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Abstract

We study the arithmetic of a family of non-hyperelliptic curves of genus 3 over the field Q of
rational numbers. These curves are the nearby fibers of the semi-universal deformation of a simple
singularity of type E6. We show that average size of the 2-Selmer sets of these curves is finite (if it
exists). We use this to show that a positive proposition of these curves (when ordered by height)
has integral points everywhere locally, but no integral points globally.

2010 Mathematics Subject Classification: 14G05 (primary); 14L30 (secondary)

Overview

In this paper, we study the problem of counting integral points on a family of algebraic curves
over the field Q of rational numbers. More precisely, we study the average size of a cohomological
proxy for the set of integral points, namely the 2-Selmer set, as we vary the curve through a fixed
family.

Our methods are inspired by those of Bhargava and his collaborators, who have studied to
great effect the average size of the n-Selmer groups of elliptic curves over Q for diverse values
of n. Broadly speaking, their idea is to parameterize Selmer elements by G(Q)-orbits in V (Q),
for suitable representations V of reductive groups G over Q; Bhargava’s powerful techniques
for counting integral points in fundamental domains then allow one to get a handle on these
Selmer averages. (More recently, Bhargava, Gross, and Wang have generalized these methods
to the context of 2-Selmer groups of Jacobians of hyperelliptic curves of arbitrary genus.)

In another work, we have given a construction that associates to a simply laced Dynkin diagram
(that is, of type An , Dn , or En) a family of algebraic curves and a representation (G, V ) which
together are natural candidates for this program. In the cases of type An , the curves in these families
are hyperelliptic, and we recover the situation studied in the aforementioned works of Bhargava,
Gross, and Wang. In the cases of type Dn , the curves are hyperelliptic, and are equipped with
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additional marked points. In the exceptional cases of type E6, E7, and E8, the curves obtained are
non-hyperelliptic.

Our goal in this paper is therefore to carry out some of this program in the simplest exceptional
situation, arising from the simply laced Dynkin diagram of type E6. In this case, the family of
curves obtained is essentially the universal family of pairs (C, P), where C is a plane quartic
curve and P is a marked point on C which is a hyperflex (that is, a point at which the projective
tangent line has contact of order 4 with C). We are able to push the methods far enough to get
some control over the 2-Selmer sets of these curves (in particular, to show that they are bounded
on average). We then apply this to prove some interesting results about the average number of
integral points.

1. Introduction

Let k be a field of characteristic 0, and let Y be a smooth geometrically connected
projective curve over k of genus g > 0. Let J denote the Jacobian of the curve
Y . We define a 2-covering of the curve Y to be an abelian finite étale cover
Z → Y , with Z geometrically connected and AutY (Z) a k-form of the group
(Z/2Z)2g. An isomorphism (Z → Y ) → (Z ′ → Y ) of 2-coverings is just an
isomorphism Z → Z ′ over Y . The set Cov2(Y ) of isomorphism classes of
2-coverings (Z → Y ), if non-empty, is a torsor for the group H 1(k, J [2]).

Now suppose that k is a number field. We define the 2-Selmer set of Y to be
the subset Sel2(Y ) ⊂ Cov2(Y ) of 2-coverings (Z → Y ) such that Z(kv) 6= ∅ for
every place v of k. If Y (k) is non-empty, then the set Sel2(Y ) is non-empty. On
the other hand, Sel2(Y ) can often be effectively computed. In such situations,
Sel2(Y ) is a useful proxy for the set Y (k). (See, for example, the paper [BS09],
in which the authors give an algorithm to calculate a closely related set when Y
is hyperelliptic.)

Now suppose further that the curve Y has a marked rational point P∞ ∈ Y (k).
In this case, the Abel–Jacobi map AJ : Y ↪→ J embeds the curve Y in its
Jacobian, sending the point P∞ to the origin. The 2-Selmer set Sel2(Y ) is a
pointed subset of the 2-Selmer group Sel2(J ); these two sets admit the following
cohomological description. If v is a place of k, then there is a canonical map
δv : J (kv)→ H 1(kv, J [2]), arising from the Kummer exact sequence of J . We
then have

Sel2(Y ) = {x ∈ H 1(k, J [2]) | ∀v,Resv(x) ∈ δvAJ(Y (kv))},

Sel2(J ) = {x ∈ H 1(k, J [2]) | ∀v,Resv(x) ∈ δv J (kv)}.

In this paper, we investigate the 2-Selmer sets of a family of non-hyperelliptic
curves of genus 3:

X : y3
= x4

+ y(p2x2
+ p5x + p8)+ p6x2

+ p9x + p12. (1.1)
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A family of curves of genus 3 3

Here, x, y are coordinates, and p2, . . . , p12 are coefficients. The projective
closure of this equation in P2 defines a family Y → B of plane quartic curves,
where B = A6

Q is the affine space with coordinates p2, . . . , p12. (Each of these
curves has a unique point at infinity.) The open subscheme of B above which
Y is smooth is a fine moduli space for triples (C, P∞, t), where C is a smooth
projective curve which is non-hyperelliptic of genus 3, P∞ ∈ C(k) is a marked
point such that 4P∞ is a canonical divisor, and t ∈ TP∞C is a non-zero element
of the Zariski tangent space at P∞. We have pi(C, P∞, λt) = λi pi(C, P∞, t).
(See Lemma 4.1.)

Let us write B = A6
Z, coordinates again being given by p2, . . . , p12. We write

F0 ⊂ B(Z) for the set of points b such that Yb is smooth. We say that a subset
F ⊂ F0 is defined by congruence conditions if there exist an integer N > 1 and
a non-empty subset A ⊂ B(Z/NZ) such that F is the inverse image of A in F0.
If b ∈ F0, then we define H(b) = supi |pi(b)|72/ i .

We can now state our main theorems.

THEOREM 1.1 (Theorem 4.3). Let F ⊂ F0 be a subset defined by congruence
conditions. Then

lim sup
X→∞

∑
b∈F

H(b)<X
# Sel2(Yb)∑

b∈F
H(b)<X

1
<∞.

More informally, the average size of Sel2(Yb) is bounded.

We note that we would obtain the same result if we restricted consideration
to the average over those points b ∈ F which are minimal, in some sense, and
therefore give a set of representatives for isomorphism classes of pairs (C, P∞);
see Remark 4.5 below.

THEOREM 1.2 (Theorem 4.4). Let ε > 0. Then there exists a subset F ⊂ F0

defined by congruence conditions such that

lim sup
X→∞

∑
b∈F

H(b)<X
# Sel2(Yb)∑

b∈F
H(b)<X

1
< 1+ ε.

Consequently, we have

lim inf
X→∞

#{b ∈ F | H(b) < X, # Sel2(Yb) = 1}
#{b ∈ F | H(b) < X}

> 1− ε.

Since we can only control the average size of the 2-Selmer sets Sel2(Yb), and
not the full 2-Selmer groups Sel2(Jb), it does not seem possible to use the above

https://doi.org/10.1017/fmp.2014.2 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2014.2


J. A. Thorne 4

results to follow [PS14] and show, for example, that for a positive proportion
of b ∈ F0 the set of rational points is trivial (that is, Yb(Q) = {P∞}). However,
control of Sel2(Yb) does have Diophantine consequences for points which are
‘far from infinity’ in some (p-adic or Archimedean) sense. As an example of
this, we use the above theorems to deduce the following.

THEOREM 1.3 (Theorem 4.8). Let ε > 0. Then there exists a subset F ⊂ F0

defined by congruence conditions satisfying the following conditions.

(1) For every b ∈ F , and for every prime p, Xb(Zp) 6= ∅.

(2) We have

lim inf
X→∞

#{b ∈ F | H(b) < X, Xb(Z(3)) = ∅}
#{b ∈ F | H(b) < X}

> 1− ε.

In particular, a positive proportion of curves in F0 have integral points
everywhere locally, but no integral points globally.

Methods. Our methods are inspired by those of Bhargava and his collabo-
rators, who have proved similar (and, in general, substantially more precise)
results for elliptic and hyperelliptic curves; see the papers [BS, BG, Bha].
Roughly speaking, there are three main steps.

(1) Find a reductive group G over Q and a representation V having the
following property: for a field k/Q, the k-orbits of G(k) on V (k) with
prescribed invariants are related to the set J (k)/2J (k), where J is the
Jacobian of an algebraic curve being defined in terms of these invariants.

(2) Show that when k = Q there are sufficiently many orbits to describe the
2-Selmer groups (or sets) of these curves, and that (appropriate integral
models of G and V having been fixed) these orbits all have integral
representatives.

(3) Count the integral orbits with bounded invariants, and perform a sieve to
remove those orbits not corresponding to 2-Selmer elements.

Our approach to the first two points is quite different to that taken in earlier
works. For the third point, we follow Bhargava’s ideas closely. (Since we aim
only to get the qualitative results Theorems 1.1 and 1.2 above, we do not need to
perform a sieve.) We now describe each of these steps in turn. In an earlier paper
[Tho13], we have associated to each Dynkin diagram D of type An , Dn , or En

the following data.
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• A pair (G, V ) consisting of a split reductive group over Q and an irreducible
representation V of G over Q which is coregular: by definition, this means
that the invariant ring Q[V ]G ⊂ Q[V ] is abstractly isomorphic to a polynomial
ring.

• A family X → B of affine curves over the categorical quotient B =
SpecQ[V ]G . In fact, X is a semi-universal deformation of its central fiber,
which has a unique singularity, which is simple of type D. In particular, when
D = E6, this is exactly the family of curves (1.1) above.

Let us write π : V → B for the quotient map. There is also a natural discriminant
∆ ∈ Q[V ]G , defined up to scalar. If k/Q and b ∈ B(k), then Xb is smooth if and
only if ∆(b) 6= 0; in this case, Vb = π

−1(b) consists of a single closed G-orbit
in V , and the stabilizer StabG(v) of any v ∈ Vb(k) is a finite k-group, for which
there is a canonical isomorphism StabG(v) ∼= Jb[2]. (In particular, this subgroup
is canonically independent of the choice of v ∈ Vb(k).) Here, we write Jb for
the Jacobian of the canonical smooth compactification Yb of the curve Xb. After
making some auxiliary choices (in particular, a subregular normal sl2-triple; see
Section 2 below), we obtain a commutative diagram:

Xb(k) //

��

G(k)\Vb(k)

��
Jb(k) // H 1(k, Jb[2])

(For a precise statement and definition of the various arrows here, see Section 2.2
below. The diagram so obtained is independent of any choices made.) In
particular, taking the above diagram for k = R and k = Qp for every prime p,
together with the Hasse principle for G, shows that the set G(Q)\Vb(Q) contains
enough elements to describe the set Sel2(Yb).

