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HYPOELLIPTICITY FOR A CLASS OF THE SECOND
ORDER PARTIAL DIFFERENTIAL EQUATIONS

TADATO MATSUZAWA

§1. Introduction.

In this paper, we shall investigate the hypoellipticity for a class of
degenerate equations of the second order with complex coefficients as
a direct extension of the results obtained in [8]. As is well known,
the satisfactory general results about hypoellipticity of real operators of
the second order have been obtained in [3] and [9], where the assump-
tion that the operators are real plays a crucial role and our aim of
this paper is to study the operators with complex coefficients. Our
method may be considered as a generalization of the usual variational
method replacing the Garding inequality by the estimate (2.15), (cf. [3],
[5D.

Let RY be N-dimensional Euclidean space regarded as a direct
product of three Euclidean spaces R7, R; and R; (m +n + 1 = N) and
generic point of RY will be denoted by (x,¥,%) = (&1, «« +, Ty Y1y * * *» Yny b).
We shall mainly consider a partial differential equation of the form

L(z,9,t,D) = Du — i D, (a* ‘D) — i Dw(a’ijnu)
7= Baj=1

k,j=1

@D Emj 21 Dy (9" Do) + kika““ + Zn;l b{D,u
SEE = £

4+ cu=f in 2,

where D,, = d/0xz; and a*,a}’, g*/, b*, bj,c and f are complex valued C*
functions defined in a domain 2 C R which is supposed to contain the
origin {0} of RY.

The following notations are convenient for the later discussions:

A = (@¥(@, Yy O)izijzm » Re A = (Be 0¥)1g1,jzm »
ImA = (Im U/kj)1§k,j_s_m )
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A:c, = (a;‘,j(x, Y, t))1§k,j§m ’
QD = Qo(x, y, t, D) = Dt + kglge ka"L'k )
Qj’-'—-‘];.%eaijxk,j:l,-.-,m, Qm+j=Dy!9j=1,"‘,n.
Now we set the hypotheses on L:
k 1

1.2 Re fw_bj a¥igE;, =0 in 2 for all £c R™,
=

1.3) a**0) =0, k=1,---,m, e =0¢*, 1<j, k=<m,

1.4) Be S a¥py, = alpf in 9, e R (@ > 0).
krg=1
(1.5) SR A, + [ B AP SCOR A in Q,
e=1
(L.6) Ima¥ 32 g,8,|< Ca 30 avee, in @, tcR™,
k,j=1 k,j=1

(1.7) every vector field D, j=1,..--,m, (on 2) can be expressed as a
linear combination (with C>= coefficients) of Qy @y, -+ Quins ***»

[Qk’ Qj]’ M) [Qi: [Qk, Qj]]’ Tty [le’ [ngy ) ij]’ . '3]9 ]
(1.8) denoting by A, = (@#)it,;5, a0d G = (9*)1<4cma12j<ny We have

.%e(f‘él il)go in 0

for some positive constant g, 0 < p <1,

(1.9) S Sgue < Caearieg,  in 0, EcR™,
==

(1.10) 1 Imbke,| < C Reatis,s, in 0, EcR™.
i=1

We remark that there is no restriction on Z.b%, k=1, ..., m.
Our main result is to prove the following theorem.

THEOREM 1.1. Suppose that the operator L given in (1.1) satisfies
the condition (1.2)~(1.10). Then any distribution uec 2'(Q) satisfying
1.1) with f e C=(2) must be a C* function in 2.

ExAMPLES. The following operators satisfy the above conditions:

1) We use the symbols C, C*,--- to express the different positive constants
throughout this paper.
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1) L =D, — at(t* + y»D} in R*, Z.a>0,

2) L=D,— v+ y)D; - D, + 1 + ia)xyD,D, + bD, in R; ,,, a, b
real,

3) degenerate elliptic operator treated in [8] considered as a sta-
tionary case in the variable ¢ in (1.1).

