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THE WEYL CALCULUS AND CLIFFORD ANALYSIS

BRIAN JEFFERIES AND ALAN MCINTOSH

The connection between Clifford analysis and the Weyl functional calculus for an
n-tuple of bounded selfadjoint operators is noted. The operators do not necessarily
commute with each other.

1. INTRODUCTION.

The spectral theorem for a selfadjoint operator T acting on a Hilbert space H
facilitates the expression of a function f(T) of T in terms of an integral f(T) =
f<r(A) f&) dP(\) with respect to a spectral measure P. In general, no such representa-
tion is possible for an n-tuple A — (Ai,..., An) of non-commuting bounded selfadjoint
operators acting on a Hilbert space H. Nevertheless, the Weyl functional calculus
/ •->• fv/{A) for A is a means of constructing functions /w(-4) of the system A of
operators, for suitable smooth functions / defined on Rn. It was proposed by H. Weyl
for the pair (P, Q) of unbounded self adjoint operators, where P is the momentum op-
erator and Q is the position operator in quantum mechanics. For the case n — 2, the
function xix2 : (zi,x2) H+ XIX2, for all xi,x2 e R, belongs to the domain of the Weyl
functional calculus and (xix2)w {A) = (AiA2 + A2A1) /2. In general, polynomials on
R" are mapped by the Weyl functional calculus into the corresponding polynomials in
the n-tuple A of operators, but with products suitably symmetrised.

A similar phenomenon emerges in Clifford analysis. A monogenic function / de-
fined on Rn+1, and with values in a finite dimensional Clifford algebra, is a func-
tion lying in the kernel of the Dirac operator — a higher dimensional analogue of the
Cauchy-Riemann equations. Every analytic function in n real variables has a unique
monogenic extension to Rn+1. The monogenic extensions Zi and z2 of the functions
xi : (x\,. ..,xn) •-> x\ and x2 : (x\,.. .,xn) t-¥ x2, respectively, are easily written
down. It turns out that the monogenic extension of the real valued function X1X2 to
Rn+1 is (ziz2 -I- z2zi) /2 , and, in general, the monogenic extension of polynomials on
Rn are the corresponding polynomials in the n-tuple (zi , . . . ,zn) of monogenic func-
tions, but with products suitably symmetrised. The purpose of the present note is to
elaborate on this formal similarity between the Weyl and Clifford calculi.
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330 B. Jefferies and A. Mclntosh [2]

The present work may be formulated in terms of Hermitian operators acting on a
Banach space in place of selfadjoint operators on a Hilbert space, along the lines of [1],
or in terms of bounded operators on a Banach space satisfying an exponential growth
condition, as in [7, Condition 8.1]. However, the essential features are already present in
the selfadjoint case addressed here. The situation where no growth condition is assumed
is discussed in another article [5] that builds on work of James Picton-Warlow.

At one point in Section 5, some facts concerning the integration of vector valued
functions are needed. Suppose that (E, <S, /x) is a measure space and E is a sequentially
complete locally convex space. Let / : £ —> E be a function for which there exist E-

valued ^-integrable 5-simple functions sn,n = 1,2,... such that sn —> f p-amost
everywhere, and for every continuous seminorm p on E, / s p ( s n — sm)dfx —> 0 as
n, m —> oo. Then the integral JA f d/j, of / with respect to n, over a set A £ S, is
defined to be the limit lim f, sn dfj.. The limit is independent of the approximating
sequence sn,n = 1,2,. . . ; such a function / is said to be Bochner n-integrable. It
follows immediately that for a continuous linear map T : E —» F between sequentially
complete locally convex spaces E and F, if / is Bochner /x-integrable, then T o f

is Bochner /x-integrable and T(fAfd/j,) = fAT o f d/j. for all A € S. A bounded
continuous function with values in a Prechet space or LF-space is Bochner integrable
with respect to any finite regular Borel measure.