We must show that these elements admit integral representatives. The arrow
Xb(k) → G(k)\Vb(k) in the diagram above has the crucial property that it
arises from an inclusion X ⊂ V , defined over Q. In particular, if we fix integral
structures on X and V , then this morphism will have bounded denominators.
This immediately implies that, provided b ∈ B(Z) is ‘sufficiently divisible’,
every element of the 2-Selmer set Sel2(Yb) has an integral representative; see
Section 2.5 below. In order to fix an integral structure on V , we find it convenient
to give G the structure of Chevalley group, and to take inside V an admissible
lattice, in the sense of [Bor70].

It remains to count the number of integral orbits with bounded invariants,
in order to obtain an upper bound for the average size of the 2-Selmer set.
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We accomplish this using Bhargava’s idea of counting points by taking the
average number of points in a set of translated fundamental domains. The
arguments follow those of [BG, Section 10], with some minor simplifications
since we do not aim for an exact count. The only place where serious work
needs to be done is in the cutting off of the cusp of the fundamental domain; see
Proposition 3.6. We describe the contributions of the cusp here in terms of the
ambient E6 root system, and eliminate their contribution to the 2-Selmer count
by a case-by-case calculation.

The above suffices to prove Theorem 1.1. We note that it seems likely, based
on previous results, that the average size of Sel2(Jb) exists, and equals 3; and
that the same remarks apply to the average over any subset F ⊂ F0 defined by
congruence conditions. On the other hand, the same heuristics suggest that the
average size of Sel2(Yb) can depend on the choice of congruence family, if only
because the quantities

#Im(Yb(Qp)→ Jb(Qp)/2Jb(Qp))

#Jb(Qp)/2Jb(Qp)

can vary with b ∈ B(Qp). In Section 2.10, we exploit this by writing down curves
Yb for which the above quantity is equal to 1

4 . After imposing sufficiently many
congruence conditions of this type, we carry out enough of the sieve to force the
set Sel2(Yb) to be small on average, giving Theorem 1.2. This dependence of the
average value of # Sel2(Yb) (assuming it exists) on the subset F is our excuse for
not attempting to calculate it exactly.

Generalizations. For the most part, the arguments of this paper are general,
and apply verbatim to any of the families of curves constructed in [Tho13]. The
only part where this is not the case is the process of cutting off the contribution
of the cusp of the fundamental domain, as in Proposition 3.6. We have restricted
ourselves to the case D = E6 here in the interest of brevity and simplicity, but it
would be interesting to try to carry out the argument in other cases, for example
when D = E7 or E8. It does seem that in these cases the necessary calculations
(see Section 5) become formidable!

One can also hope that the same circle of ideas will apply to the study of the
full 2-Selmer groups Sel2(Jb), and to the calculation of their exact average. The
main barrier to doing this is in the first two steps of the program outlined above,
namely the construction of G(k)-orbits in Vb(k) corresponding to elements of
Jb(k), and the existence of integral representatives for 2-Selmer elements when
k = Q. A solution to the first problem, using techniques different to those used
here, will be given in another paper [Tho].
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Organization of this paper. The main new ideas in this paper are contained
in Section 2 below. In this section, we define the representation (G, V ) under
consideration, and recall from [Tho13] its relation with the family of curves
X → B above. We also discuss our choice of integral structures, and how this
choice interacts with our previous constructions. In particular, in Section 2.10,
we write down the congruence conditions that will be used to obtain the families
of Theorem 1.2. In Section 3, we carry out Bhargava’s arguments for counting
points in our context. In Section 4, we apply these results to deduce our
main theorems. Finally, Section 5 contains information useful in the proof of
Proposition 3.6.

2. Setup

We begin by recalling, following [Tho13], some basic aspects of the theory of
Vinberg’s θ -groups. The reader could also consult [Spr09] or [Pan05] for more
information about algebraic groups or θ -groups, respectively.

Let k be a field of characteristic 0, and let H be a split, adjoint, simple and
simply laced group over k, of rank n. (Thus H is a reductive group over k with
trivial center. The Dynkin diagram of H is connected, because H is simple,
and has no double edges, because H is simply laced.) We assume that H is
endowed with a pinning P = (T, B, {Xα}α∈S); thus T ⊂ H is a split maximal
torus, S ⊂ Φ = Φ(H, T ) is a root basis, and Xα is a non-zero element of the
α-root space hα. Let R denote the based root datum of H corresponding to P ,
and let σ ∈ Aut(R) denote the image of −1, as in [Tho13, Section 2.2]. The
pinning P determines a splitting of the short exact sequence

0→ H → Aut(H)→ Aut(R)→ 0,

and we write σ ∈ Aut(H)(k) also for the corresponding automorphism of H .
The principal involution of H is defined to be θ = ρ̌(−1) · σ , where ρ̌ ∈ X∗(T )
is the sum of the fundamental coweights. We define G = (H θ )◦, and V = hdθ=−1.
Then the group G is semi-simple, and V is an irreducible representation of G.
We have the following basic theorem (see [Pan05, Theorem 1.1]).

THEOREM 2.1. V contains Cartan subalgebras of h. If c ⊂ V is a Cartan
subalgebra, then the map G → NH (c)/Z H (c) = W (H, c) is surjective, and the
canonical restriction maps

k[h]H → k[V ]G → k[c]W (H,c)

are isomorphisms.
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We refer to any Cartan subalgebra c ⊂ h which happens to lie in V as a Cartan
subspace.

2.1. Conjugacy classes. We say that an element v ∈ V is regular,
respectively nilpotent, respectively semi-simple, if it is so when considered
as an element of h. We write ∆ ∈ k[V ]G for the restriction of a discriminant
polynomial of H ; thus ∆ is defined up to scalar, is homogeneous of degree
#Φ, and for v ∈ V we have ∆(v) 6= 0 if and only if v is regular semi-simple.
The restriction of ∆ to a Cartan subspace c vanishes to order 2 along each
root hyperplane. We write B = Spec k[V ]G . We can choose algebraically
independent homogeneous generators pd1, . . . , pdn of k[V ]G , where pdi is of
degree di , and d1, . . . , dn are the invariant degrees of H ; in particular, B is
isomorphic to An

k . We write π : V → B for the natural quotient map.
Since H is pinned, V contains a canonical regular nilpotent element E =∑
α∈S Xα, which is contained in a unique normal sl2-triple (E, X, F) [Tho13,

Corollary 2.16]. By definition, this means that E, F ∈ V , and X ∈ g satisfy the
relations

[X, E] = 2E, [X, F] = −2F, [E, F] = X. (2.1)

We define κ = E+ zV (F) = E+{v ∈ V | [F, v] = 0}, an affine-linear subspace
of V of dimension n, and refer to κ as the Kostant section.

THEOREM 2.2. (1) The composite κ → V → V//G is an isomorphism.

(2) Let b ∈ B(k) be such that ∆(b) 6= 0. Then Vb = π
−1(b) consists of a single

G-conjugacy class.

(3) Let κ reg. ss
⊂ κ denote the open subscheme of regular semi-simple elements.

The natural product morphism µ : G × κ reg. ss
→ V reg. ss is finite étale.

Let v ∈ V . We say that v is reducible if either ∆(v) = 0, or ∆(v) 6= 0 and
v is G(k)-conjugate to an element of κ(k). This depends on the choice of the
base field k; in particular, if k is algebraically closed, then every element of V is
reducible. If v ∈ V is not reducible, we say that v is irreducible.

2.2. Subregular curves and Jacobians. If (e, x, f ) is any normal sl2-triple
(that is, a tuple of elements e, f ∈ V , x ∈ g satisfying the relation (2.1), then we
can consider the associated slice e+zV ( f ) ⊂ V . The group Gm has a contracting
action on this affine linear subspace of V , with fixed point e. We now describe
this action. Let ρ : Gm → H be the cocharacter with dρ(1) = x . If t ∈ Gm and
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v ∈ e+zV ( f ), we define t ·v = ρ(t−1)·t2v. This action satisfies π(t ·v)= t2
·π(v).

See [Tho13, Section 3.1] for more details.
Now suppose that (e, x, f ) is a normal sl2-triple, and that e is a subregular

nilpotent (that is, e is subregular when considered as an element of h). Let X =
e + zV ( f ).

THEOREM 2.3. The induced morphism X → B is faithfully flat, with reduced
connected fibers of dimension 1. If b ∈ B(k), then Xb is smooth if and only
if ∆(b) 6= 0; in this case, let Yb denote the canonical projective completion
of Xb, and let Jb denote the Jacobian variety of Yb. Then there is a canonical
isomorphism StabG(κb) ∼= Jb[2] of finite k-groups.

See [Tho13, Corollary 4.9]. In order to avoid introducing unnecessary
notation, we now assume that H is of type E6. This assumption will remain in
effect for the rest of this paper. In this case, we have the following additional
result.

THEOREM 2.4. (1) We can choose invariant polynomials p2, p5, p6, p8, p9,

p12 ∈ k[V ]G and coordinates x, y ∈ k[X ] such that the morphism X → B
is given by

X : y3
= x4

+ y(p2x2
+ p5x + p8)+ p6x2

+ p9x + p12.

(2) Let Y → B denote the natural compactification of X as a family of plane
quartic curves, and let P∞ ⊂ Y denote the divisor at infinity. Let b ∈ B(k),
and suppose that ∆(b) 6= 0. Then the following diagram commutes:

Xb(k) //

��

G(k)\Vb(k)

��
Jb(k) // H 1(k, Jb[2])

There arrows in this diagram as follows. The arrow Xb(k) → Jb(k) is
induced by the Abel–Jacobi map Yb ↪→ Jb, sending P∞ to the origin.
The map Xb(k) → G(k)\Vb(k) is induced by the inclusion X ↪→ V . The
map G(k)\Vb(k) ↪→ H 1(k, Jb[2]) is the composite of the classifying map
G(k)\Vb(k) ↪→ H 1(k,StabG(κb)), which sends the orbit G(k) · κb to the
identity, and the isomorphism H 1(k,StabG(κb)) ∼= H 1(k, Jb[2]). The map
Jb(k) → H 1(k, Jb[2]) is the connecting homomorphism of the Kummer
exact sequence associated to the isogeny [2] : Jb → Jb.

See [Tho13, Theorem 4.14].
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2.3. Restricted roots. It is easy to show (using, for example, the results of
[Ree10]) that G is abstractly isomorphic to PSp8, and V corresponds under this
isomorphism to the 42-dimensional subrepresentation of ∧48; however, we will
not use this here.

