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SOLVABLE SUBGROUPS AND THEIR LIE ALGEBRAS IN
CHARACTERISTIC »

DAVID J. WINTER

1. Introduction. Throughout this paper, G is a connected linear algebraic
group over an algebraically closed field whose characteristic is denoted p. For
any closed subgroup H of G, k denotes the Lie algebra of H and H° denotes the
connected component of the identity of H.

A Borel subalgebra of g is the Lie algebra b of some Borel subgroup B of G.
A maximal torus of g is the Lie algebra ¢ of some maximal torus 7" of G. In [4],
itis shown that the maximal tori of g are the maximal commutative subalgebras
t of g consisting of semisimple elements, and the question was raised in § 14.3
as to whether the set of Borel subalgebras of g is the set of maximal triangul-
able subalgebras of g.

In this paper, we give an example showing that this is not true and show for
P > 3 that the set of Borel subalgebras of g is, rather, the set of those maximal
solvable subalgebras of g which contain a maximal torus of g. The upshot of
this is that Borel subalgebras (as well as maximal tori) of g can, for p > 3, be
characterized within the language of restricted Lie algebras (see [6], [8]).
(It would be very interesting to know what happens for p = 2, 3. The situation
there appears to be quite complicated, especially in characteristic p = 2, and
requires methods different than those of this paper.)

We also examine the normalizer N (t) and centralizer C(¢) in G of a maximal
torus ¢ of g. The latter group C(¢), unexpectedly, is connected. (It is pointed
out in [1] that C(s) need not be connected for every torus s). The Weyl group
W(t) = N@)/C(t) of g is isomorphic to the Weyl group W(T') = N(T)/C(T)
of G (although both N(¢), C(¢) generally are larger than N(T"), C(T")). More-
over, W(t) acts transitively on the set of Borel subalgebras of g.

2. Borel subalgebras of g. We assume in this section that > 3 and begin
by stating without proof a simple proposition on root grcups which can easily
be verified by examining the root systems of the rank 1 and 2 groups 41,
Ay X A1, A, Bs, G, generated by the root groups U,.

2.1. ProrosITION. Let G be semisimple with maximal torus T, set of roots R,
root groups U, and root spaces g, = u, (a € R). Then
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{0} if and only if [U,, Uy] = {1}, and
# {1} of and only if a + b € R\J {0}, so that
{0} if and only if a + b € R\J {0}.

L. (g &l =
2. [U,, Uy)
3. (gar &) #

We now establish the restricted Lie algebra characterization of Borel sub-
algebras.

THEOREM. The Borel subalgebras of g are those maximal solvable subalgebras b
of g which contain a maximal torus t of g.

Proof. Let b be a maximal solvable subalgebra of g containing a maximal
torus £ of g. Letting R be the radical of Gand r: G— G = G/R the canonical
homorphism, the differential dr : g — g = g/r is surjective (see [4; p. 82]) and
preserves maximal tori (see [8; 2.16]). It follows that the image b = drb is a
maximal solvable subalgebra of g containing the maximal torus £ = dnt of g.
This shows that it suffices to prove the theorem for G semisimple, for then
would be the Lie algebra of a Borel subgroup B of G, whence b would be the
Lie algebra of the Borel subgroup B = #~!(B) of G. Consider the root space
decomposition g = ¢ + Z%R ge. For a € R, g, is of dimension 1. Since b D ¢,
it follows that b = ¢ 4 ZaeS gq for some subset Sof R.Since g, + [g—a, ga] + g
is semisimple for all ¢ (e.g. see [4; p. 12]) and since B is solvable, S
and =S = {—ala € S} are disjoint. Furthermore, S is closed in the sense that
for any a, b € Sfor whicha + 0 € R,a + bis also in S (since @ 4+ b 5 0 and
(8w 80) = Zats Chb by the above proposmon) Since S satisfies these two con-
ditions, S'is contained in the set of positive roots for some ordering ([3; p. 163]),
so that b is contained in and therefore equal to the corresponding Borel sub-
algebra. (We use here the maximal solvability of b in g).

We now construct a maximal triangulable subalgebra of g which is not a
Borel subalgebra of g. For this, it is convenient and informative to state with-
out proof the following proposition on which the example is based.

PRroOPOSITION. Let G be semisimple and express G as G = GGy . . . G, (almost
direct) where the G; are almost simple closed normal subgroups of G. Let x be a
nilpotent element of g, b a Borel subalgebra of g containing a maximal torus of g,
u the ideal of nilpotent elements of b. Then

1. x can be expressed uniquely as x = Y 1x; where x; is nilpotent and x; € g,
forl =1 = ny

2. b contains x if and only if b contains x; for 1 <1 = n;

3ou = 2TuM g (direct).