The basic notions of Clifford algebras are outlined in Section 2. Notation concern-
ing Banach modules and Banach module homomorphisms is introduced in Section 3.
General information concerning Clifford analysis is presented in Section 4. The con-
nection between the Weyl and the Clifford calculi appeals to Theorem 5.4 of Section 5,
which is actually proved not just for the Weyl functional calculus, but for any operator
valued distribution with compact support. In Section 6, we identify the complement of
the support of the Weyl functional calculus for an n-tuple A of selfadjoint operators
with a certain 'resolvent set' where the Cauchy kernel for A is monogenic. Similar ideas
have been advanced by Kisil [6], but Example 6.3 shows that the domain of monogenic-
ity of the Cauchy kernel for a pair T of Pauli matrices cannot be calculated in the
fashion of [6, Definition 3.1], so [6, formulae (9), (10)] as they stand are incorrect with
the spectrum cr(T) denned in [6, Definition 3.1].

2. CLIFFORD ALGEBRAS.

Let F be either the field K of real numbers or the field C of complex numbers.
The Clifford algebra F(n) over F is a 2"-dimensional algebra with unit defined as
follows. Given the standard basis vectors eo, e\,..., en of the vector space F " + 1 , the
basis vectors es of F(n) are indexed by all finite subsets 5 of {1 ,2 , . . . , n } . The basis
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vectors are determined by the following rules for multiplication on F(n) :

for 1 < j ' ^ n

for 1 ^ j < k ^ n
if 1 < h < h < • • • < is < n and S = { j x , . . . , j , } .

Here the identifications eo = e0 and ej = eyj for 1 ^ j ' ^ n have been made.
The product of two elements u = ^ZUS^SJ " S G F and v = Pluses, ^s € F is

s s
uu = ^Zusw/eeseR. According to the rules for multiplication, ese« is ±1 times a

S,R
basis vector of F(n). The scalar part of u = Yluses, " s G F is the term u©, also

s
denoted as UQ •

The CUfford algebras R(0),R(1) and M(2) are the real numbers, the complex num-
bers and the quaternions, respectively.

The conjugate es of a basis element es is defined so that ese§ — ^s^s = 1 • Denote
the complex conjugate of a number c € F by c. Then the operation of conjugation
u i-» u defined by u = Yl^s^s for every u — ^2uses,us € F is an involution of the

s s
Clifford algebra F(n). Then uv — vu for all elements u and v of F(n). An inner product
is defined on F(n) by the formula (u,v) — [uv)0 — ̂ ,usvs for every u = J2US^S and

s
v = ^2 vses belonging to F(n). The corresponding norm is written as | • |.

s
Suppose that m ^n are positive integers. The vector space Rm is identified with

m
a subspace of F(n) by virtue of the embedding (xi , . . . ,xm) H4 J^ Xjej . On writing

3 = 1

the coordinates of x G Rn+1 as x — (xo, x\,..., xn), the space Rn+1 is identified with
n

a subspace of F(n) with the embedding ( x o , X i , . . . , x n ) i-> X) xjej•
j=o

3. BANACH MODULES.

A Banach space X with norm ||-|| over F with an operation of multiplication by
elements of F(n) turning it into a left module over F(nj is called a (left) Banach module

over F(n) , if there exists C > 1 such that

for all u € F(n) and x € X. A right Banach module has a similar definition. The
expression Banach module means a left and right Banach module. The vector space
of all continuous right module homomorphisms from a Banach module X to a Banach
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module Y is denoted by £(„) (X, Y). Thus, a bounded linear map A : X —> Y belongs
to C(n){X,Y) if {Ax)u = A{xu) for all x G X and u G F( n ) and C(n)(X,Y) is a left
Banach module. Both C(n)(X, Y) and the space C(X, Y) of continuous linear operators
from X to Y are considered as Banach spaces over F with the uniform operator norm

INI-
The algebraic tensor product X(„) = X <g> F(n) of a Banach space X over F with

F(n) is a Banach module. Elements of X(n) may be viewed as finite sums u = ]T] xs<S>es
s

of tensor products of elements xs of X with basis vectors es of F(n). Multiplication
in X(n) by elements A of the Clifford algebra F(n) is defined by uX = £) xs ® (esA)

s
and \u — J2 xs ® (^es) • The tensor product notation xs <S> es is written simply as

s

xses- The norm on X(n) is taken to be ||u|| = (J^ ||xs||^-)

The analogous procedure applies to a locally convex space E to define the module
£•(„) with its induced locally convex topology. If E and F are two locally convex
spaces, then the spaces (C(E,F))M and £(„)(!?(„),.F(n)) are identified by defining

the operation of T = ^Tses o n u = ^uses as T(u) = ^2 ?5(us ' ) eses ' - In the
s s s,s'

case that E and F are equal to a Banach space X, the norm of T is given by ||T|| =

• G i v e n x e E a n d f 6 jP'» t h e element (T:c,£) € F( n ) is defined for
each T = Y.Tses belonging to £(n)(E(n),F(n)) by (Tz,Z) =

s s

4. CLIFFORD ANALYSIS.

What is usually called Clifford analysis is the study of functions of finitely many real
variables, which take values in a Clifford algebra, and which satisfy higher dimensional
analogues of the Cauchy-Riemann equations.