We write Φ = Φ(H, T ) for the root system of H , and Φ = Φ+ ∪Φ− for the
decomposition into positive and negative parts induced by the root basis S. The
root system Φ(G, T θ ) will also play a role; in order to distinguish elements of
X ∗(T ) and X ∗(T θ ), we will generally write elements α, β, . . . ∈ X ∗(T ) using
Greek letters, and elements a, b, . . . ∈ X ∗(T θ ) using Roman letters. We write
Φ/σ for the set of orbits of σ on Φ.

LEMMA 2.5. (1) The map X ∗(T )→ X ∗(T θ ) is surjective, and the group G is
adjoint. In particular, X ∗(T θ ) is spanned by Φ(G, T θ ).

(2) Let α, β ∈ Φ. Then the image of α in X∗(T θ ) is non-zero, and α, β have the
same image if and only if either α = β or α = σ(β).

Proof. The fixed group T θ is connected, and contains regular elements of T ; see
[Ree10, Lemma 3.1]. The group G has trivial center, by [Ree10, Section 3.8].
For the second part, see [Ree10, Section 3.3].

We identify Φ/σ with its image in X ∗(T θ ); this makes sense by Lemma 2.5.
The Cartan decomposition induces a decomposition into θ -stable subspaces:

h = t⊕
⊕

a∈Φ/σ

ha, (2.2)

with t = tθ ⊕ V0 and ha = ga ⊕ Va . Here, V0 ⊂ t is two-dimensional, and
each space ga , Va is either zero or one-dimensional. There is a corresponding
decomposition

V = V0 ⊕
⊕
a∈ΦV

Va. (2.3)

We distinguish three cases, based on the value of s = (−1)〈α,ρ̌〉.

(1) a = {α} and s = 1. In this case, Va = 0, and ga is spanned by Xα.

(2) a = {α} and s = −1. In this case, Va is spanned by Xα, and ga = 0.

(3) a = {α, σ (α)}, with α 6= σ(α). In this case, Va is spanned by Xα − s Xσ(α),
and ga is spanned by Xα + s Xσ(α).

We write ΦV for the set of elements a ∈ Φ/σ that appear as characters of T θ

in V . We write Φ+V for the set of elements in ΦV that are images of elements of
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Φ+, and define Φ−V similarly. Then ΦV is the disjoint union of Φ+V and Φ−V ; we
have #Φ+V = #Φ−V = 20. We write SV ⊂ Φ

+

V for the image of the root basis S;
we have #SV = #S/σ = 4.

We now introduce a root basis SG ⊂ Φ(G, T θ ). For this, it is convenient
to introduce some notation. We number the simple roots α1, . . . , α6 ∈ S as in
[Bou68, Planche V]:

H :
α1 α3 α4 α5 α6

α2

In this diagram, the pinned automorphism σ acts by reflection about the
vertical axis. We define a1, a2, a3, a4 ∈ X ∗(T θ ) to be the respective images of
the roots α3 + α4, α1, α3, and α2 + α4. Then the set SG = {a1, . . . , a4} ⊂ Φ(G,
T θ ) is a root basis for G:

G :
a1 a2 a3 a4

We will use the decomposition Φ(G, T θ ) = Φ(G, T θ )+ ∪ Φ(G, T θ )−

corresponding to this choice of root basis. Since G is adjoint, an element
b ∈ X ∗(T θ ) admits a unique decomposition b =

∑4
i=1 nai (b)ai . For example,

let a0 ∈ ΦV denote the image of the highest root α0 ∈ Φ+ of H . Then
a0 = a1 + 2a2 + 3a3 + 2a4 = (1, 2, 3, 2). We define a partial order on X ∗(T θ ):
a > b if and only if nai (a−b) > 0 for each i = 1, . . . , 4. In Section 5 below, we
have displayed a list of the elements of ΦV ∪ {0}, along with the Hasse diagram
of the induced partial order on this set. It will be helpful to note the following.

(1) We have a0 > a for all a ∈ ΦV .

(2) It is not true that nai (a) > 0 for all a ∈ Φ+V .

(3) With the numbering of Section 5, we haveΦ+V = {1, . . . , 20}, and SV = {17,
18, 19, 20}.

If S′ ⊂ S is a σ -invariant set of simple roots, then we write pS′ ⊂ h for the
parabolic Lie subalgebra generated by the subspaces t and hα (α ∈ Φ

−
∪ S′).

Thus p∅ is the unique Borel subalgebra of h containing F and pS = h. We write
lS′ ⊂ pS′ for the Lie subalgebra generated by the subspaces t and hα (α ∈ −S′ ∪
S′). Then lS′ is the standard Levi subalgebra of pS′ (with respect to the maximal
torus T ). Each algebra lS′ and pS′ is θ -stable. We writeΦ+V,S′ ⊂ Φ

+

V for the subset
of weights of T θ which appear in pdθ=−1

S′ .
The following lemma will be used later in the analysis of the irreducible

elements in the cusp of a fundamental domain.
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LEMMA 2.6. Let v ∈ V , and decompose v = v0 +
∑

a∈ΦV
va according to the

Cartan decomposition (2.3). Suppose that one of the following holds.

(1) We have va = 0 if a ∈ Φ+V − SV and va 6= 0 if a ∈ SV .

(2) There is a proper σ -invariant subset S′ ⊂ S such that va = 0 if a ∈ Φ+V −
Φ+V,S′ .

(3) There exists ai ∈ SG such that va = 0 if nai (a) > 0.

Then v is reducible.

Proof. We consider the first case. We show that v is G(k)-conjugate to an
element of κ(k). By hypothesis, we can write v =

∑
α∈S λαXα + v0+

∑
a∈Φ−V

va ,
for some scalars λα ∈ k×. Since v ∈ V , we have λσ(α) = λα for each α ∈ S.
Since the group H is adjoint, we can find t ∈ T (k) such that α(t) = λ−1

α for each
α ∈ S; it is clear that we then have t ∈ T θ (k).

Replacing v by t · v, we can thus assume that v =
∑

α∈S Xα + v0+
∑

a∈Φ−V
va .

A standard result in the theory of the Kostant section (see [Kot99, Section 2.4])
says that the natural product morphism induces an isomorphism U×κ ∼= E+p∅,
where U is the unipotent radical of Borel subgroup of H with Lie algebra
p∅. Taking θ -invariants, we obtain an isomorphism U θ

× κ ∼= E + pdθ=−1
∅

.
Consequently, v ∈ E + pdθ=−1

∅
is U θ (k)-conjugate to an element of κ(k).

We now consider the second case, which is equivalent to asking that v ∈
pdθ=−1

S′ . We will show that in this case ∆(v) = 0. Suppose for contradiction that
∆(v) 6= 0. Then the Lie centralizer zh(v) is a Cartan subspace of V , which is
contained in a unique Levi subalgebra l′S′ ⊂ pS′ , which is necessarily θ -stable.
The canonical projection l′S′ → lS′ is θ -equivariant, and we deduce that θ acts as
−1 on the center of lS′ (as the center of l′S′ is contained in zh(v)).

However, this contradicts the fact that the center of lS′ is spanned by the
elements dω̌α(1) (α ∈ S−S′), where the ω̌α ∈ X∗(T ) (α ∈ S) are the fundamental
coweights. Indeed, the involution θ permutes the elements ω̌α among themselves;
so as long as S 6= S′, there must exist at least a one-dimensional subspace of the
center of lS′ which is fixed pointwise by θ .

We now consider the third case. We will again show that ∆(v) = 0, first
under the additional hypothesis that va = 0 if nai (a) 6= 0. Then v is fixed by
a non-trivial subtorus of T θ , namely Ai =

⋂
j 6=i ker a j . In particular, v cannot

be regular, as regular elements of V have finite stabilizer in G. Now suppose
that v ∈ V satisfies instead the condition va = 0 if nai (a) > 0, as in the
statement of the lemma. We suppose for contradiction that v is irreducible; then
∆(v) 6= 0, and v is regular semi-simple. In particular, the G-conjugacy class of
v in V is closed. However, the closure of the orbit Ai · v contains an element w
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satisfying wa = 0 if nai (a) 6= 0. In particular, w cannot be regular semi-simple.
This contradiction concludes the proof.

2.4. Integral structures. We now assume that k = Q, and introduce integral
structures on G and V . The torus T θ

⊂ G is split maximal, and induces the
Cartan decomposition g = tθ ⊕

⊕
a∈Φ(G,T θ ) ga . We choose a Chevalley basis

with respect to this decomposition. This means (see [Bor70]) a choice of vector
xa ∈ ga for each a ∈ Φ(G, T θ ) satisfying the following conditions.

(1) Let ha = [xa, x−a]. Then [ha, xb] = 〈a∨, b〉.

(2) If a, b, a + b ∈ Φ(G, T θ ), then [xa, xb] = ±(pa,b + 1)xa+b, where pa,b is
the greatest integer such that a − pa,bb is a root.

The elements ha and xa give a basis for a Z-form gZ ⊂ g. Moreover, the notion of
admissible Z-form of V is defined [Bor70, Section 2]; we choose an admissible
Z-form V ⊂ V which contains the nilpotent elements E, e ∈ V fixed above.
An integral model of the group G can be obtained by taking the Zariski closure
of G inside GL(V); we will abuse notation slightly by now writing G for this
choice of integral model. With these choices, the Cartan decomposition V =
V0⊕

⊕
a∈ΦV

Va is defined over Z [Bor70, Lemma 2.3]; in particular, if v ∈ V(Z)
is written as v = v0 +

∑
a∈ΦV

va , then we have v0, va ∈ V(Z). We scale the
discriminant ∆ so that ∆ ∈ Z[V].

Let K ⊂ G(R) be a maximal compact subgroup. Let P = T θ N ⊂ G denote
the Borel subgroup containing T θ and corresponding to the root basis SG , and
let P = T θ N ⊂ G denote the opposite Borel subgroup. A Siegel set is, by
definition, any subset S ⊂ G(R) of the form S = ω · Tc · K , where ω ⊂ N (R)
is a compact subset and Tc = {t ∈ T θ (R)0 | ∀a ∈ SG, a(t) 6 c}. Since G is a
Chevalley group, we have access to the following result.

THEOREM 2.7. (1) G(Z) has a unique cusp: we can choose ω ⊂ N (R), c > 0
so that G(Z) ·S = G(R).

(2) G(Z) has class number 1: we have G(A∞) = G(Q) · G(Ẑ). (Here, A∞ =∏
′

p Qp denotes the ring of finite adeles of Q.)

Proof. For the first point, see [Bor66, Section 6, Lemma 1] and [PR94,
Theorem 4.15]. For the second, see [PR94, Theorem 8.11, Corollary 2].

