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Abstract

Simulations of future climate contain variability arising from a number of sources, including internal stochasticity and
external forcings. However, to the best of our abilities climate models and the true observed climate depend on the same
underlying physical processes. In this paper, we simultaneously study the outputs of multiple climate simulation models
and observed data, andwe seek to leverage theirmean structure aswell as interdependencies thatmay reflect the climate’s
response to shared forcings. Bayesian modeling provides a fruitful ground for the nuanced combination of multiple
climate simulations. We introduce one such approach whereby a Gaussian process is used to represent a mean function
common to all simulated and observed climates.Dependent randomeffects encode possible information containedwithin
and between the plurality of climate model outputs and observed climate data. We propose an empirical Bayes approach
to analyze suchmodels in a computationally efficientway. Thismethodology is amenable to theCMIP6model ensemble,
andwedemonstrate its efficacy at forecasting global average near-surface air temperature. Results suggest that thismodel
and the extensions it engenders may provide value to climate prediction and uncertainty quantification.

Impact Statement

Bayesian modeling provides a fruitful ground for the nuanced combination of multiple climate model outputs
when predicting the Earth’s climate characteristics for the coming years.We outline one suchmodel and describe
an empirical Bayes estimation approach that is computationally efficient. The proposed methodology, when
applied to CMIP6 global temperature datasets, demonstrates that using empirical Bayesian techniques is better
than using the simple “model democracy” approach of assigning equal weight to each climate model. We also
obtain uncertainty bounds for the global temperature prediction problem.

1. Introduction

This paper is on predictive climate modeling using outputs of multiple models. The topic of how to assign
weights to different climatemodels has been debated at length in the atmospheric science community. One
approach is to assign equal weight to each model (Knutti, 2010). A more tailored approach is taken in
Braverman et al. (2017) and Chatterjee (2019), where models are assigned scores based on their

©TheAuthor(s), 2022. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.

This research article was awarded Open Data and Open Materials badges for transparent practices. See the Data Availability Statement for
details.

Environmental Data Science (2022), 1: e23, 1–9
doi:10.1017/eds.2022.24

https://doi.org/10.1017/eds.2022.24 Published online by Cambridge University Press

https://orcid.org/0000-0002-0012-7664
mailto:thom7058@umn.edu
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/eds.2022.24
https://doi.org/10.1017/eds.2022.24


performance in capturing probabilistic properties of observed climate data. Bayesian approaches with
uncertainty quantification may be found in Tebaldi et al. (2005) and Smith et al. (2009). Other approaches
for using information from multiple climate models may be found in Flato et al. (2014), Craigmile et al.
(2017), Knutti et al. (2017), Sanderson et al. (2017), and Abramowitz et al. (2019). In essence, most
techniques directly or implicitly balance the performance of any candidate model output on how closely it
emulates current and historical data, and on how well it imitates the outputs of other climate models.

A fundamental scientific reason for studyingmultimodel ensembles is that the same physical processes
and forces are used for all reasonable climate models, and these processes also govern the observed
climate data (Masson and Knutti, 2011). In this paper, we leverage this property of a shared physical basis
for all climate model outputs and observed data concerning global temperature data. First, we adopt a
statistical framework that assumes that the climate models’ output and real data all share a common trend
function over time. Second, we assume that the variousmodel outputs and observed data are dependent on
each other. This dependency is captured by framing the L climate model outputs and the observed data as
an Lþ1-dimensional random vector at any point in time. This allows the entire dataset in Lþ1-
dimensions over time to be viewed as a vector Gaussian process, which we discuss in some detail in
Section 2.2. However, this leads to extremely challenging computations as well as a lack of transparency
in the intermediate steps, hence we use an empirical Bayesian (EB) approach in this paper.

We analyze the climate model outputs associated with the Coupled Model Intercomparison Project,
now in its sixth phase (CMIP6), which directs research in fundamental areas of climate science (Eyring
et al., 2016). It organizes the federated efforts of many investigators whose model simulations examine
natural climate variability and sensitivity. CMIP6 simulations occur under a wide range of scenarios
characterized by a shared socioeconomic pathway (SSP) and a level of increased radiative forcing.
The SSPs describe a spectrum of possible futures in terms of human energy use, population, and sentiment
toward climate stewardship (Riahi et al., 2017). They then inform the quantification of land use, energy
consumption, and other factors used by climate modelers. Radiative forcing concerns the increase in
energy transferred through Earth’s atmosphere, relative preindustrial levels (Intergovernmental Panel On
Climate Change, 2007).We analyzemodel output under SSP-5 with a radiative forcing value of 8.5 watts/
m2, themost aggressive increase. The SSP-5 narrative describes an increase in economic capital driven by
fossil fuel extraction and an overall technology-driven strategy to climate change mitigation.