A function / : Kn+1 -¥ F(n) has a unique representation / = Yl fses in terms
s

of F-valued functions fs, S C {1 , . . . ,n} in the sense that f(x) = ^2fs(x)es for all
s

x G Rn + 1 . Then / is continuous, differentiable and so on, in the normed space F(n),
if and only if for all finite subsets 5 of {1 , . . . , n}, its scalar component functions fs
have the corresponding property. Let dj be the operator of differentiation of a scalar
function in the j ' t h coordinate in En+1—the coordinates of x G Rn+1 are written as
x = (xQ,x\,... ,xn). For a continuously differentiable function / : R"+1 -» F(n) with

/ n \
f = J2 fs^s i the function Df is defined by setting Df = £ I dofses + J2 djfsejes I

s s \ j=i )

and fD is specified by fD = J21 dofses + J2 djfsesej ) .
s \ j=i )
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Now suppose that / is an F(n)-valued, continuously differentiable function denned
in a neighbourhood of an open subset U of R n + 1 . Then / is said to be left monogenic

in U if Df(x) = 0 for all x € U and right monogenic in U if fD(x) — 0 for all x € U.

For each z G R n + 1 , the function Gz defined by

for each x ^ z is both left and right monogenic. Here the volume of the unit n-sphere
in Rn+1 has been denoted by an and we have used the identification of Rn+1 with a
subspace of R(n) mentioned in Section 2.

The function Gz, z 6 Rn+1 plays a special role in Clifford analysis. Suppose
that Q, C Rn+1 is a bounded open set with smooth boundary dfl and exterior unit
normal n(cj) defined for all w € 9fi. For any left monogenic function / defined in a
neighbourhood U of fi, the Cauchy integral formula

r
/
Ja

f f(x), if x e ft;
Gu(x)nH/(W)dM(W)={ .

aa [ 0, if i£(/\fi.

is valid. Here \i is the surface measure of dil. The result is proved in [3, Corollary
9.6]. If g is right monogenic in U then jgng(uj)n(u)f(u})dfj.(Lj) = 0 [3, Corollary 9.3].

The definition of monogenicity extends readily to other vector and operator valued
functions. We remark here that, as in the case of vector valued analytic functions, a
function is monogenic for the weak topology of a locally convex module £(„) if and only
if it is monogenic for the original topology. Moreover, for a Banach space E, if g :U —>
£(„) is right monogenic and / : [ / - > F(n) is left monogenic, then the function w t-»
g(u))n(u)f(tj), u) € d£l, is Bochner /x-integrable in £"(„) and Ja f i (?(w)n(w)/(u>)d/n(w) =
0. In particular, this is valid in the case that X is a Banach space and E = C{X) with
the uniform operator norm. It follows from the principle of uniform boundedness and
the Cauchy integral formula that an £(X)-valued function is norm monogenic when it
is monogenic for the weak or strong operator topologies.

5. T H E W E Y L FUNCTIONAL CALCULUS.

Let Ai,..., An be bounded selfadjoint operators acting on a Hilbert space H with
inner product ( • , ) . The Weyl functional calculus [9, 1] is a means of forming func-
tions fw(A\,..., An) of the n-tuple A = (Ai,...,An) of operators. The operators
A\,...,An do not necessarily commute with each other, so there is no fundamentally
unique way of forming such functions. However, the Weyl functional calculus is deter-
mined by a few natural conditions, see [1, Theorem 2.4].
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n
For every ( e l " , (A, £) = (£, A) denotes the selfadjoint operator £ A?fj • The

operator ex(A'® is therefore unitary for each f € R". The Fourier transform / of a
function / integrable over Rn is denned by /(£) = (27r)~n/2/Rn e'^1'^ f{x)dx for
all £ e Rn. The integral fw(A) = (2w)~n/2 fRn e'<A-«>/(£)d£ is an operator valued
Bochner integral for each function / belonging to the space <S(Rn) of rapidly decreasing
functions on Rn. Then the mapping / >-+ fw(A), for all / G 5(Rn) is the Weyl
functional calculus for the n-tuple A of selfadjoint operators.