In what follows, we will fix a choice of ω and c so that the condition G(Z) ·
S = G(R) holds. We now choose less canonical integral structures for X , Y ,
and B. A choice of invariant polynomials p2, . . . , p12 ∈ Q[V ]G has been fixed
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in Theorem 2.4; after rescaling p2, . . . , p12 and the coordinates x, y on X , we
can assume that p2, . . . , p12 lie in Z[V]. We define B = SpecZ[p2, . . . , p12],
and write π : V → B for the induced morphism; the fiber over Q recovers the
categorical quotient V → B = V//G.

We define X = SpecZ[x, y, p2, . . . , p12]; then X is isomorphic to A7
Z, and

the morphism X → B extends to a morphism X → B. We write Y for
the natural compactification of X as a closed subscheme of P2

B. We have the
following elementary fact, which we record as a lemma for later reference. (The
Gm-actions on κ and X here are the actions coming from the fixed sl2-triples, as
at the beginning of Section 2.2. The Gm-action on B is the one arising from the
inclusion Q[B] = Q[V ]G ⊂ Q[V ].)

LEMMA 2.8. Let p be a prime. There exists an integer N0 > 1, not depending
on p, such that, for any b ∈ B(Zp) (respectively, v ∈ X (Zp)), we have
N0 · κb ∈ V(Zp) (respectively, N0 · v ∈ V(Zp)). In particular, if b ∈ N 2

0 · B(Z),
then b ∈ π(V(Z)).

We conclude this section with a fact about integral orbits.

THEOREM 2.9. Let b ∈ B(Z) satisfy ∆(b) 6= 0. Then Vb(Z) consists of only
finitely many G(Z)-orbits.

Proof. This follows from [BHC62, Theorem 6.9].

2.5. Integral orbits and algebraic curves. Let b ∈ B(Z) be such that
∆(b) 6= 0. According to Theorem 2.4, we have a canonical inclusion
G(Q)\Vb(Q) ⊂ H 1(Q, Jb[2]). We write Ob ⊂ H 1(Q, Jb[2]) for the image
of Vb(Z). In this section, we prove the following result.

THEOREM 2.10. There exists an integer N3 > 1 such that, if b ∈ N3 ·B(Z), then
Ob contains the subset Sel2(Yb) ⊂ H 1(Q, Jb[2]).

To prove the theorem, it suffices to prove the corresponding local statement.
Let p be a prime, and let b ∈ B(Zp) be a point such that ∆(b) 6= 0. Let Ob,p ⊂

H 1(Qp, Jb[2]) denote the image of Vb(Zp).

LEMMA 2.11. There exists an integer N3 > 1, not depending on p, such that, if
b ∈ N3 ·B(Zp), then Ob,p contains the image of Yb(Qp) in H 1(Qp, Jb[2]) under
the Abel–Jacobi map.
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We first explain how Lemma 2.11 implies Theorem 2.10. Let c ∈ H 1(Q, Jb[2])
be a class corresponding to an element of Sel2(Yb). We claim that c corresponds
to an element of G(Q)\Vb(Q); equivalently, that c lies in the kernel of the
natural map H 1(Q, Jb[2])→ H 1(Q,G). The map H 1(Q,G)→

∏
v H 1(Qv,G)

is injective. Indeed, there is a short exact sequence with G ′ the universal cover
of G:

1 //µ2
//G ′ //G //1

and hence a commutative diagram

H 1(Q,G) //

��

H 2(Q, µ2)

��∏
v H 1(Qv,G) // ∏

v H 2(Qv, µ2)

The horizontal arrows are injective (because the cohomology of G ′ is trivial), and
the right-hand arrow is injective (by class field theory). It follows that the left-
hand arrow is injective. It therefore suffices to show that, for every place v of Q,
the image cv ∈ H 1(Qv, Jb[2]) of c has trivial image in H 1(Qv,G). However, cv
lies, by hypothesis, in the image of the natural map Yb(Qv)→ H 1(Qv, Jb[2]). It
follows from Theorem 2.4 that cv corresponds to an element of G(Qv)\Vb(Qv);
this establishes the claim.

Let us now take again b ∈ N3 ·B(Z) such that∆(b) 6= 0, with N3 > 1 as in the
lemma. Take a vector v ∈ Vb(Q) whose image in H 1(Q, Jb[2]) lies in Sel2(Yb).
By Lemma 2.11, G(Qp) · v contains an element of Vb(Zp); thus, there exists
gp ∈ G(Qp) such that gp · v ∈ Vb(Zp). By Theorem 2.7, we can find g ∈ G(Q)
such that gg−1

p ∈ G(Zp) for every prime p. It follows that g ·v ∈ V(Zp) for every
prime p, and hence g · v ∈ V(Z), as desired.

Proof of Lemma 2.11. Let c ∈ B(Zp). We claim that, if c ∈ 24
· B(Zp) (which

is no condition if p 6= 2 – by definition, 24
· B(Zp) denotes the set of points

b ∈ B(Zp) such that pi(b) is divisible by 24i in Zp), then every element of the
image of Yc(Qp)→ Jc(Qp)/2Jc(Qp) is represented either by P∞ or an element
of Xc(Zp). Indeed, this follows from the following observations.

• Let c = 24
· b, b ∈ B(Zp). Let P ∈ Yb(Zp), and suppose that the image of P

under the natural identification Yb(Qp)= Yc(Qp) is not contained in the subset
Xc(Zp) ⊂ Yc(Zp). Then P and P∞ have the same image in Yb(Zp/24 pZp).

• Let F ∈ ZpJX1, . . . , Xg, Y1, . . . , YgK be a g-dimensional formal group law
(for some g > 1). If x ∈ ker(F(pZp) → F(pZp/24 pZp)), then x is
2-divisible in F(pZp) (as follows from [CX08, Proposition 9]).
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• Let b ∈ B(Zp) be such that ∆(b) 6= 0, and let Jb denote the identity
component of PicYb/Zp , a smooth quasi-projective scheme over Zp (see
[BLR90, Section 9.3, Theorem 1]; we use here that the special fiber of Yb is
geometrically irreducible). Let F now denote the g-dimensional formal group
law which is the completion of Jb along its identity section. If P ∈ Yb(Zp) has
the same image in Yb(Zp/24 pZp) as the point P∞ at infinity, then the Cartier
divisor (P)− (P∞) ∈ Jb(Zp) lies in the subgroup

ker(F(pZp)→ F(pZp/24 pZp)) ⊂ F(pZp) = ker(Jb(Zp)→ Jb(Fp)).

Let N0 > 1 be the integer of Lemma 2.8, let N3 = 24 N 2
0 , and assume now that

b = N 2
0 · c, c ∈ 24B(Zp). We then have a commutative diagram:

Xb(Qp)

N−1
0

��

// G(Qp)\Vb(Qp) //

N−2
0

��

H 1(Qp, Jb[2])

N−2
0
��

Xc(Qp) // G(Qp)\Vc(Qp) // H 1(Qp, Jc[2])

The vertical arrows are bijective. The composites of the horizontal arrows agree
with the composites of the descent and Abel–Jacobi maps, by Theorem 2.4.

Suppose that v ∈ Vb(Qp), and let v′ = N−2
0 v. If v has the same image in

H 1(Qp, Jb[2]) as P∞ (that is, if this image is trivial), then the G(Qp)-orbit of
v′ contains κc, so, by Lemma 2.8, κb = N0 · κc ∈ V(Zp). If the image of v in
H 1(Qp, Jb[2]) is non-trivial but still comes from Yb(Qp), then the G(Qp)-orbit
of v′ contains an element in the image of Xc(Zp), and so the G(Qp)-orbit of v
contains an element in the image of N0 ·Xc(Zp) ⊂ Xb(Zp); applying Lemma 2.8
once more, we see that N0 ·Xc(Zp) ⊂ Vb(Zp). This concludes the proof.

2.6. Height. If b ∈ B(R), we define its height as follows:

H(b) = sup
i
|pi(v)|

deg(∆)/ i .

If v ∈ V (R), we define H(v) = H(π(v)). By construction, H(v) is
homogeneous of degree deg∆ = 72; if λ ∈ R×, then H(λv) = |λ|72 H(v).
We note that this very much depends on the choice of polynomials pi .

2.7. Measures on G. Let K ⊂ G(R) and P ⊂ G denote respectively the
maximal compact subgroup and Borel subgroup fixed in Section 2.4. According
to the theory of the Iwasawa decomposition, the natural product maps

N (R)× T θ (R)0 × K → G(R), T θ (R)0 × N (R)× K → G(R)
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are diffeomorphisms. If t ∈ T θ (R), let δ(t) =
∏

a∈Φ(G,T θ )− a(t) =
det Ad(t)|Lie N (R).

LEMMA 2.12. A Haar measure on G(R) is dg = dt dn dk = δ(t)−1dn dt dk.
More precisely, let dt, dn, dk be Haar measures on the groups T θ (R), N (R),
and K , respectively. Then the integral∫

g∈G(R)
f (g) dg =

∫
t∈T θ (R)◦

∫
n∈N (R)

∫
k∈K

f (tnk) dt dn dk

=

∫
n∈N (R)

∫
t∈T θ (R)◦

∫
k∈K

f (ntk)δ(t)−1 dn dt dk

defines a Haar integral on G(R).

Proof. This follows from well-known properties of the Iwasawa decomposition;
see, for example, [Lan75, Ch. III, Section 1].

We now fix for the rest of this paper a left-invariant top form ωG on G. If v is
a place of Q, then we define a Haar integral on G(Qv) using the volume element
dg = |ωG |v, where | · |v is the usual absolute value if v = ∞ and |p|v = p−1 if
v = p. We use the volume element |ωG |∞ to fix Haar measures on the groups
T θ (R)0, K , and N (R), as follows. We give T θ (R)0 the measure pulled back from
the isomorphism

∏
a∈SG

a : T θ (R)0 ∼= R4
>0; R>0 gets its standard Haar measure

d×λ = dλ/λ, where dλ is the usual Lebesgue measure. We give K its probability
Haar measure. There is now a unique choice of Haar measure dn on N (R) such
that |ωG |∞ = dt dn dk; we make this choice.

2.8. Measures on V and B. We fix a differential top form ωV on V induced
by the integral structure on V ; it is determined up to sign. If v is a place of Q,
then the volume element dv = |ωV |v determines a Haar measure on V (Qv). With
this choice, the spaces V(Zp) (p a prime) and V(Z)\V (R) have volume 1. We
write ωB = dp2 ∧ · · · ∧ dp12, and ωκ for the pullback of this form under the
canonical isomorphism κ → B. Again, if v is a place of Q, then the volume
element db = |ωB |v determines a measure on B(Qv). If p is a prime, then B(Zp)

has volume 1; if X > 1 is a real number, then the set {b ∈ B(R) | 1 6 H(b) 6 X}
has volume X

∑
i i/72
= X 7/12.