The inequality (2.10) plays an essential role in the proof of Theorem
1.1 and the hypothese (1.7) is a sufficient condition so that (2.10) is valid.
We can get the following result by the same manner as in Theorem 1.1:

Let RY be N-dimensional Euclidean space regarded as a direct
product of three Euclidean spaces R™,R* and R? (m +n + p = N) and
generic point of RY will be denoted by (x,¥,t) = (X, + 3 Ly Y1, =+ *s Yn»
by eyt

We consider a partial differential equation of the form

L@, y,t,Du = — 31 D,(a*D,u) — 3. D, (a'D,1)
k,j=1 4 k kE,j=1 vi Ve
1.1y f, i‘ D, (9" D ) + }"j b*D,u
n Y4
+j§ ;d’D,‘u-kcu:f in 2,

where a*/, a¥’, g¥, b%, bi,c and f are complex valued C> functions in Q C
RY as in (1.1) and we remark that only the coefficients d° = d‘(z, v, t)
(4 =1,...,p) are supposed to be real valued C> functions in 2.

THEOREM 1.2. For the operator L defined by (1.1) we suppose that
the hypotheses (1.2) ~(1.6), (1.8) ~(1.10) and the estimate (2.10) are wvalid,
where we take

Q=1 b- 9 4 $q 0
k=1 0%y, =1 0t,
and
1.5) SR AV + D R AF<CRA  in Q.
lo= £=1

Then any distribution ue D'(2) satisfying (1.1) with f e C>(2) must be
a C> function in Q.

ExAMPLE. The following operator satisfies the condition of Theorem
1.2:
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4 L=aD;+ dy'D,
He a, > 0, k integer = 0,
d real, d # 0: Fokker-Plank type.
Finally, we remark that we can prove the hypoellipticity of the first
boundary value problem for the equation (1.1) by the similar way as in
[8].

§2. Preliminaries for the proof of Theorem 1.1.

The proof will be obtained by the same steps as in the proof of
Theorem 1.1 of [8]. Suggested by [8], we introduce the norm ||| ||| and
its dual norm |f|- ||/ by

Mullf = 20 | Zea*u, s dxdydt + 35wyl + lulf,
ki=1J 0 s

llollf = sup 10020
veog [l

b

where ||-|| is the usual L*norm on £ and <{v,w) is the value of v ¢ 9'(Q)
evaluated at w.

LEMMA 2.1. Let L be the operator given in (1.1). We have the
following estimate with some positive constant C:

2.1 ol + QI = C(lv]l + Lol , veCy (D) .
Proof. Obviously we have
2.2) KL, wy| < [lILofif ol veCr(Q) .
Next, integrating by parts, we have
ZeLo,vy = 3 [ (@ear,m.,av + 3 | @atho,m,av
k,j=1J2 k,j=1J 2
+23 3| (@ g*0,3,dV
k=1j=1Ja
+ %f Qw-7dV — Im 3" f (Im by, 5dV
2 k=1
+ % Zlf biv, pdV + gzej Cldv,
i=1J 2 2

where dV = dadydt = dx, - - - dz,dy, - -+ dy,dt. By virtue of the hypo-
theses (1.4), (1.8) and (1.9) we have easily

(2.3) Re L, vy = G|l = Ce ol veCP(RQ)
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for some positive constants C, and C,. With a new constant C we obtain
from (2.2) and (2.3)

(2.4) el < CAvll + L[] , veCy(Q) .
Noting that

Qo?) = Lv + k§1 (akj’l)x,‘ Y + kél (a,fj’btyk)w
—i-ZZZ(g Vady, — 12, Im b*.v
k=1 j=1 k=1
— f} biv,, — cv,

1

.,
I

and using the conditions (1.4), (1.6), (1.9) and (1.10) we easily obtain
for some constant C

(2.5) NQwlll" = CUILY Il + llIvlID, veCr@) .
Indeed, for example, we have by (1.4)

Wy,»
= Clivlll-lwlll weCF@),

Z (ak vzk T w>’ =

kyj=1

Thus we have

Z (@"v4,),,

k,j=1

‘<Clpll,  veCr@ .