There exists a unique operator valued distribution WA • f >-*• fvr{A), f € C°°(Rn)
denned over the test function space C°°(Rn) of all infinitely differentiate functions,
such that the restriction of WA to <S(R") is the Weyl calculus for A. The support
of this distribution is contained in the closed unit ball in Rn centred at zero and with

/ n o N 1/2
radius ( £ ||A,-||2) [9, Theorem 1].

The set R" is identified with the subspace {x € Rn+1 : x0 = 0} of Rn + 1. Suppose
that U is an open neighbourhood of the support of WA in R". There is no harm
if we also call the distribution WA • f •-> /w(-4) over C°°{U) the Weyl functional
calculus for A. The algebraic tensor product WA ® J(n) : C°°(V){tl) ->• C(H)(n) of
WA with the identity operator /(„) on F(n) is also denoted just by WA • Here V
is an open neighbourhood of suppW^i in Rn+1 and C°°(V)/nv is the locally convex
module obtained by tensoring the locally convex space C°° (V) with F(n), as mentioned
in Section 3. The mapping WA • C°°(V) -> C(H) is defined by applying WA to the
restriction of functions / € C°°(V) to the open subset V n R " of R". The map
WA • C°°(V)(n) ~* £(-^0(n) IS a m°dule homomorphism. The symbols WA{/) and
/w(-^) are used interchangeably.

For any subset G of R"+1, let M(G, F(n)) be the collection of all F(n)-valued
functions which are left monogenic in an open neighourhood of G in Rn + 1. If G is open
in R"+1, then M(G, F(n)) is given the compact-open topology (uniform convergence
on every compact subset of G). UK is a compact subset of Rn, then Af(/f, F(n)) is
the union of all spaces M(U, F(n)) , as U ranges over the open sets in Rn+1 containing
K. The space M(K, F(n)) is equipped with the inductive limit topology.

The support supp WA of the distribution WA , which is independent of the partic-
ular meaning attached to it above, is a compact subset of Rn. Let U be an open neigh-
bourhood of K := supp WA in Rn and suppose that the function / : U -> C is analytic.
Let / be a left monogenic extension of / to an open neighbourhood of U in Rn+1.
Then according to the definition of (f) (A), the equality (fj (A) = /w(-4) ® I(n)
is valid. The Weierstrass convergence theorem for monogenic functions [3, Theorem
9.11] ensures that the Weyl calculus WA • M(if,F(n)) —> C(H),. is a continuous right
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module homomorphism. Then M{K, F(n)) becomes a topological algebra under the
C-K product [3, p l l3 ] , and the closed subspace M{K,W) of M(A",F(n )) consisting of
left monogenic extensions of F-valued functions on if is a commutative topological al-
gebra. The topological algebra M(K,¥) is isomorphic, via monogenic extension, to the
topological algebra H(K, F) of F-valued functions analytic in an open neighbourhood
of K with pointwise multiplication. The Weyl calculus is also continuous on this space.

Let X be a Banach space. A sequence {fk}^L\ of X-valued functions fk : fi —>• X
is normally summable in X if there exists a summable sequence {Mk}%xL1 of nonneg-
ative real numbers Mk such that ||/fc(w)|| < Mfc, for all w G fi and all fc — 1 ,2 , . . . .
Thus, a normally summable sequence { / f c } ^ of X-valued functions on Q is absolutely
and uniformly summable on Q,.