The focus of our analysis is the output from a selection of 17 CMIP6 simulations (Bentsen et al., 2019;
Dix et al., 2019; Good et al., 2019; Lijuan, 2019; Rong, 2019; Schupfner et al., 2019; Seland et al., 2019;
Semmler et al., 2019; Shiogama et al., 2019; Swart et al., 2019a,b; Tachiiri et al., 2019; Wieners et al.,
2019; Xin et al., 2019; Yukimoto et al., 2019; Ziehn et al., 2019; NASA Goddard Institute for Space
Studies (NASA/GISS), 2020). All simulations were conducted under the SSP-5 8.5 scenario and
produced monthly mean global near-surface air temperature values spanning 1850 January to
2100 December. We remove seasonality by subtracting the mean global monthly values from 1961 to
1990 (Jones et al., 1999). Constructing anomaly data and deseasonalizing it with a baseline of the averages
over a 30-year time window is standard in climate data science. A 30-year period is often considered long
enough for averaging out high-frequency weather-related variations, and the data between 1960 and 1990
is considered reliable, having adequate global coverage and modern enough for use as a baseline (Jones
et al., 1999; Shaowu et al., 2004; Valev, 2006).With these, we forecast the observed monthly mean global
near-surface air temperature, which is available from 1850 January to 2020 December (Morice et al.,
2021). In all cases, we employed a simple (unweighted) mean and did not perform any regridding of the
data beforehand.

2. Methods

2.1. Hierarchical Bayesian model

The 17 CMIP6 simulations produce monthly global near-surface air temperatures from 1850 to 2100. Let
Yℓ,t be the deseasonalized, mean-centered time series from ℓth CMIP6 climate simulation for ℓ ¼
1,…,L ¼ 17 and month t ¼ 1,…,T ¼ 3,012, where t ¼ 1 corresponds to 1850 January. The observed
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monthly values through 2020 are denoted by Y0,t. The vector Y t will represent all values at month t, and
YCMIP,t will represent the L climate simulations, that is,

Y t ¼

Y0,t

Y1,t

⋮
YL,t

2
6664

3
7775; YCMIP,t ¼

Y1,t

⋮
YL,t

2
64

3
75: (1)

There are many ways to utilize these values when making predictions for Y0,t. A simple method is to
estimate a common mean function μ tð Þ shared by all the climate simulations and observed data. Here, our
goal is to also leverage the information contained within the plurality of these simulations beyond their
mean. One such method is to assume

Y t∣U t ¼ μ tð Þ1Lþ1þU t, where U t �i:i:d:NLþ1 0, Σð Þ, (2)

where 1Lþ1 is an Lþ1-dimensional vector of 1’s, and U t are independent random effects. These random
elements are independent over time but dependent between the Lþ1 time series. Our assumption here is
that these are normally distributed, but this can be relaxed.

One may wonder if assuming the U t are independent over time, or identically distributed, is adequate
for the available climate data. However, our extensive preliminary studies strongly indicate that there is no
temporal dependency pattern in the U t: we have experimented using autoregressive integrated moving
average (ARIMA) models, several kinds of Gaussian process-based models, conditionally heteroscedas-
tic models, and change-point detection procedures. All these preliminary studies indicate that (2) is the
best option for modelingU t. However, note that our main modeling principle and ideas do not depend on
the particular assumptions surrounding (2). We can easily replace the Gaussian distributional assumption
or the independence assumption with other suitable conditions; however, in such cases, even the EB
computations would be considerably lengthier and numerical integration-driven.

We represent the commonmonthlymean μ tð Þwith aGaussian process defined by the covariance kernel
kα �, �ð Þ parameterized by α. The choice of kernel defines the class of functions over which we place our
Gaussian process prior; here we have opted to use the squared exponential kernel. Since we have
deseasoned our data, we may forgo explicitly encoding seasonality in the kernel (as in, e.g., Williams
and Rasmussen, 2006, section 5.4). We also wanted to avoid placing any strict shape restrictions, for
example, linear or polynomial. Finally, the Matérn 5=2 kernel is a common alternative to the squared
exponential, but our experimentation did not find a meaningful difference between the two. Please see
Section 3 of the Supplementary Material for more details. The squared exponential kernel is parameter-
ized by α ¼ σ2, γð Þ, the variance and lengthscale parameters. That is, kα t1, t2ð Þ ¼ σ2e�γ t1�t2ð Þ2 . This and
equation (2) define the hierarchical model given below:

Y t ∣ μ tð Þ, Σ � NLþ1 μ tð Þ1Lþ1, Σð Þ,
μ tð Þ � GP 0, kαð Þ: (3)

2.2. Estimation: Full Bayesian approach

Due to the nature of Gaussian processes, μ tð Þ evaluated at points t ¼ 1,…,T will also follow a
multivariate normal distribution with mean zero and a covariance matrix K given by K½ �ij ¼ kα ti, tj

� �
.