Other terms can be treated similarly. We get the estimate (2.1) com-
bining (2.4) with (2.5).

LEMMA 2.2. Let L be as above, then we have

4
éC”’U”, 0=11""m’

(2.6) 23| Z ot

2.6) 2| Z et = ciol,
@0 | Zaw s clol,
@.8) S m bk, (( < C|v]
2.9) S lllv,,lir < Clwl

.|
II
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for all ve Cy(R2) with some positive constant C.

Proof. For any we Cy(£2), we have
3 tfveaw) = =31 (v, 3 08w — 31 (v, 3 oblw) .
kyj=1 j=1 k=1 j=1 k=1

Taking account of the assumption (1.5), we have (2.6) by applying
Schwartz inequality for the right hand side of the above equality. By
the similar way we have (2.6) and (2.7). Finally for w e Cg(f2) we have

<:§ Im b*.v,,, w> = —<v, kilm b"w> v, él’” bkw> ,

which gives the estimate (2.8) by assumption (1.10). (2.9) is trivially
obtained.

Now we introduce the norm |||, With s any real number and #
nonnegative integer (cf. [2], §2.6), defined by

uvu‘z’s,r):(zyz)-mwj j IV, v, DPA + |&F + [ePrdedyde
Rp JRYLT

+ [ér ”D;v”ZLQ(Rm-}-ﬂ»Fl) ’

a=(a1y*+*,an)

E=($1,"'3‘Sm)eR?, TGR},
V(&, Y, T) = jj e @Oy (g, y, t)dadt v e Cy(RyEIm+) |

We denote by Hi,,(R7:"*Y) the completion of Cy(R™***') in the norm

Z,Y5t

|| . “(s,r)'

LEMMA 2.3. For any compact subset K of 2, there exist positive
constants ¢ and (0 <e=<1) and C such that

(2.10) 12l = CAll0lll + Q2NN  veCr(K) .

Proof. We shall use tentatively the following notation:
ol = 196G, P + 87 + frdsdpds , s veal
0t = {1967 P + [EF + Igf + eprdedyde .

Then by the assumption (1.7), we can apply the results of [3], §§4, 5 or
the idea of [5] to get the following estimate for some number ¢, 0 <
<1
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@.11) 1ol < ’j’”g*an,vn ,  veCr(K).
On the other hand, clearly we have
2.12) ’:;anjvn <Cllolll, veCoE).

Since Qw = v, + > 5, #e b*v,,, it follows that
IDlln = CUIQI + o] .
Hence we have
@13) vl + 1Dl = CUIRQPIN + lllvlD,  veCPEK),

from which we have

2.19 IVl /arery = CAIRQPNN + lI0IID . v e CF(K) .

Thus by the definition of norm [||-|]| and Qn.; =D, j=1,---,n, the
estimate (2.10) follows with ¢ = ¢//(¢’ + 1). Q.E.D.
Combining (2.10) with (2.1) we now come to the main estimate:

(2.15) 1v]len = CU2| + I1L2]I1) ve Cy(K) .

In §3, we shall prove that it follows from (2.15) that L is hypo-
elliptic in Q.

§3. Proof of Theorem 1.1.

The main step of the proof is to prove the following lemma which
corresponds to Proposition 3.1 of [3].

LEMMA 3.1. Ewvery veHy,(R™"*") N &'(2) such that |[|Lv]l) < oo
belongs to Hq,(R™"*) N &'(2) with a positive number e, where 2 18
shrinked if necessary.

Proof. We can easily see that (2.11) is valid for all v € H, ,(R™*"*1)
N &'(2) as in the proof of Lemma (2.6) of [8]. Next if v satisfies the
required conditions, we choose ye Cy(2) so that 0 <y <1 and y=1 in
a neighbourhood » of supp. v and we set
m aZ a?.