PROPOSITION 2.13. (1) Let µκ : G × κ → V denote the product map. Then
there exists W0 ∈ Q× such that µ∗κωV = W0 · ωG ∧ ωκ .
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(2) Let c ⊂ V be a Cartan subspace, and let µc : G×c→ V denote the product
map. Then there exists W1 ∈ Q×, not depending on the choice of c, such that
µ∗cωV = W1 · ωG ∧ π |

∗

cωB .

Proof. (1) The morphismµκ is étale. It follows that there exists a non-vanishing
regular function f ∈ Q[G × κ] such that µ∗κωV = f ωG ∧ ωκ . The form ωV

is G-invariant, so the function f must be pulled back from Q[κ]. Since
κ is abstractly isomorphic to affine space, the only non-vanishing regular
functions are the constants.

(2) Let ωc be an invariant differential top form (with respect to the vector space
structure on c). Again, we can write µ∗cωV = f1ωG ∧ ωc for some function
f1 ∈ Q[G × c]G = Q[c]. We write π |∗cωB = f2ωc for some function f2 ∈

Q[c]. We must show that f1 and f2 are equal, up to scalar.
We define a new action of G ×Gm on G × c by (g, λ) · (h, x) = (gh, λx).
Then (g, λ)∗ f1 = λ

dim V−dim c f1; in particular, f1 is homogeneous of degree
dim V −dim c. On the other hand, the function f2 is homogeneous of degree∑

i(di − 1). We now use the string of equalities:

#Φ = deg∆ = 2
∑

i

(di − 1) = 2(dim V − dim c).

It is easily seen that f1 and f2 vanish along the same set; moreover, f2

vanishes to order 1 along each root hyperplane, and nowhere else. As the
functions f1 and f2 are homogeneous of the same degree, they must be equal
up to scalar. The result follows.

2.9. Constructing special sections over R. The space V (R) contains
finitely many G(R)-conjugacy classes of Cartan subalgebras; let c1 . . . , cn be
representatives. For each i = 1, . . . , n, the natural map π |creg. ss

i
: c

reg. ss
i →

B(R)reg. ss is a proper local homeomorphism. Consequently, there exists (see
[BCR98, Proposition 9.3.9]) a finite cover Ui j of creg. ss

i by open semi-algebraic
subsets such that each π |Ui j is a homeomorphism. Since a semi-algebraic set has
finitely many connected components [BCR98, Theorem 2.4.4], we can suppose
moreover that each Ui j is connected.

Let L1, . . . , Lr denote the sets π({v ∈ Ui j | H(v) = 1}), in any order, and
let si : L i → V (R) denote the corresponding sections. Then L i ⊂ {b ∈ B(R) |
∆(b) 6= 0, H(b) = 1} is a connected semi-algebraic open subset, and si : L i →

V (R) is a semi-algebraic map. We have an equality (Λ = R>0):

V (R)reg. ss
=

⋃
i

G(R) ·Λ · si(L i).
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This union need not be disjoint, but this is not a problem for us. If v ∈ si(L i), let
ni = # StabG(R)(v); this integer is independent of the choice of v.

PROPOSITION 2.14. Let f : V (R) → C be a continuous function of compact
support. Then, for any i = 1, . . . , r we have∫

v∈G(R)·Λ·si (L i )

f (v) dv =
|W1|∞

ni

∫
b∈Λ·L i

∫
g∈G(R)

f (g · si(b)) dg db,

where W1 ∈ Q× is the scalar of Proposition 2.13. Consequently, we have

vol(S · [1, X 1/72
] · si(L i)) 6 |W1|∞ vol(S) · vol([1, X 1/72

] · L i).

Proof. Let c ⊂ V (R) be the Cartan subspace corresponding to L i . Let us write
µi : G(R)× (Λ · L i)→ V (R) for the morphism (g, λ · l) 7→ g ·λsi(l). It follows
from Proposition 2.13 that µ∗i ωV = W1ωG ∧ ωB . The displayed formula now
follows from the fact that µi is a proper local diffeomorphism onto its image,
with fibers of cardinality ni .

2.10. Constructing special sections over Q p. In this section, we construct
the congruence conditions that will be used to prove Theorem 1.2.

PROPOSITION 2.15. Let p be a prime congruent to 1 modulo 6. There exists
an open compact subset Bp ⊂ B(Zp) such that, for all b ∈ Bp, we have
Jb(Qp)/2Jb(Qp) ∼= (Z/2Z)2, the map Yb(Qp) → Jb(Qp)/2Jb(Qp) has image
reduced to the identity, and Xb(Zp) 6= ∅.

Proof. We verify by explicit calculation that the curve y3
= x4

− p2 satisfies
the conditions of the proposition. In fact, we show that the special fiber of the
minimal regular model contains a unique component of multiplicity 1, and the
special fiber of the Néron model has component group Z/2Z×Z/2Z×Z/3Z, and
purely unipotent connected component. In order to do this, we use the quotient
method of Lorenzini [LT02, Section 2]. Let $ be a sixth root of p, and let
K = Qp($). The extension K/Qp is Galois, since 6 divides p−1. Let Y denote
the projective closure of y3

= x4
− p2 in P2

Qp
. The curve YK is isomorphic to

the curve Z ⊂ P2
K , projective closure of the equation Y 3

= X 4
− 1, via the

substitutions x = $ 3 X , y = $ 4Y .
LetOK ⊂ K denote the ring of integers, and letZ ⊂ P2

OK
denote the projective

closure of the affine curve cut out by the same equation as Z . Then Z is a smooth
projective curve over OK with generic fiber Z . In particular, Z is regular. The
group G = Gal(K/Qp) acts on Z in a manner covering its action on OK , and
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we write Y for the quotient Z/G. Then Y is normal; it is regular outside of the
points in the special fiber which are the images of the fixed points of the action
of G on ZOK /($). At such points, it has quotient singularities. Resolving these
quotient singularities as in [LT02, Section 2.15] gives a regular model Y ′ of Y .
The intersection graph of the special fiber of Y ′ is as follows:

3 3 3

6

22

5 4 3 2 1

Here, the vertices correspond to the reduced irreducible components of the
special fiber of Y ′; two vertices are connected by an edge if the corresponding
components intersect. (It turns out that, for this curve, the non-zero intersection
multiplicities are all equal to one.) Each vertex is labeled with the multiplicity of
the corresponding component in the special fiber of Y ′. The desired properties
now follow from the description of the component group of the Néron model
recalled, for example, in [Lor00, Introduction]. To see that our curve has
Zp-points, we observe that there are solutions with x = 1 (since 1− p2 is a cube
in Z×p ).

Let b0 ∈ B(Zp) be the point corresponding to the equation y3
= x4

− p2.
It is now easy to see that any sufficiently small open compact neighborhood
Bp ⊂ B(Zp) of b0 will have the desired properties.

PROPOSITION 2.16. Let U ⊂ B(Zp) be an open compact subset such that, for
all b ∈ U,∆(b) 6= 0. Let Vp = (G(Qp) · κ(Qp))∩V(Zp)∩π

−1(U ). Then, after
possibly shrinking U, the following statements hold.

(1) The set {g ∈ G(Qp) | gκb ∈ V(Zp)} is independent of b ∈ U. We write
g1, . . . , gr for representatives of the G(Zp)-StabG(Qp)(κb)-double cosets in
this set.

(2) The quantities # StabG(Qp)(κb) and # StabG(Zp)(giκb) are independent of
b ∈ U.

(3) Vp ⊂ V(Zp) is open compact.

Moreover, the constant W0 ∈ Q× being as in Proposition 2.13, we have

vol(Vp) = |W0|p vol(G(Zp)) vol(U )
r∑

i=1

1
# StabG(Zp)(giκb)

,

for any b ∈ U.
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Proof. In order to simplify the notation, let us use the subscript (·)U to denote
intersection with π−1(U ). The orbit map µU : G(Qp) × κ(Qp)U → V (Qp)U is
finite and a local analytic isomorphism. If b ∈ U , let G(Qp)

b
= {g ∈ G(Qp) |

gκb ∈ V(Zp)} = µ
−1
U (V(Zp)U ) ∩ pr−1

2 (b). Choose b0 ∈ U . It is easy to see that
the set {b ∈ U | G(Qp)

b
= G(Qp)

b0} is open, so, after replacing U by an open
compact neighborhood of b0, we can assume that G(Qp)

b
= G(Qp)

b0 for all
b ∈ U .

Let p : Z → κ reg. ss denote the stabilizer scheme; it is a finite étale group
scheme. Let y1, . . . , ys be the distinct elements of p−1(b0) in Z(Qp). After
possibly shrinking U further, we can find disjoint open neighborhoods V1, . . . ,

Vs of y1, . . . , ys in Z(Qp) such that each restriction p|Vi : Vi → U is an analytic
isomorphism, and p−1(U ) = V1 ∪ · · · ∪ Vs . In particular, # StabG(Qp)(κb) is
independent of b ∈ U .

We now show that we can choose U so that the quantity

# StabG(Zp)(giκb) = #(p−1(b)(Qp) ∩ g−1
i G(Zp)gi)

is independent of b ∈U . Since the group g−1
i G(Zp)gi ⊂ G(Qp) is open compact,

we can assume, after possibly shrinking U , that, for each j = 1, . . . , s, either
V j ⊂ g−1

i G(Zp)gi or V j ∩ g−1
i G(Zp)gi = ∅. This implies the desired property.

We can write Vp =
⋃r

i=1 G(Zp)·gi ·κ(Qp)U . In particular, Vp is an open compact
subset of V(Zp) and satisfies points 1–3 above.

It remains to calculate the volume of Vp. Proposition 2.13 implies the formula

vol(Vp) =

r∑
i=1

|W0|p

∫
b∈U

∫
g∈G(Zp)

1
# StabG(Zp)(giκb)

dg db

= |W0|p vol(G(Zp)) vol(U )
r∑

i=1

1
# StabG(Zp)(giκb)

,

as desired.

If v ∈ V(Zp)
reg. ss, then we define (following [BS, Section 3.2])

m p(v) =

r∑
i=1

# StabG(Qp)(v)

# StabG(Zp)(vi)
,

where v1, . . . , vr are representatives for the G(Zp)-orbits of (G(Qp)·v)∩V(Zp).
The volume of the set Vp appearing in Proposition 2.16 can thus be written as
vol(Vp) = |W0|p(m p(v) · vol(U ) · vol(G(Zp))/# StabG(Qp)(v)), for any v ∈ Vp.
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Similarly, if v ∈ V(Z)reg. ss, then we define

m(v) =
r∑

i=1

# StabG(Q)(v)

# StabG(Z)(vi)
,

where v1, . . . , vr are representatives for the G(Z)-orbits of (G(Q) · v) ∩ V(Z).
(There are finitely many by Theorem 2.9.)