Thus, equation (3) may alternatively be expressed as a vector Gaussian process, written here as the matrix
normal distribution this induces over time t ¼ 1,…,T . Let Y� be the Lþ1ð Þ�T matrix representing all

observed and simulated time series. Let 0 Lþ1ð Þ�T be a Lþ1ð Þ�T matrix of zeros. Then,

Y� ∣ Σ,K �MN Lþ1ð Þ,T 0 Lþ1ð Þ�T , Σ, K
� �

, equivalently

vec Y�

� �
∣ Σ,K �N Lþ1ð Þ�T 0 Lþ1ð Þ�T , Σ⊗ K

� � , (4)

where ⊗ represents the Kronecker product.
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With equation (4), standard properties of the multivariate normal distribution provide pointwise
predictions and uncertainty quantification via its conditional mean and conditional variance for any

subset of vec Y�

� �
. In particular, let ta corresponds to 2020 December and tb be 2100 December. The

distribution of Y0,ta:tb conditional on the observed time series Y0,0:ta and CMIP6 simulations Yℓ,0:tb ℓ ¼
1,…,L is also multivariate normal.

Unfortunately, the matrix Σ⊗ K is quite large, with dimension Lþ1ð Þ �T by Lþ1ð Þ �T. Inverting this
is cubic in complexity and infeasible for large L or T. Also, the manipulation of this size of matrix also
incurs numerical overflow issues for sufficiently large dimension. For this final reason in particular we
find it necessary to consider alternative estimation procedures.

2.3. Estimation: EB approach

While the vector Gaussian process model would lend itself to full Bayesian modeling, we propose an EB
approach in order to reduce the computational overhead. Here, we describe the method by which μ tð Þ and
Σ are thus estimated, and how they afford prediction and uncertainty quantification. We estimate the
common mean μ tð Þ as a Gaussian process on the time pointwise average of the model outputs Yt. That is,

define Yt ¼ 1= Lþ1ð ÞPL
ℓ ¼ 0Yℓ,t. Then, the parameters α ¼ σ2, γð Þ are estimated by maximizing the

marginal likelihood of Yt under the Gaussian process model. Denote the estimated values of the mean
function at time t as μ̂ tð Þ.

Next, take Ûℓ,t ¼ Yℓ,t� μ̂ tð Þ. Then, let Û t ¼ Û0,t Û1,t…ÛL,t
� �Τ

. Use Û1,…,ÛT to get Σ̂, the Lþ1ð Þ�
Lþ1ð Þ variance–covariancematrix. This encodes the possible correlations between time series outside of
the common mean, most importantly between the observed time series and the CMIP6 simulations’
outputs. Let us write

Σ̂ ¼ σ̂20 Σ̂
T
0

Σ̂0 Σ̂CMIP

 !
, (5)

where σ̂20 is the variance of the observed data’s random effects, and Σ̂CMIP is the L�L covariance between
random effects associated with the CMIP6 outputs.

One of our goals is to predict Y0,t for the months t spanning 2021 to 2100 given the model outputs and
historic observations. The distribution of these values follows from equation (3) and standard properties of
the normal distribution. Given μ̂ tð Þ and simulated values YCMIP,t

Y0,t ∣ μ̂ tð Þ,YCMIP,t �N m∗, γ∗ð Þ, (6)

m∗ ¼ μ̂ tð ÞþΣT
0Σ

�1
CMIP YCMIP,t� μ̂ tð Þ1Lð Þ, (7)

γ∗ ¼ σ20�ΣT
0Σ

�1
CMIPΣ0: (8)

These conditional mean and variance values provide natural point estimates and uncertainty quantifica-
tion. Note that using μ̂ tð Þ alone amounts to making predictions with the unconditional mean. In the next
section, we will see that the conditional mean better reflects the month-to-month variation of these time
series, as well as differences between them and the common mean.

3. CMIP6 Results

3.1. Leave-one-out validation

A leave-one-out (LOO) style of evaluation allows us to investigate the validity of this approach. Setting
aside the observed time series Y0,t, the remaining CMIP6 simulations all span 1850 January to
2100 December. One by one, each of the available time series is singled out and treated like the
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“observed” values: it is truncated to 2020November, andwe perform themodel estimation approach from
Section 2.3. This produces predictions through 2100, which we compare to the full-time series’s actual
values.