Suppose that / is an analytic F-valued function defined on an open neighbourhood
of zero in TSLn and the Taylor series of / is given by

oo i n n

(!) /(*) = IZ fcT H -"" H ah-ikxh • • 'x'*'
fc=O ' i 1 = l lk = l

for all i e R " in a neighbourhood of zero. The coefficients ai1%..ik are assumed to be

symmetric in l\,...lk- Then the unique monogenic extension / of / is

(2) £(
V i Ifc)

f o r a l l x b e l o n g i n g t o s o m e n e i g h b o u r h o o d o f z e r o i n R n + 1 . H e r e , t h e s u m Y l - i s
Ci.—.'it)

over the set {1 < li ^ . . . ^ Ik ^ n } , and for (h,.. .,h) € { 1 , 2 , . . . , n}k, the function

Vix.../fc : R" + 1 —> F(n) is defined as follows. For each j = l , . . . , n , the monogenic

extension of the function x;- : i >-> i j , i € Rn is given by Zj : x i-» Xj-eo — XQSJ, X €

R" + 1 . Then V0(x) = e o ,x G R n + 1 and Vh...lk = l/k\ Y, Z J I • • - z j f c . w n e r e the sum
Ji.--.jfc

is over all distinguishable permutations of ( / i , . . . ,/jt), and products are in the sense
of pointwise multiplication in F(n) . If / is left monogenic in the open ball BR(0) of
radius R about zero in R n + 1 , then (2) converges normally in BR(0) [3, p.82].

Set Vi1...ik(A) = 1/fc! 5D -^i i ' " ' Ajk for the same ranges of indices. The prod-
31,—Jk

uct is understood as the composition of operators. Then, it follows easily from the
observation of Nelson [8] and Anderson [1, Theorem 2.4 (c)], that the equality

(3)
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holds if (1) converges in a suitable neighbourhood of supp

In the case in which the monogenic expansion of a function about a point does

not converge over all of supp WA , the Cauchy integral formula is useful. Of course,

this is the central idea of the Dunford-Riesz functional calculus for a single operator.

Moreover, when A is an n-tuple of operators acting on a Banach space and the Weyl

functional calculus for A is not defined — there is no exponential bound — the Cauchy

integral formula can be used to define functions of the n-tuple A, see [5].

For any z 6 R n + 1 not belonging to supp WA , there exists an open neighbourhood

Uz of suppWU in R n + 1 , not containing z, such that the F(n)-valued function

x M. Gz{x) = ~ * * for all x € Uz,

belongs to C°°(Uz)^ny Then WA{GZ) - (G2)W(A) may be viewed as an element of

£(#)(„)•

EXAMPLE 5.1. Let n = 3 and consider the simplest non-commuting example of the

Pauli matrices,

viewed as linear transformations acting on H = C2. Set J = (Ji, J2, J3) • A calculation

[1, Theorem 4.1] shows that for all / € C°°(R3), the matrix Wj(f) is given by

n-Vf)dfH+ f

Here St = {x e K3 : |x| = t} is the sphere of radius t > 0 centred at zero in R3, ^ is

the unit surface measure on S\ and n(x) is the outward unit normal at x € S\. Thus,

supp Wj = Si.

For all u) € M4 such that w ^ 5 i d 3 , Wj{Gu) G £(<C2)(3) is given by

WJ(GU) = 1 f (Gv + n- VGJ dm+ f J
JSx JSi

Let ^1,^2 be the standard basis vectors of C 2 . For each xo € R, the function (x, t) i->

Wtj(G(x+xOeo))
vj is t n e solution of the Weyl equation

dtut + J-Vut = 0, t>0,

with initial datum uo(x) = —Vj <g> Go{x +xoeo) = o^xVj ® (xo^o — x)/ \x + xoeo| for

all x e R3, x + xoeo ^ 0. The function u> i-> Wtj{Gu)vj is left and right monogenic

on the set R4 \ St.
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The following statements are formulated in a context more general than that of
the Weyl functional calculus.

Suppose that H is a Hilbert space over the field F and T : C°°(Rn) -»• C(H) is

a distribution with compact support K. We use the same symbol T to denote the

map which sends the element / = ^2fses of C°°(K)M to the element JlT(fs)es
s v ' s

of C(H),}, rather than the more descriptive notation T <g> /(„). In particular, T(f) G
C(H){n) is defined for all / € M(K,¥{n)).

PROPOSITION 5 . 2 . Let U bean open subset of E n + 1 containing K = suppT.
Suppose that z i-> Fz is a continuous map from U\K into C°°(K),n->. If for each open
set V with V C U \ K, there exists a neighbourhood Nv of K, such that for each
x e Nv, the F(n)-valued function z t-¥ Fz(x) is left monogenic in V, then z t-> T(FZ)
is left monogenic in U\K.