LEMMA 2.17. For any v ∈ V(Z)reg. ss, we have m(v) =
∏

p m p(v).

Proof. For each g ∈ G(Q) such that gv ∈ V(Z), we have a natural bijection

StabG(Z)(gv)\StabG(Q)(v) = G(Z)\G(Z)g StabG(Q)(v),

which sends z ∈ StabG(Q)(v) to G(Z)gz. Let v1, . . . , vr ∈ V(Z) be
representatives for the set G(Z)\(G(Q) · v ∩ V(Z)). We then have

#G(Z)\{g ∈ G(Q) | gv ∈ V(Z)} =
r∑

i=1

# StabG(Z)(vi)\StabG(Q)(v) = m(v).

The same argument applies locally, to give #G(Zp)\{g ∈ G(Qp) | gv ∈
V(Zp)} = m p(v). The result now follows from the bijection of sets:

G(Z)\{g ∈ G(Q) | gv ∈ V(Z)} =
∏

p

G(Zp)\{g ∈ G(Qp) | gv ∈ V(Zp)}.

The injectivity follows from the fact that G(Z) = G(Q)∩G(Ẑ); the surjectivity
follows from the fact (see Theorem 2.7) that G(A∞) = G(Q)G(Ẑ).

3. Counting points

In this section, we come to the problem of counting points in V(Z) up
to G(Z)-equivalence. We continue with the notation and assumptions of
the previous section; thus we have a semi-simple group G acting on the
representation V , and we have fixed integral structures V and B on the spaces
V and B = V//G, respectively. The height function H is defined on B(R). If
A ⊂ V(Z) is any subset, then we write Airr for the subset of Q-irreducible points
of A.

In Section 2.9, we constructed open semi-algebraic subsets L ⊂ {b ∈ B(R) |
∆(b) 6= 0, H(b) = 1} and sections s : L → V (R) of π ; fix one of these. Let
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Λ = R>0; then the natural product map L ×Λ→ B(R) is an open immersion.
We will prove the following.

THEOREM 3.1. There exist constants C, δ > 0, not depending on the choice of
L, such that

#G(Z)\{v ∈ [G(R) ·Λ · s(L)] ∩ V(Z)irr | H(v) < X}
6 C · vol([1, X 1/72

] · L)+ O(X 7/12−δ).

The rest of this section is devoted to the proof of this theorem. We also
deduce below a slight extension (Theorem 3.8), where we impose congruence
conditions at finitely many primes; this will be the version used in applications
to the arithmetic of algebraic curves.
REMARK 3.2. The constant C is the price we pay for using a Siegel set instead
of a true fundamental domain, and not keeping track of the orders of stabilizers.
Since we seek only qualitative results, this is not a problem for us. One could
easily make the leading term here exact by the systematic use of multisets, as in
[BG, Section 10]. We emphasize that we do not use multisets here.

3.1. Preliminary reductions. Let S = ω · Tc · K ⊂ G(R) be as in
Theorem 2.7; in particular, we have G(Z) · S = G(R). It follows that every
element of (G(R)·Λ·s(L))∩V(Z) is G(Z)-conjugate to an element of S·Λ·s(L).
We obtain

#G(Z)\{v ∈ (G(R) ·Λ · s(L)) ∩ V(Z)irr | H(v) < X}
6 #(S · [1, X 1/72

] · s(L) ∩ V(Z)irr).
The same estimate holds if S is replaced by any right translate Sh, h ∈ G(R).
Accordingly, we fix a semi-algebraic subset G0 ⊂ G(R) × Λ, compact and of
non-empty interior, and such that K · G0 = G0. In order to simplify some later
formulas, we assume that the projection of G0 onto Λ is contained in [1, K0]

for some constant K0 > 1, and that vol(G0) = 1. (A pleasant choice is G0 =

KAC K × [1,C] for some C > 1, where AC = {t ∈ T θ (R)0 | ∀a ∈ SG, 1 6
a(t) 6 C}.) If A ⊂ V(Z) is any subset and X > 1, we define (following [BS,
Section 2.3])

N (A, X) =
∫

h∈G0

#(Sh ·Λ · s(L) ∩ {v ∈ Airr
| H(v) < X}) dh

and

N ∗(A, X) =
∫

h∈G0

#(Sh ·Λ · s(L) ∩ {v ∈ A | H(v) < X}) dh.
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We observe that both N (A, X) and N ∗(A, X) are additive in A, in the obvious
sense. The following is now clear.

LEMMA 3.3. Let A ⊂ V(Z) be a G-invariant subset. Then

#G(Z)\{v ∈ (G(R) ·Λ · s(L)) ∩ Airr
| H(v) < X} 6 N (A, X)

and

#G(Z)\{v ∈ (G(R) ·Λ · s(L)) ∩ A | H(v) < X} 6 N ∗(A, X).

3.2. Bhargava’s trick. We now introduce a beautiful trick due to Bhargava
that gives a new way to estimate the expressions N (A, X) and N ∗(A, X) above.

LEMMA 3.4. Let A ⊂ V(Z) be a subset. Given X > 1, n ∈ N (R), t ∈ T θ (R),
and λ ∈ Λ, define E(n, t, λ, X) = ntλG0s(L) ∩ {v ∈ V (R) | H(v) < X}. Then

N (A, X) 6 26
∫

g∈ωTcΛ

#[E(n, t, λ, X) ∩ Airr
]δ(t)−1 dn dt d×λ

and
N ∗(A, X) 6 26

∫
g∈ωTcΛ

#[E(n, t, λ, X) ∩ A]δ(t)−1 dn dt d×λ.

The Haar measure on G(R) is as in Section 2.7, and we write d×λ = dλ/λ for
the standard Haar measure on Λ = R>0.

Proof. It suffices to treat the case of N ∗(A, X), when A = {a} consists of a single
element. If either a is not conjugate under G(R) × Λ into s(L), or H(a) > X ,
then both sides of the above inequality are 0. Otherwise, let (g1, λ0), . . . , (gk,

λ0) ∈ G(R)×Λ be the elements such that a ∈ giλ0s(L). We then have

N ∗(A, X) =
∫

h∈G0

1a∈ShΛ·s(L) dh 6
k∑

i=1

vol({h ∈ G0 | (gi , λ0) ∈ ShΛ}).

This last sum becomes

k∑
i=1

∫
λ∈Λ

∫
g∈S

1g∈(gi ,λ0)G−1
0

dg d×λ 6 k
∫
λ∈Λ

∫
g∈S

1a∈(g,λ)G0s(L) dg d×λ.

Finally, we use the Iwasawa decomposition (see Lemma 2.12) and the fact that
G0 = K G0 to conclude that this last expression equals
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k
∫
λ∈Λ

∫
g∈S

1a∈ntkλG0s(L)δ(t)−1 dk dn dt d×λ

= k
∫
λ∈Λ

∫
n∈ω

∫
t∈Tc

1a∈E(n,t,λ,X)δ(t)−1 dn dt d×λ.

Since k is at most 26, this completes the proof.

We will make use of the following result of Davenport, slightly extended by
Bhargava [BG, Proposition 26].

PROPOSITION 3.5. Let R ⊂ Rn be a bounded semi-algebraic subset, being
defined by at most k polynomial inequalities of degree at most l. Let R′ denote
the image of R under any unipotent linear transformation. Then the number of
integer lattice points in R′ is

vol(R)+ O(sup{vol(R), 1}),

as R runs over all projections of R to a j-dimensional coordinate hyperplane,
1 6 j 6 n − 1. The implied constant depends only on n, k, and l.

3.3. Cutting off the cusp. We now write a0 ∈ Φ
+

V for the restriction to T θ of
the highest root of H , as in Section 2.3. We write S(a0) ⊂ V(Z) for the subset
of points v = v0 +

∑
a∈ΦV

va with va0 = 0.

PROPOSITION 3.6. There exists δ > 0 such that N (S(a0), X) = O(X 7/12−δ).

In fact, the argument shows that one can take δ = 1/72.

Proof. If M0,M1 ⊂ ΦV ∪ {0}, we define S(M0,M1) = {v ∈ V(Z) | ∀a ∈ M0,

va = 0; ∀a ∈ M1, va 6= 0}. We refer to a pair of subsets M0,M1 ⊂ ΦV ∪ {0}
such that M1 ⊂ (ΦV ∪ {0}) − M0 as a cusp datum. To prove the proposition,
it is enough to write down a collection C of cusp data satisfying the following
conditions.

• If v ∈ S(a0)
irr, then there exists (M0,M1) ∈ C such that v ∈ S(M0,M1).

• If (M0,M1) ∈ C, then N ∗(S(M0,M1), X) = O(X 7/12−δ) for some δ > 0.

According to Lemma 2.6, S(M0,M1)
irr is empty if any of the following

conditions holds.
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(1) M0 = Φ
+

V − SV and M1 = SV .

(2) There exists a proper subset S′ ⊂ S such that Φ+V −Φ
+

V,S′ ⊂ M0.

(3) There exists ai ∈ SG such that M0 contains all a ∈ ΦV ∪ {0} such that
nai (a) > 0.

The union of these conditions is hereditary, in the following sense: if (M0,M1)

and (M ′0,M ′1) are cusp data such that M0 ⊂ M ′0, and (M0,M1) satisfies one
of these conditions, then so does (M ′0,M ′1). This is obvious if M0 satisfies the
second or third condition. On the other hand, it is easy to see that, if M0 satisfies
the first condition, then M ′0 satisfies either the first or second condition.

This suggests the following inductive procedure. First, if M0 ⊂ ΦV ∪ {0}, we
write λ(M0) ⊂ ΦV ∪ {0} for the set of upper bounds of (ΦV ∪ {0}) − M0 in the
natural partial order of ΦV ∪ {0}:

λ(M0) = {a ∈ (ΦV ∪ {0})− M0 | ∀b ∈ (ΦV ∪ {0})− M0, b > a ⇒ b = a}.

One can easily check using the figures in Section 5 that λ(Φ+V − SV ) = SV . We
now generate a collection C of cusp data as follows.

(1) In step 1, we create the cusp datum ({a0}, λ({a0})).

(2) In step n + 1, we create new cusp data for each cusp datum at step n. If
(M0,M1) is a cusp datum at step n, and we enumerate M1 = {b1, . . . , bs},
then the new cusp data created are (M0 ∪ {bi}, λ(M0 ∪ {bi})), i = 1, . . . , s.