— ST AL — .
vy =yl —&NHw, §>0, 4 ::Eaxfratz

Here (1 — ¢°4)~'v is defined as the Fourier transform of
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(1 + 52(‘E|2 + lf12))_1f)(5, yy T) ’ ‘E = (519 M ‘ygm) ’
v, = 1+ (2m)~" f @O rEN(L £ F(ER + e, ¥, Ddedr .

m+1
BRI

It is clear that v, is then in H,(R™*"*) N &'(2), and that v, — v in L?
norm as ¢ — 0. Hence we may apply (2.15) to v, to conclude that [[v]. .,
< oo, and hence ||v].y < co provided that we can show that [||Lv,||/
remains bounded as § — 0. To prove the last assertion we prepare some

remarks.
1°. We have

s
1re
K@) = CJ[1 + y[@]"[1 + log (1 + [a[")]e-"=

K (x) = zem—(zﬂ)f gt ., o< u< oo,

— -2 i(r1é1+2262) dél + dfz a 2
@) ” ¢ irarea CeRL
— W 12-4 ol ~2 iz, d&d‘f
Ké(x) = CZ ‘ﬂ/l e 1%l = (271') I—w v Je< $>W ’

{=3, xe R\{0}.

2°. If @ is a differential operator of order j < 2 in 9/0x and 3/dt
with coefficients in C=(Q), it follows that

3.1) A =D Qu| =< Cllul, ue LX(Q) N &'(Q) .
3°. When 3¢ Cr(2) we have
(3.2) [[lx(L — D~ w||| = Cll|wl]] , we Cy(Q) .

Indeed we have for we Cy(2)

O (e (L — 3w (L — 52‘””“’)”9%
< C(|wlf + |xV% A~ — 324 D,w|pP) .

Here we denoted by D, w = (w,,, --+,w,,) and by |F|f = |F|? + --- +
| F.|? for a m-vector F = (Fy,---,F,). If we denote by U = yv/Z. A, %A
is an m X m matrix which is uniformly Lipschitz continuous and com-
pactly supported in £ by the results of [1]. Now for the second term
of the right hand side, we have

12AA — *H~'D,w|?
3.3) =1 - N UD,w + [AD,, 1 — N w|?
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S 2D wl? + 2|[AD,, A — FNH~ Tw|?
= Clilwllf + 2|[[AD,, A — D Tw|? .
Partial integration proves
[(AD,, A — @H Nw(x,y,1)

=5-<m+“j Kmﬂ(x‘(;‘f , ’5; f)[ar(x,y,t)
Ry
— (&, y, ODw(E, v, Ddede

— §-(m+D x—& t—1
=79 JRm+1 Km“( 5 ’ 5 )’1/0(5, Y, T)De%(gy Y, T)dfd’l‘

=g w0 U@y, 0

— Uy DKo L5, L2 Yagde
By account of the explicit expression of K, ,, in 1° and by the uniform
Lipschitz continuity of %, the L? norm of last two terms is bounded
above by ||w|?. This estimate combined with (3.3) gives (3.2).
Completion of the proof of Lemma 3.1: We recall that it remains
to prove that |||Lv,||| is bounded as 6 — 0. In the neighbourhood o of
supp. v we have (1 — *4)v, = v and

1 — ¢*4)Lv, = Lv — &L, dlv,

= L’U + 252 Z Z (a";gz,v&xkx,)xj + 252 i (a;‘jvﬁﬁkt).ﬁj ’+ 5231}6 ’
=

o=1k,j=1 t,7=1
where B is a differential operator of the form

B= > By, )D;D;D;,

[«8

which may be considered with compact support. It follows that we
have everywhere

A = FDLv, = Lo + 28 3, 3 (@:es)s, + 20° 30 (@05,
2 J=

o=1 k,j=1 kyj=1

+ 0°Bv, + by,
where &, is a function such that it vanishes in w, supp. i, C supp. y and
[lhs]] — 0 as 6 — 0 in view of 1°. Hence
Lv, = u{Q — &*4)~'Lv + 26°Byv, + 26°Byw,

3.4
3.4) + (1 — &#4)6'Bo, + (1 — &4)"'hy} ,
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where y, is a function in Cy(£2) which is equal to 1 in supp.y. We
remark that from 3° we have

3.5) @ — DS = CHSIN JSe2(@Q) N &) .
Therefore, it follows that
@ — D Lol < C | L]l .