PROOF: By Cauchy's theorem for monogenic functions [3, Theorem 9.6], for all
intervals / contained in U\K, jain{w)Fu(x)dn(u)) = 0 for each x belonging to
some neighbourhood of K. The function z >-> Fz, z S U \ K is continuous, and
so Bochner integrable in C°°(K),n^ on all boundaries dl of intervals I contained in
U\K. Moreover, the function Jai n(u))Fu d[j.(u) belongs to C°°(K),n^ and vanishes
in a neighbourhood of the support K of T.

The distribution T : C°°(K),n-, -> C(H).^ is a continuous linear map, so as
observed in the introduction, the equalities

/ n{w)T (Fu) dn{u) = T ( [ n{u))Fu d/j,{w)) = 0
Jai \Jei )

hold. By Morera's theorem for monogenic functions [3, Theorem 10.4], z •-»• T(FZ) is
left monogenic in U \ K. D

The same result holds for right monogenic functions.

COROLLARY 5 . 3 . The C{H)(n)-valued function z >-> WA(GZ) is left and right
monogenic in R"+1 \ supp V\>A •

THEOREM 5 . 4 . Let T be an C(H)-valued distribution with compact support.
Let fi be a bounded open neighbourhood of supp T in Rn+1 with smooth boundary
dQ. and exterior unit normal n{w) defined for all u) € dQ,. Let fi be the surface measure
ofQ.

Suppose that f is left monogenic and g is right monogenic in a neighbourhood of
the closure U - f2 U dQ, ofQ. Then

T(f)= [
Jan

T(g)= f g(Lj)n(u)T(Gu)dti(u).
Jan
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PROOF: We consider only the case where / is left monogenic. The case where

g is right monogenic is similar. The space C°°(fi)(n) of smooth F(n)-valued func-

tions defined on fi is a separable Prechet space with the topology of uniform con-

vergence of functions, and their derivatives, on compact subsets of fi. The continu-

ous function u) •-> Gun{<jj)f{oj), w € dQ, takes its values in C°°(Q),. and satisfies

fdap(Gu/n(uj)) | / (w) | dn{<jj) < oo for each continuous seminorm p on C°°(Sl),n-., that

is, it is Bochner integrable in C°°(£l),ny

By the Cauchy integral theorem mentioned in Section 4, the equality

an

holds for all x belonging to the open set fi. Combining this equation with the observa-
tion made in the Introduction, and the fact that the distribution T defines a continuous
linear map (denoted by the same symbol) from C°°(Q),n\ into the space C{H),i with
the uniform operator norm, it follows that the function w t-t T{Gu)n(uj)f{uj), cu G dfl
is Bochner integrable in the space C(H),n^, with the uniform norm, and the equality

)(i/i(«)) = / T(Gu)n(w)f(u)dii(w)
) Jan

[

obtains. The stated equality T(f) - fanT(Gu)n(uj)f(u)dii(u)) therefore holds. D

COROLLARY 5 . 5 . Let Q be a bounded open neighbourhood of suppW^ in
Kn+1 with smooth boundary dCl and exterior unit normal n(u) defined for all w G 9fi.
Let p be the surface measure of Cl.

Suppose that f is left monogenic and g is right monogenic in a neighbourhood of
the closure U = nudClofQ. Then

fw(A)= f WA{Gu)n{v)f(ut)dn(u),
Jan

9w(A)= f g(u)n(u)WA{Gu)diM{u).
Jan

We mention here that the extension of these results to i/-valued functions is
n

straightforward. First, if / = X̂  fjhj for monogenic functions fj and vectors hj 6 H,
i=i

then T(f) = ^2T(fj)hj and the above equality holds. In the limit, both sides of the
i

equation converge because Coo(suppT) ®H is dense in C°°(suppT;if).
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6. THE MONOGENIC SPECTRUM

Let A be an n-tuple of bounded selfadjoint operators acting on a Hilbert space
H. For each u € R"+1 such that w ̂  0, let

(4) Gu{x) = jt( E Wh...h(U)Vh..Jk(x))

be the monogenic power series expansion of Gu in the region |a;| < |w| [3, 11.4 pp77-

81]. Here Wh,..ik{w) is given for each w e R n + 1 , w # 0 by ( - 1 ) * ^ • • -dUl Gu(0)

and Vjj...^ is denned as in Section 5.