(3) To finish step n + 1, we remove duplicates and delete any newly created
cusp data that satisfy any of the three reducibility conditions above.

(4) The procedure terminates when no new cusp data are created at step n + 1.

The result of running this procedure is given in Section 5 below. It is clear that,
if v ∈ S(a0)

irr, then there will exist exactly one cusp datum (M0,M1) in C such
that v ∈ S(M0,M1). It remains to show that, for each (M0,M1) ∈ C, there exists
δ > 0 such that N ∗(S(M0,M1), X) = O(X 7/12−δ). We will establish this by a
case-by-case check.

Choose for each a ∈ ΦV a generator ea of the free rank-1 Z-module Va , and
let e0,0, e0,1 be a basis of V0. Let ‖ · ‖ denote the supremum norm of V (R) with
respect to this basis. Fix also a constant J > 0 such that ‖v‖ 6 J for all v ∈
ω · G0 · s(L).
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Let (M0,M1) ∈ C be a cusp datum. If the set S(M0,M1) ∩ E(n, t, λ, X) is
non-empty, then for all a ∈ M1 we have λa(t) > 1/J (since there exists v ∈ E(n,
t, λ, X) such that ‖va‖ > 1). We also have

∏
a∈ΦV

a(t) = 1 for t ∈ T θ (R). In
particular, if we write VM0 ⊂ V for the subspace given by the equations va = 0,
a ∈ M0, and VM0,M1 ⊂ VM0(R) for the subset given by ‖va‖ > 1, a ∈ M1, we
obtain the following estimate (volumes being taken inside VM0(R)):

vol(E(n, t, λ, X) ∩ VM0,M1)� λ42−#M0
∏

a∈M0

a(t)−1. (3.1)

Any element a ∈ (ΦV ∪ {0}) − M0 can be written as a = b −
∑4

i=1 ni ai for
some b ∈ M1 and integers ni > 0. It follows from the definition of the Siegel
set S = ω · Tc · K that

λa(t) = λb(t)
4∏

i=1

ai(t)−ni > c−
∑4

i=1 niλb(t)� 1.

Consequently, the volume of any projection of E(n, t, λ, X) ∩ VM0,M1 onto a
coordinate hyperplane of VM0(R) satisfies the same estimate (3.1).

Let T (M0,M1, λ) ⊂ Tc denote the subset defined by the inequalities λa(t) >
1/J , a ∈ M1. To be completely explicit, we have

T (M0,M1, λ) = {t ∈ T θ (R)0 | ∀a ∈ SG, a(t) 6 c; ∀a ∈ M1, λa(t) > 1/J }.

The above remarks, together with Proposition 3.5, imply that we have

N ∗(S(M0,M1), X)�
∫

g∈ωTcΛ

#(S(M0,M1) ∩ E(n, t, λ, X))δ(t)−1 dn dt d×λ

�

∫ X1/72

λ=K−1
0

λ42−#M0

∫
t∈T (M0,M1,λ)

∏
a∈Φ(G,T θ )+

a(t)

×

∏
a∈M0

a(t)−1 dt d×λ.

We have thus reduced the proposition to showing that for each cusp datum S(M0,

M1) ∈ C we have∫
t∈T (M0,M1,λ)

∏
a∈Φ(G,T θ )+

a(t)
∏

a∈M0

a(t)−1 dt = O(λ#M0−δ), (3.2)

for some δ > 0. This will be established in Section 5.
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3.4. The main body, and the proof of Theorem 3.1.

PROPOSITION 3.7. Let N > 1 be an integer, and let v ∈ V(Z). Let Av,N =
v + NV(Z). Then there exists δ > 0 such that

N ∗(Av,N − S(a0), X) 6
|W1|∞ vol(S)

N 42
· vol([1, X 1/72

] · L)+ O(X 7/12−δ).

Proof. Let F(n, t, λ, X) = {v ∈ E(n, t, λ, X) | va0 6= 0}. If V(Z) ∩ F(n, t, λ,
X) 6= 0, then, just as in the proof of Proposition 3.6, we have λa0(t) > 1/J ,
and consequently #V(Z)∩ F(n, t, λ, X) = vol(F(n, t, λ, X))+ O(λ41a0(t)−1).
More generally, we have #Av,N ∩ F(n, t, λ, X) = N−42 vol(F(n, t, λ, X)) +
O(λ41a0(t)−1). We obtain

N ∗(Av,N − S(a0), X) 6
∫
λ∈Λ

∫
g∈ωTc

N−42 vol(F(n, t, λ, X)) δ(t)−1dn dt d×λ

+

∫ X1/72

λ=K−1
0

∫
g∈ωTc

O(λ41a0(t)−1) δ(t)−1dn dt d×λ. (3.3)

It is easy to see that the second term of (3.3) is O(X 7/12−1/72). On the other hand,
the first term is at most∫

λ∈Λ

∫
g∈ωTc

N−42 vol(E(n, t, λ, X)) δ(t)−1dn dt d×λ

= N−42
∫
λ∈Λ

∫
g∈S

∫
v∈V (R)

∫
h∈G0

1v∈gλhs(L), H(v)<X dh dg dv d×λ.

By Proposition 2.14, this expression is bounded above by

|W1|∞

N 42

∫
λ∈Λ

∫
g∈S

∫
b∈L

∫
h∈G0

1H(gλhs(b))<X dh db dg d×λ

=
|W1|∞

N 42

∫
h∈G0

vol(S) vol([1, X 1/72
] · L) dh + O(1).

The result follows.

We now observe that N (V(Z), X) 6 N ∗(V(Z) − S(a0), X) + N (S(a0), X).
Theorem 3.1 follows on combining Lemma 3.3 and Propositions 3.6 and 3.7.

3.5. Counting with congruence conditions. In the applications below, the
following slightly more refined version of Theorem 3.1 will be useful. To state it,
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we must first introduce some notation. Let p1, . . . , ps be prime numbers, and let
Vp1, . . . , Vps be G(Zpi )-invariant open compact subsets of V(Zp1), . . . ,V(Zps ),
respectively.

THEOREM 3.8. There exist constants C, δ > 0, not depending on s or the choice
of Vpi , such that

#G(Z)\{v ∈ V(Z)irr ∩ (Vp1 × · · · × Vps ) | H(v) < X}

6 C
s∏

i=1

vol(Vpi )X
7/12
+ O(X 7/12−δ).

Proof. Let L1, . . . , Lr ⊂ B(R) be the sets constructed in Section 2.9, with
corresponding sections si : L i → V (R). Let A = V(Z) ∩ (Vp1 × · · · × Vps ).
We can find an integer N > 1 and vectors v1, . . . , vk ∈ V(Z) such that A is the
disjoint union of the sets vi + NV(Z) = Avi ,N . We have k/N 42

=
∏s

i=1 vol(Vpi ).
The result now follows by summing the result of Propositions 3.6 and 3.7 over
L = L1, . . . , Lr and v = v1, . . . , vk , and applying Lemma 3.3 once more.

We now record a particular case of this theorem as a corollary. Let p1, . . . ,

ps be primes congruent to 1 modulo 6. By combining Propositions 2.15 and
2.16, we obtain open compact subsets Bpi ⊂ B(Zpi ) satisfying the following
conditions.

(1) Let b ∈ Bpi . Then # StabG(Qpi )
(κb) = 4.

(2) Let Vpi = (G(Qpi )·κ(Qpi ))∩V(Zpi )∩π
−1(Bpi ). Then Vpi is open compact,

and we have

vol(Vpi ) = |W0|pi

m pi (v) · vol(Bpi ) · vol(G(Zpi ))

4
,

where m pi (v) ∈ Z is independent of the choice of v ∈ Vpi .

If A ⊂ V(Z) is a G(Z)-invariant subset, we write G(Q)\A for the quotient by
the equivalence relation v ∼ v′ if there exists γ ∈ G(Q) such that γ v = v′.

COROLLARY 3.9. With notation as above, let A = V(Z)∩(Vp1×· · ·×Vps ). Then
there exist constants C, δ > 0, not depending on s or the choice of p1, . . . , ps ,
such that

#G(Q)\{v ∈ Airr
| H(v) < X)} 6

C
4s

s∏
i=1

vol(Bpi )X
7/12
+ O(X 7/12−δ).
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Proof. If v ∈ V(Z)reg. ss, define n(v) = #G(Z)\(G(Q) · v∩V(Z)). We then have

#G(Q)\{v ∈ A | H(v) < X)} =
∑

v∈G(Z)\A
H(v)<X

1
n(v)

6 26
∑

v∈G(Z)\A
H(v)<X

1
m(v)

,

since n(v) 6 m(v) 6 26n(v). Using Lemma 2.17, we obtain the inequality
m(v)−1 6

∏s
i=1 m pi (v)

−1; hence

#G(Q)\{v ∈ A | H(v) < X)} 6 26C
s∏

i=1

vol(Vpi )

m pi (v)
X 7/12

+ O(X 7/12−δ)

= 26C
s∏

i=1

|W0|pi vol(G(Zpi )) · vol(Bpi )

4
X 7/12

+ O(X 7/12−δ),

by Theorem 3.8. Absorbing terms into the constant now gives the result in the
form stated above.

4. Application to 2-Selmer sets

We now use the results of the preceding sections to deduce our main theorems.
Let us write B for the affine space over Z with coordinates p2, . . . , p12, and let B
denote the fiber of B over Q. We consider the following family of affine curves
over B:

X : y3
= x4

+ y(p2x2
+ p5x + p8)+ p6x2

+ p9x + p12. (4.1)

We write Y → B for the natural compactification of B as a family of plane
quartic curves, and X → B and Y → B for the Q-fibers of these families.

LEMMA 4.1. Let k/Q be a field. The smooth members over k of the family Y →
B are in bijection with the set of isomorphism classes of triples (C, P∞, t), where
C is a smooth, projective, connected and non-hyperelliptic curve over k of genus
3, P∞ ∈ C(k) is a rational point such that 4P∞ is a canonical divisor, and
t ∈ TP∞(C) is a non-zero element of the Zariski tangent space at P∞. If λ ∈ k×,
then the triple (C, P∞, λt) has coordinates λi pi(C, P∞, t).

Proof. This follows from a theorem of Pinkham: let Γ be the subsemigroup of
(N,+) generated by 3 and 4. The family X → B is a semi-universal deformation
of the monomial singularity SpecQ[Γ ]. If C is a non-hyperelliptic genus 3 curve
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and P∞ ∈ C(k) is a point such that 4P∞ is a canonical divisor, then P∞ is
a Weierstrass point with Weierstrass semigroup Γ . Pinkham’s theorem relates
X → B and the family of genus 3 curves described above. (See [NM04] for
more details.)