The last two terms are bounded in L? norm in view of 2° and by the
assumption that ve H,, (@) N &(2). For the second and third terms,
we use (2.6), 2° and (3.5) then we have

Bl + [[1°Buslll’ = Cllvsll = C o]

Thus we have |||Lv;|| < co as § — 0. This completes the proof of Lemma
3.1.

Proof of Theorem 1.1. The following process is almost the same as
in §3 of [8].

Given a function ¢ Cy(2) and an integer » = 2, we may assume,
by the partial hypoellipticity of L in the direction y (cf. [2], §4.3), that
yue Hg (R N £(2) for some real number s. For the proof of
Theorem 1.1 it suffices to show that s can be replaced by s 4 e. Indeed,
it follows that v e H,(2) for any s and 7, which means that «e C~(2)
by the Sobolev lemma.

Let E be a pseudo-differential operator with symbol e(&, ) = (1 + |&
+ [z[H** (cf. [4]), and set v = yEyu where ye Cy (). If we can show
that ve H,,,, for every y and ¢ we will have Evyue H,(£2), hence ue
HE, 5 since E is elliptic. As r = 2, it is clear that ve H,,,(2) N &'(92),
so in view of Lemma 3.1 it remains only to show that |||Lv[|] < co. We
note that E’ = yE+ is considered as a compactly supported pseudo-
differential operator of order s (in (x, x")) with parameter y (cf. [4]) and
Lv = LE'y. Taking account of 'Ly = E’f and Lv = E'f +- LE'v — E'f,
it now suffices to show that |[|[LE'u — E'f]|/ < oo to prove [||Lv]]] < co.
We have

LEw — E'f = 3} [0¥D,D,, E'lu — >, [af!D,, E'lu

m
k,j=1 kyj=1

+ Zl Efu,, + Ewu ,
£
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where > 7., [a}iD,,, E']l, E{ and E, are compactly supported pseudo-dif-
ferential operators of order < s in the direction (x,?¢) and we have

33 aD., Bl + 3 [ B, + | B < o

by assumption, so we have only to analyse the first summation in the
right hand side. We have

[0*D, D, E'lu = [a*D,,, E'1Du + oD, [D,,, E'lu
= D, [o*D,,, E'lu + [D,, [a*D,,, E'Nlu
+ a¥D,[D,, B'lu .

On the other hand, if we denote by (&) a symbol of a pseudo-differential
operator F, a simple calculation (cf. [4]) proves the equality

o([6*/D,,, ') = aMa(BY) + > akio(Ey) + ata(By) + o(E)
y=1

where K2 (k=1,.---,m), B} v=1,...,m), E, and E, are pseudo-dif-
ferential operators with parameter ¥ of order < s and < s — 1 respec-
tively (in the direction (z,t)). This equality leads us, by using (2.6),
(2.6") and (2.7)

i Dzj[a'ijxu E’]u“l, < oo,

kyj=1
Obviously we have
[[ILD,s [@*IDg,, E U]l < oo

since the order of [D,,[a*/D,, E']] is less than or equal to s. Finally
for any we Cy(2) we have

3 (@D, D, E'lu, w>\
t7=1

Ji <[Dz,, E'lu, g a’”ka>
= Clllwlll,

hence we have

5 @D, D, B[ < oo .

Ej=1

The above investigation implies that
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WLEw — B'f||I < oo.

Thus we have |||Lv]||/ < oo and this completes the proof of Theorem 1.1.
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