rg > 0 of Huppert & Moore aim to follow the form of 

solutions as R_ increases for fixed R„, a and T. Drawing on the results of a 

The marginal stability point is supercritical, that is, there is only the con­
ductive solution for R_ less than the marginal value. 
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number of numerical experiments, they put forward the following general con­

clusions. There are two rather different branches of solutions. Along one branch, 

which may be initiated either subcritically or supercritically from the linear 

oscillatory critical point given by (3.14), the solutions are oscillatory. In 

— i 1 i i i ~ i 

20 40 60 

Figure 4. The stable solution branches in a thermaliRayleigh number, maximum 
Nusselt number at z = 0 plane for (a) a = 1, T = 10 *, Rg = 10* and (b) 0 = 1 , 
T « 10~1, Rg = 107/2. where relevant both local maxima are shown and the rapidly 
oscillating curve indicates that no definite maximum can be assigned to the 
aperiodic motion in this range. The dots indicate the transitions that can take 
place between the oscillatory and monotonic branches. 

general, as R_ increases, a transition point is attained at which the solution 

changes from being relatively simple to being fundamentally more complicated, yet 
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still periodic. At a yet larger value of IL, another transition takes place, a 

transition to aperiodic motion. Finally, beyond a still larger value, stable 

aperiodic solutions cease to exist and only solutions which are ultimately steady, 

and make up the second branch of solutions, can be found. The two branches for 

particular values of a, T and R are graphed in Figure 4. Steady motion exists 

in a thermosolutal fluid because of the tendency of the temperature field to cause 

an almost isosolutal core to be produced, confining all solute gradients to thin 

boundary layers. The temperature, salinity and density fields for a typical steady 

solution are presented in figure 5. For given a, T and R„, there is a minimum 

Figure 5. The temperature, salinity and density fields for R_ = 10700, 
Rg = 10

4, a = 1 and T = 10-1. 

value of Rq, for which steady motion exists and one of the aims of the investigation 

by Huppert & Moore is to calculate this minimum. For details of this result and 

others the reader is referred to the original paper. The major finding is that 

for sufficiently small T, steady convection can occur for values of R,̂  less than 

that obtained from the linear stability boundary (3.14) (and thus much less than 

the value at which linear theory suggests non-oscillatory convection occurs). 

The specific results obtained by Huppert & Moore, primarily by numerical 

computation, were limited to 14 different values of a, T and R„. Guided by these 

calculations, M. R. E. Proctor and independently Huppert & Gough are currently 

attempting to obtain analytic expressions for various limiting cases, in 

particular, the astrophysically relevant situation T •+ 0. 

4. Layers and Interfaces 

As the experiment of Huppert and Manins, described in the previous section, 

progresses, the fingers and the interface between the two layers extend in length. 

Within the interface there is a strong background gradient of density, and the 

interface is hence an ideal site for internal waves, which are generated by dis­

turbances induced by the salt-finger motion. These internal waves cause the 

fingers to sway back and forth, like a banner fluttering in the breeze. If the 

fingers become too long, this motion causes them to loose their vertical coherence, 
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or break, much like a long strut subjected to an oscillatory transverse load. 

Guided by the Navier-Stokes equations of motion rather than the analogies used 

above, Stern (1969) argues that for very small T an established field of salt 

fingers is limited in length by the requirement that 

eV Hi) < c» (4,1) 

where F is the salt flux through the interface, to be discussed below, dT/dz is 

the mean temperature gradient and C is a constant of order unity. Thus for a 

fixed salt flux, the length of the salt fingers and the thickness of the inter­

face increase until equality in the constraint (4.1) is reached. 

At the two edges of the interface the salt fingers impart an unstable 

buoyancy flux on the adjacent layers, which causes the layers to convect. 

Developing an analogy with purely thermal convection at high Rayleigh number, 

Turner (1967) argues on the basis of dimensional analysis that the relationship 

between the saline Nusselt number and the Rayleigh number is of the form 

Nug = Fg D/(KgAS) = fF(aAT/gAS, a,T)Rg
/3 , (4.2a,b) 

where D cancels in (4.2b) and f is some function of its three argments. Also, 
r 

argues Turner, the resultant heat flux, F_, is related to F by 

aFT/6Fs = gF(aAT/6AS, a, T) . (4.3) 

Turner obtained experimentally the explicit form of f_, and g for heat and salt 

in water and found that for the range of aAT/gAS considered, 2 < aAT/gAS < 10, f 

is such that as aAT/gAS -»• 1 the salt flux is approximately 50 times as large as 

if the same salinity difference were maintained across a region bounded by two 

solid boundaries, and f_ decreases slowly with increasing aAT/gAS. The constancy 

of gp indicates that, independent of aAT/gAS, a constant fraction of the potential 

energy released by the salt field is supplied to the temperature field. Linden 

(1973) experimentally evaluated f and e using a different technique and deter­

mined the same f„ but a different, yet still constant, g_. Which result is in 

error is still not known. 