As a typical example, Figure 1 depicts the results when the ACCESS-CM2CMIP6 simulation is being
treated like the observed time series. Our choice of highlighting this particular example is arbitrary; please
see the Supplementary Material for all such cases. Predictions begin in 2020 December and continue to
2100 December. They match the actual simulated values both in broad trend across the whole of their

Figure 1. Amongst others, we used the ACCESS-CM2 CMIP6 time series to evaluate our model’s
predictive accuracy. The top left figure shows the whole of the training and test intervals, 1850 January–
2020November and 2020December–2100December, respectively. Just 5 years are shown in the top right
figure, starting in 2021 January, to highlight the prediction’s month-to-month accuracy. Shading (blue)
indicates two standard deviations from the conditional mean, as found in equations (7) and (8). On the top
and bottom left we see the conditional mean also improves predictions by inducing a trend that better
matches that of the test interval compared to μ̂ tð Þ. The correlation terms “pull” the predicted values away
from μ̂ tð Þ in amanner that reflects how the held-out time series’ historic values differed from the others. In
the case of ACCESS-CM2, this manifests in the predicted (green) trending above μ̂ tð Þ (red), which better
matches the true future values.
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domain, and in local month-to-month fluctuations. Note also that while the common mean function μ̂ tð Þ
trends below the simulated values as time continues, the conditional mean (equation (7)) ameliorates this
trend.

Table 1 contains a summary of the LOO results. It includes the mean squared error (MSE) between the
actual output of the indicated simulation and the predictions of our EBmodel. We compare our method to
the predictions found using just the common mean function μ̂ tð Þ and using the pointwise average Yt. The
former amounts to only fitting the Gaussian process, omitting the random effects U tð Þ. The pointwise
averagemerely takes themeans of all training forecasts. The empirical Bayesmodel has a lowerMSE than
the common mean in every case.

3.2. Observed time series

Making predictions for the observed climate follows the procedure in Section 2.3. Figure 2 depicts the
predicted values for the observed time series Y0,t from 2020 December–2100 December. The upward
trend is driven by the common mean μ̂ tð Þ estimated on the CMIP6 time series. The random effects induce
the month-to-month variations, shown in Section 3.1 to better reflect CMIP6 time series.

Note that the observed time series has less variation than the CMIP6 simulations considered here. Over
the shared period of 1850 January to 2020 November, the observed time series has a variance of 0.15
compared to 0.55 for the CMIP6 simulations on average. Comparing Figure 2 to the ACCESS-CM2 data
in Figure 1 is representative of this. This is then reflected in the covariance matrix equation (5); its

Table 1. Each CMIP6 simulation was treated like the observed time series, truncated to 2020 November, and predicted by various
methods.

LOO Sim MSEEB MSEμ̂ MSEYt

ACCESS-CM2 0.44 1.01 0.38

ACCESS-ESM1-5 0.16 0.41 0.09

BCC-CSM2-MR 0.43 0.64 0.42

CanESM5-CanOE 3.57 4.09 3.72

CanESM5 3.40 3.97 3.58

CESM2-WACCM 0.59 1.03 0.58

CESM2 0.49 0.89 0.47

GISS-E2-1-G 0.57 0.73 0.64

MCM-UA-1-0 0.39 0.72 0.64

MIROC-ES2L 0.64 1.06 0.66

MIROC6 0.84 1.48 0.97

MPI-ESM1-2-HR 0.83 1.08 0.98

MPI-ESM1-2-LR 0.83 0.95 0.87

MRI-ESM2-0 0.34 0.69 0.26

NorESM2-LM 1.30 1.68 1.29

NorESM2-MM 1.12 1.45 1.20

UKESM1-0-LL 3.22 3.79 3.24

Note. The predictions produced by our empirical Bayes model are similar in accuracy to using Yt itself and also provide an estimate of variability. These
predictions were superior to the common mean component μ̂ tð Þ on every CMIP6 test simulation.
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attenuating presence in equation (7) explains how the predictions in Figure 2 show less variation than
those in Figure 1.

4. Conclusion

This preliminary investigation affirms the use of our hierarchical Bayesian model in combining multi-
model climate data. Our model reflects both the small and large-scale deviational properties of a given
time series vis–a-vis a commonmean. An EB treatment is an attractive approach to estimating this model;
additional climate simulations can be considered with little added computational cost. This is especially
important in applications where simulations produce high-dimensional output as is common in climate
science.

Our model assumes that the properties of the common trend μ �ð Þ can be adequately captured using a
Gaussian process. This can be easily extended to a t-process or an elliptically contoured processwith some
additional computations. Also, our model extends to the case where there is a spatial component in the
data or where we consider regional climate models: the principles outlined above extend simply to such
cases.
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