It follows from formula (3) that

(5) (G u ) w (A) = (

for all w £ Mn + 1 such that |w| > (l + >^) | | $^ J4JCJ| | . Formula (5) is adopted as a

definition of the Cauchy kernel in [6, Definition 3.11]. The sum converges in £(H),n<.

because of the following result.

LEMMA 6 . 1 . The sum

E E l^ii-i»l \\vh-'M)\\
k=0(lu...,lk)

• I n | |

converges uniformly for \u\ ^ R, w e E n + 1 , for each i? > (l 4- \/2) F 5Z >ljej •
II i = 1 II

PROOF: The norm ||V|1.../Jt(-<4)|| of Vi1..,ik(A) is bounded by

^ E Piiii-IKII.
' j\,—,ik

where the sum is over all distinguishable permutations of {h,- • • ,lk)• Suppose that
for each j = 1, . . . ,n, the index j appears exactly kj times in the fc-tuple (l\,... ,1^).

Then k = k\ + • • • + kn and there are fc!/(fci! •••&„!) distinguishable permutations
of (Zi I*)- Thus, ||V(l...l(t(,4)|| < (l/(A;i!---fcn!))| |A1|| fc l---| |An|| fc". It suffices to

II " II
show that for each R > (l + \/2) X) -^jej > ^e s u m

\\j=l II
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converges uniformly for all |w| ^ R,ui 6 R"+1. However, this follows from the normal
convergence of the multiple power series

1
i n - l

for \x\ < (y/2-l)\y\ [3, p.83] and the equality Gu{x) = (l/an)Dx(l/ \u - x\n~x),
valid for all u ^ x. Q

We know
II n

(l + y/2) Yl

We know from Corollary 5.3 that the function denned by formula (5) for all \u\ >

is actually the restriction of an £(.ff)fn}-valued function monogenic

in R n + 1 \ suppW>i. The question remains as to whether there is a larger open set on
which this function has a monogenic extension.

The spectrum of a single operator T is the set of 'singularities' of the resolvent
function A •-» (XI — T ) " 1 . Similarly, the monogenic spectrum f(A) of the n-tuple A

of bounded selfadjoint operators is the complement of the largest open set U C Kn+1

in which the function ui (-»• (GUI)W(A) is the restriction of a monogenic function with
domain U.

THEOREM 6 . 2 . Let A be an n-tuple of bounded selfadjoint operators acting on

a Hilbert space H. Then j(A) = suppWU-

PROOF: We have established in Corollary 5.3 that i(A) C suppWU. Let x S
j(A)c, let U C -Y(A)C be an open neighbourhood of x in R" and suppose that <j> is a
smooth function with compact support in U.

Let g,h € H. A comparison with [3, Definition 27.6] shows that the F(n)-valued
monogenic function w i-> ((Gu)w(A)g,h), w € Kn+1 \suppWU, is actually the mono-
genic representation of the distribution (WA9, h) : / i-» ( W A ( / ) S , A ) , for all smooth /
defined in an open neighbourhood of supp WA- Then (WA9,h)(Gu) — {(Gu)w(A)g, h)

and by [3, Theorem 27.7],

(WAg, h){4>) = lim / [((Gv+yoeo)w(A)g, h) - ((Gy-yoeo)w(A)g, h)]4>(y)dy.
v > o + Ju

Because LJ t-> (GU))W(A) is monogenic (hence continuous) for all w in U, the limit is
zero, that is, (WAg, h)(<j>) = 0 for all g, h € H and all smooth (j> supported by U.

Hence x £ supp WA, as was to be proved. D

REMARK. The significance of the Cauchy kernel w i-» (Gu>)w(A) is that it is the mono-
genic representation or 'Cauchy transform' of the distribution WA off supp WU — the
distribution WA represents the 'boundary values' on Rn of the monogenic function
ui-> (GU)W(A).
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EXAMPLE 6.3. Let A = (Jz,Ji). It follows by applying [1, Theorem 2.9 (a)] to Ex-
ample 5.1 that the support of WA is the closed unit disk D c R 2 centred at zero, so
y(A) = D . An explicit calculation is given in [4, Example 2]. The Clifford spectrum

a(A) of [6, Definition 3.1] is a {A) = {(0,0)}.
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