If a uniform layer of hot, salty water is placed below a uniform layer of 

relatively colder, fresher water, heat and salt are transferred upwards through 

the thin interface primarily by diffusion, with the resulting unstable buoyancy 

flux driving convection in the layers as before. For this case, known as the 

diffusive situation, the relationships equivalent to (4.2) and (4.3) are 

1/3 
NuT = FT D/(KTAT) = fD(gAS/aAT, a, T)R£/ J (4.4a,b) 

and 

gFs/oFT = g^gAS/oAT, a, T) (4.5) 

for some functions fn and g^. Using the results of another series of experiments 

by Turner (1965) with heat and salt in water , Huppert (1971) suggests that for 
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this particular case 
-2 1/3 

Nû , - 3.8 (BAS/oAT) Rf (4.6) 

f 1.85-0.85(BAS/oAT) 1 < BAS/oAT < 2 (4.7) 

BFs/aFT =J 

1.0.15 2 < BAS/oAT. (4.8) 

A deductive model of the diffusive interface has not as yet been obtained, though 

a number of ad hoc arguments, some of them described by Turner (1974), lead to 

formulae in some agreement with equation (4.8). A few experiments with two solutes, 

rather than heat and salt, have been performed. For both salt-fingering and dif­

fusive cases, all the experiments indicate a constant value of the flux ratios, 

(4.3) or (4.5), for a large range of BAS/aAT. The deduction explanation for this 

fact is awaited and is one of the major theoretical prizes still to be gained. To 

be more general, a major advance in the subject would be achieved on building a 

mathematical model which predicts the heat and salt fluxes for all values of 0 

and T. 

Notwithstanding our current lack of knowledge, the important conceptual 

statement that can already be made is that the above mechanisms can be extended to 

include a series of convecting layers, separated by fingering or diffusive inter­

faces, as the situation demands. This is the explanation of the profiles of Lake 

Vanda, those obtained under the drifting Arctic Island T3 displayed in figure 6, 

and of many other oceanographic examples. The main aim of this review is to 

support the suggestion that a process which occurs so readily on earth must also 

play a fundamental role in stellar convection. 

5. The Building of Layers 

As suggested in the previous section, a series of convecting layers separated 

by thin interfaces can be easily constructed in the laboratory by carefully placing 

one layer on top of another. They arise in natural situations by a large number of 

different mechanisms. A few situations have received a fair amount of quantitative 

analysis and will be described here. 

Consider a fluid with a uniform salinity gradient increasing with depth 

subjected to a constant heat flux, F , at its base. Initially a growing overstable 
a 

oscillation occurs. Shortly thereafter a convecting layer develops adjacent to the 

bottom because hot fluid rising from the base can penetrate only a finite height 

into the stable salinity gradient. As time proceeds the height of this layer, h, 

grows according to h _ iat)i^ (5#1) 

where B - - agFR/(pc) and N* = - g e | | . (5.2) 

The relationship (5.1) is a consequence of the conservation of heat and salt and 

the experimentally observed fact that the density (but not the temperature or 

salinity) is continuous across the top of the layer (Turner, 1968). 

This growth does not, however, continue indefinitely. There is a thermal 
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Temperature (degrees Celsius) 

Figure 6. The temperature profile under the Arctic Ice Island T-3 (taken from 
Neal et_ al, 1969) . 

boundary layer ahead of the advancing front and when a critical Rayleigh number, 

R , is reached the region above the first layer ceases to grow. This can be 

calculated to occur when . ,1 _ _3. ..1/4,..2 . . 
h = (jo RcB /K) /Ns . (5.4) 

The second layer then grows, the thermal boundary layer ahead of its advancing 

front becomes unstable, and so in time a series of layers is built up. Heat and 

salt are transferred across the interfaces, in the manner of the last section, and 

in the course of time some of the lower interfaces disappear because the density 

difference across them tends to zero. A combined theoretical and experimental 

investigation of the depths of all the layers and time scales for their formation 

is currently being undertaken by Huppert & Linden (197?). 

This heating a salinity gradient from below mechanism, but acting in reverse, 

that is, cooling a salinity gradient from above, produces the layers under T3 

shown in figure 6. 

The above mechanism involes an entirely one-dimensional model. Many natural 

phenomena can be expected to be two - or even three-dimensional. As yet such 

extensions are only in the early stages of investigation. 
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In a series of qualitative experiments, Turner & Chen (1974) show that even a 

relatively small disturbance applied to one side of a thermsolutal fluid, thereby 

introducing horizontal inhomogeneities, can have significant effects. For example, 

the raising of a small flap at the wall of a vessel containing a thermosolutal 

fluid induces, in the salt-finger situation, a rapidly propagating wave motion 

which is accompanied by the initiation of convection over large horizontal distances. 

In the diffusive situation, the disturbance propagates horizontally more slowly and 

can cause local overturning which leads to the initiation of salt fingers. 

Another example concerns the introduction of a small source of warm, salty 

water into a uniform layer of relatively colder, fresher water of exactly the same 

density. Fluid which commences to fall diffuses its heat to the surroundings, 

thereby becoming heavier. Neighbouring fluid, having been warmed, is relatively 

lighter and rises. Large vertical motions, both upwards and downwards, in the 

form of plumes result. As the motion proceeds, the density difference between 

each plume and the surroundings increases. Thus, starting only with fluid of 

uniform density, solely by diffusion both heavier and lighter fluid are formed. 