To construct the example, take G to be semisimple of type A,—1 X 4,1 and
of isogeny class such that G = G;G; (almost direct) where G, is a closed con-
nected normal subgroup of G of type 4,_; with g; isomorphic to the Lie algebra
h of linear transformations of trace 0 in a vector space V over F of dimension
p for 7 = 1, 2 and where g1 M g, is the center of g, for 7 = 1, 2. (See [4], 10.4.)
The Lie algebra % is unusual in that the center of 4 is spanned by the identity
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transformation ¢ and ¢ = [m, n] where m and # are transformations defined
in terms of a basis e, ..., by em =je; ;1 1 7= p—1), egm =0,
e =e;1 (2 =j = p), ein = 0. Thus, there exist elements m;, n; in g; such
that [m;, n;] = t; is nonzero and spans the center of g; for « = 1, 2. Since g
and g, have the same one-dimensional center, we can choose the m 4, 7, ¢, such
that [m1, n1] = t1 = to = [me, ns]. Let m = my + mq, n = n1 — ns. Note that
(g1, g2] = {0} since [G1, G.] = {1}. Since the m, n; are nilpotent, m and » are
therefore nilpotent. Moreover, [m, n] = [m;, ni] — [ma, na] = t; — ty = 0!
Thus, # = mF + nF is an abelian subalgebra of g consisting of nilponent ele-
ments. It is certainly triangulable, but it is not contained in a maximal solvable
subalgebra b of g containing a maximal torus of g. For if it were, the nilpotent
elements m = m; + my and n = n, — n, of b would have components m;,
ms, 1, —ns in b by the above proposition. But that would be impossible since
[b, b] consists of nilpotent elements (since b is triangulable) and therefore
cannot contain the nonzero semisimple element [m,, #1] = ;. Thus, no maxi-
mal triangulable or maximal solvable subalgebra of g containing u contains a
maximal torus of g. Furthermore, the subspace u + Fm, + Ft, is a solvable
subalgebra which is not triangulable since its derived algebra contains the
nonzero semisimple element [m1, m] = [m,, ma] = t.

3. The Weyl group of g. For this section, we drop the assumption p > 3.

Let ¢ be a maximal torus of g and 7" a maximal torus of G with Lie algebra ¢.
We cannot precisely compare the normalizers N(¢) = {x € Glx~'tx C ¢} and
N(T) = {x € Glx~'Tx C T} or the centralizers

C(t) = {x € Gla~x = tforall ¢ € ¢t}

and C(T) = {x € Glx~'tx = ¢ for all ¢t € T}, but we can closely relate the
Weyl group W(t) = N(t)/C(t) of g with the Weyl group W(T') = N(1")/C(T)
of G and establish that C(¢) is connected. We begin with the solvable case,
which is settled by the following proposition. (This proposition is also proved
in [2, Prop. 4.7]. Note that ¢ need not be maximal in the proposition.)

ProposiTION. Let G be solvable. Then N(t) and C(t) are commected and
N(@) = C@®).

Proof. Let x € N(¢) and note that x~'C(t)x = C(¢). It follows that x='Tx C
C(t)o, so that x~'Tx = y~'Ty for some y € C(¢), by the conjugacy of the
maximal tori x~17x and 7" of C(¢)o. But then xy=! € N(T") = C(I") C C(t),,
so that x must be in C(¢)o. This is true for all x € N(f). It follows
that N() = C(t) = C(¢)o, which was to be proved.

THEOREM. C(¢) 1s connected for any maximal torus t of g.

Proof. Let B be a Borel subgroup of G containing 7. Let x € C(¢). The
automorphism Ad x : y — x7yx of g keeps fixed each element of ¢ and there-
fore stabilizes each root space g, of ¢ in g.
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Since b is a sum of such root spaces, b is stable so that x is in the normalizer
N(@®) of b in G. But B = N(b) (see [4; 14.5] and [2; 2.5 and 2.6]), so that
x € B. Thus, we have C(t) C B, so that C(¢) is connected by the above prop-
osition for the solvable case.

THEOREM. The Weyl group W(t) = N(t)/C(t) acts simply transitively on the
set of Borel subalgebras of g containing t and W (1) is isomorphic to W (t) under
the canonical mapping xC(T) — xC(t).

Proof. The Borel subgroups B of G and Borel subalgebras b of garein1 — 1
correspondence relative to B + b and b +— N () (see [4, 14.5], [2, 2.5 and 2.6]).

We have seen in the proof of the above theorem that x~bx = b for x € C(z)
and b a Borel subalgebra of g containing . Furthermore, N(¢) acts transitively
on the set of Borel subalgebras b containing ¢ by the above correspondence,
since N () O N(T) and N(T) acts transitively on the Borel subgroups of G
containing 7" and therefore also on the Borel subalgebras of g containing ¢.
Suppose that x € N(¢) and x«~'bx = b. Then x € N(b) = B, a Borel subgroup
of G with Lie algebra b containing ¢. By the above proposition for the solvable
case, we therefore have x € C(¢). Thus, W () = N()/C(t) acts simply transi-
tively on the set of maximal solvable subalgebras b containing {. Since
W(T) = N(T)/C(T) also acts simply transitively on the same set, it is now a
simple exercise to show that the mapping xC(7T) — C(¢) is an isomorphism
from W(T) to W().
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