If the plumes impinge on horizontal boundaries, they spread out and build a series 

of layers and interfaces through the entire vertical extent of the fluid. 

A final example is afforded by introducing an insulated sloping boundary. In 

a stably stratified fluid, stratified with respect to only one component, such a 

sloping boundary induces a thin slow steady upwards motion adjacent to the boundary. 

The flow provides a convective density flux equal to the diffusive flux in the 

interior and allows the isopycnals, horizontal in the interior, to bend near the 

boundary and intersect it at right angles. In a fluid stratified with respect to 

two components, the curves of constant T and constant S must intersect the boundary 

at right angles and no steady boundary layer flow can accomplish this. Alternatively, 

it is not possible for a single boundary-layer to give rise to convective T and S 

fluxes which balance the unequal diffusive T and S fluxes in the interior. Instead, 

a series of layers and interfaces from throughout the fluid, as shown in figure 7 

to build that characteristic structure of a thermosolutal fluid. 

Figure 7. A series of layers and interfaces set up in a laboratory tank by 
introducing a solid sloping boundary (from Linden and Weber, 1977). 
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The size of layers and the time-scale of their initiation is dependent upon 

the angle of the sloping boundary, or more generally their existence is due to its 

presence. However, this specific example presents another illustration of the 

basic point: initially small horizontal inhomogeneities in a stably stratified 

fluid leads to large scale layering with vertical transports considerably in excess 

of those calculated on a molecular basis. 

6. The Destruction of Layers 

In the experiment of heating a salinity gradient from below, discussed in 

section 4, the tendency of the lower layers to merge as the density difference 

across them tends to zero was mentioned. Such merging is due to the continually 

imposed flux of heat from the bottom. Layers can merge, or be destroyed by more 

natural, internally imposed conditions, which will be described in this section. 

Consider a three-layer system consisting of two semi-infinite layers of 

uniform T and S between which there is a finite layer of intermediate properties. 

All layers are assumed to be convecting, with temperature and salinity fluxes 

across the interfaces in accord with (4.2) and (4.3) or (4.4) and (4.5). There 

is then a single-valued relationship between the temperature and salinity in the 

intermediate layer for which the flux through the lower interface equals that 

through the upper. The conditions under which such equilibrium situations are 

stable is partially answered by Huppert (1971). Assuming that merging takes place 

without any vertical migration of the interfaces, he shows that only if the 

conditions across each interface are in the 'constant regime', g_ or g^ equals 

constant, will the layer system persist. Otherwise one or other of the interfaces 

will disappear and two semi-infinite layers separated by one interface remain. 

The analysis can be extended to any number of intermediate layers to yield the 

same result. Thus the prediction is that no stable system of diffusive layers of 

hot salty water exist if BAS/ocAT < 2. A controlled laboratory experiment to test 

this prediction has yet to be performed, although Turner and Chen (1974) and 

Linden (1976) have observed merging which they believe to be due to the above 

mechanism. Turning to large scale measurements, we can at present report that no 

series of layers has been observed under T3, in the Red-Sea or elsewhere with 

3AS/ctAT < 2. 

Experiments by Linden (1976) indicate that another form of instability is 

possible, whereby merging occurs by the vertical movement of one interface to 

coalesce with its neighbour. A quantitative analysis of this situation has not yet 

been performed. It would clearly be interesting to know which instability is 

favoured under specified conditions because layer merging will need to be accounted 

for in any future quantitative model building. 

7. Summary and Conclusions 

This review has attempted to bring out the following salient points. Fluids 
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stratified with respect to two (or more) components can exhibit motions very 

different to singly-stratified fluids. Instabilities can arise even when the 

overall density is statically (very) stable by drawing on the potential energy 

stored in one particular component. The typically observed signature of a thermo-

solutal fluid is a series of convecting layers separated by thin interfaces through 

which properties are transported by either diffusion or the action of fingers. 

This transport is very much larger than one based on consideration of purely 

molecular diffusion across a quiescent region. 

Large stars have a heated helium-rich core surrounded by lighter hydrogen. 

The composition gradient in the core/envelope regions is thus of the diffusive 

type and it would be expected that convection of this form predominates. Some 

attempt has been made to incorporate this process in a semiconvection zone, 

although quantitative calculations would benefit from a precise description of 

physics in this zone. 

The salt-finger type of instability has been hypothesised to occur in the 

outer layers of differentially rotating stars (Goldreich and Schubert, 1967), 

where the two components with different diffusivities are heat and angular 

momentum. Turner (1974) appears to be of the opinion, however, that such an 

effect would be obliterated by baroclinic instabilities which occur on a much 

larger scale. This conclusion should be questioned in view of the large obser­

vational evidence for the existence of salt-fingers in the ocean, also subject to 

baroclinic instability. 

We conclude by suggesting that what is achieved so easily in the laboratory 

and the oceans might also be attained by the stars! 

This survey benefited from a careful reading of a first draft of the manu­

script by Dr N. 0. Weiss. 
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