We now give a proof of the lemma that is essentially a working-out of
Pinkham’s theorem in this special case. If (C, P∞, t) is a triple as above, then we
calculate the following (using that C is non-hyperelliptic and 4P∞ is canonical):

n 0 1 2 3 4 5 6 7 8 9 10 11 12
dimk H 0(C,OC(n P∞)) 1 1 1 2 3 3 4 5 6 7 8 9 10.

We choose x ∈ H 0(C,OC(3P∞)) with a pole of exact order 3 at P∞, and y ∈
H 0(C,OC(4P∞)) with a pole of exact order 4. Let z be a coordinate at P∞ with
dz(t) = 1; then we can choose x and y so that their Laurent expansions at P∞
are respectively x = z−3

+· · · and y = z−4
+· · · . Then x is uniquely determined

by (C, P∞, t) up to the addition of constants, and y is uniquely determined up to
the addition of constants and constant multiples of x .

The 11 monomials 1, x, y, x2, xy, y2, x3, x2 y, xy2, x4, y3 lie in the ten-
dimensional space H 0(C,OC(12P∞)). The first nine of these monomials are
linearly independent and lie in H 0(C,OC(11P∞)). It follows that they must
satisfy a unique linear relation of the form

y3
= x4

+ q1xy2
+ q2x2 y + q3x3

+ q4 y2
+ q5xy + q6x2

+ q8 y + q9x + q12.

At this point, we still have the freedom to replace x by x + a and y by y + bx +
c for any constants a, b, c ∈ k. It is now easy to check that there is a unique
choice of a, b, c ∈ k for which q1 = q3 = q4 = 0, giving an equation of type
(4.1). We have shown that any triple (C, P∞, t) determines uniquely an equation
of this type; conversely, if p2, . . . , p12 ∈ k and the projective closure C of the
equation (4.1) is smooth, then it is easy to check that C is non-hyperelliptic
of genus 3, with a unique point P∞ at infinity, and 4P∞ is a canonical divisor
(equivalently, P∞ is a hyperflex in the canonical embedding). We recover a non-
zero tangent vector t ∈ TP∞(C) by the requirement that the functions x, y ∈ k(C)
have Laurent expansions x = z−3

+ · · · , y = z−4
+ · · · at P∞, where z is any

coordinate at P∞ satisfying dz(t) = 1. This completes the proof.

We define the height of an element b ∈ B(R) by the formula H(b) =
supi |pi(b)|72/ i . The function H is homogeneous of degree 72: for any λ ∈ R×,
H(λb) = |λ|72 H(b). We write F0 ⊂ B(Z) for the set of points b such that Yb is
smooth over Q. We say that a subset F ⊂ F0 is defined by congruence conditions
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if there exist primes p1, . . . , ps and open compact subsets Bpi ⊂ B(Zpi ), i = 1,
. . . , s, such that F = F0 ∩ (Bp1 × · · · × Bps ). The following is an immediate
consequence of Proposition 3.5.

PROPOSITION 4.2. Let F ⊂ F0 be a subset defined by congruence conditions,
as above. Then there exists δ > 0 such that

#{b ∈ F | H(b) < X} =
s∏

i=1

vol(Bpi )X
7/12
+ O(X 7/12−δ).

We can now state our main theorems.

THEOREM 4.3. Let F ⊂ F0 be a subset defined by congruence conditions. Then

lim sup
X→∞

∑
b∈F

H(b)<X
# Sel2(Yb)∑

b∈F
H(b)<X

1
<∞.

THEOREM 4.4. Let ε > 0. Then there exists a subset F ⊂ F0 defined by
congruence conditions such that

lim sup
X→∞

∑
b∈F

H(b)<X
# Sel2(Yb)∑

b∈F
H(b)<X

1
< 1+ ε.

Consequently, we have

lim inf
X→∞

#{b ∈ F | H(b) < X, # Sel2(Yb) = 1}
#{b ∈ F | H(b) < X}

> 1− ε.

The proofs of Theorems 4.3 and 4.4 are very similar, so we give here only the
proof of the second result.

Proof of Theorem 4.4. Let p1, p2, . . . be a strictly increasing sequence of primes
congruent to 1 mod 6. For each i > 1, let Bpi ⊂ B(Zpi ) and Vpi ⊂ V(Zpi ) be
the open compact subsets obtained by combining Propositions 2.15 and 2.16;
see Corollary 3.9. If s > 0, let F ⊂ F0 be the family defined by imposing the
congruence conditions Bpi ⊂ B(Zpi ) of Proposition 2.16 at the primes p1, . . . ,

ps , and let A ⊂ V(Z) be the corresponding set of points. Applying Theorem 2.10
and Corollary 3.9, we find that there are constants C, δ > 0, not depending on s,
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such that∑
b∈F

H(b)<X

(# Sel2(Yb)− 1) 6 #G(Q)\{v ∈ Airr
| H(v) < N 72

3 X}

6 C
s∏

i=1

vol(Bpi )

4
(N 72

3 X)7/12
+ O(X 7/12−δ).

Combining this with Proposition 4.2, we obtain∑
b∈F

H(b)<X
(# Sel2(Yb)− 1)∑

b∈F
H(b)<X

1
6

N 42
3 C + O(X−δ)
4s + O(X−δ)

.

Choosing s to be sufficiently large and taking the limit X → ∞ now gives the
result.

REMARK 4.5. Let us say that a point b ∈ F0 is minimal if it satisfies the
following conditions.

(1) There do not exist a prime p and c ∈ B(Z) such that b = p · c.

(2) We have p5(b) > 0, and if p5(b) = 0 then p9(b) > 0.

It follows from Lemma 4.1 that any pair (C, P∞) is represented by a unique
minimal b ∈ F0. The analogs of Theorems 4.3 and 4.4 for the averages taken
over the set of minimal equations follow immediately on noting that (with
appropriately chosen congruence conditions) a positive proportion of points
b ∈ F0 are minimal.

We now use the above theorems to deduce some Diophantine consequences
for the curves Yb. We begin with some preparatory lemmas.

LEMMA 4.6. There exists an open subset U ⊂ B(Z3) such that, for all b ∈ U,
∆(b) 6= 0 and the image of the map Xb(Z3) → Jb(Q3)/2Jb(Q3) is non-trivial
and does not contain the identity.

Compare Proposition 2.15.

Proof. Consider the curve Xb0 given by the equation y3
= x4
−2y. Then∆(b0) 6=

0, and there is map from Yb0 to the elliptic curve E over Z3 which is the projective
closure of the affine piece E0

: z2
= w3

+2w. (The map is given by (w, z) = (y,
x2).) The curve E has good reduction, and E(F3) ∼= Z/2Z×Z/2Z. In particular,
2E(F3) is trivial, E0(F3)= E(F3)−{OE}, and the map E0(Z3)→ E(Q3)/2E(Q3)

factors
E0(Z3)→ E0(F3) ↪→ E(F3) ∼= E(Q3)/2E(Q3).
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By Albanese functoriality, there is a commutative diagram

Xb0(Z3) //

��

Jb0(Q3)/2Jb0(Q3)

��
E0(Z3) // E(Q3)/2E(Q3)

It follows that the image of Xb0(Z3) in Jb0(Q3)/2Jb0(Q3) does not contain the
identity. To finish the proof of the lemma, we take U to be any sufficiently small
open neighborhood of b0 in B(Z3).

LEMMA 4.7. (1) Let p be a prime. Then there exists an open compact subset
U ⊂ B(Zp) such that, for every b ∈ U, ∆(b) 6= 0 and Xb(Zp) 6= ∅.

(2) There exists an integer M such that, for all primes p > M, and for all
b ∈ B(Zp), Xb(Zp) 6= 0.

Proof. It follows from Hensel’s lemma that, if b ∈ B(Zp), x ∈ Xb(Fp), and
Xb,Fp is smooth at x , then x is the reduction modulo p of a point x ∈ Xb(Zp);
in particular, Xb(Zp) is not empty. It is easy to write down for every prime p a
point b ∈ B(Fp) such that Xb is smooth and has Fp-rational points. This proves
the first part of the lemma.

For the second part, we observe that the fibers of the morphism Y → B
are geometrically irreducible. Indeed, this morphism is proper, flat, and of
finite type, which implies that the subset of points of B where the fibers are
geometrically irreducible is open; moreover, this subset is stable by the action of
the natural contracting action of Gm on B, and contains the point 0 ∈ B(Fp).
It follows from the Weil bounds that, for p sufficiently large, and for every
b ∈ B(Fp), Xb(Fp) contains a point at which Xb is smooth. This completes the
proof of the lemma.

THEOREM 4.8. Let ε > 0. Then there exists a subset F ⊂ F0 defined by
congruence conditions satisfying the following conditions.

(1) For every b ∈ F , and for every prime p, Xb(Zp) 6= ∅.

(2) We have

lim inf
X→∞

#{b ∈ F | H(b) < X, Xb(Z(3)) = ∅}
#{b ∈ F | H(b) < X}

> 1− ε.

(We recall that Z(3) ⊂ Q denotes the subring of rational numbers of
denominator prime to 3.) In particular, a positive proportion of b ∈ F0 have the
property that, for every prime p, Xb(Zp) 6= ∅, yet Xb(Z) = ∅.
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Proof. We choose for every prime p an open compact subset Up ⊂ B(Zp)

satisfying the following conditions.

• For every prime p, and every b ∈ Up, the set Xb(Zp) is non-empty.

• If p = 3, then Up satisfies the conclusion of Lemma 4.6.

• There exists an integer M such that, for all p > M , Up = B(Zp).

(We can make such a choice because of Lemma 4.7.) Let p1, p2, . . . be a
strictly increasing sequence of primes such that, for each i > 1, pi > M and
pi ≡ 1 mod 6, and write Bpi ⊂ B(Zpi ) for the set that results from applying
Propositions 2.15 and 2.16. If s > 1 is an integer, then we define Fs ⊂ F0 to be
the subset defined by the congruence conditions Up (p < M) and Bp1, . . . , Bps .

Arguing as in the proof of Theorem 4.4, we find that for any ε > 0 we can
choose s > 1 such that

lim inf
X→∞

#{b ∈ Fs | H(b) < X, # Sel2(Yb) = 1}
#{b ∈ Fs | H(b) < X}

> 1− ε.

We claim that, for each b ∈ Fs such that # Sel2(Yb) = 1, we have Xb(Z(3)) = ∅.
Indeed, for each b ∈ Fs , there is a commutative diagram

Xb(Z(3)) //

��

Xb(Z3)

��
Sel2(Yb) // Jb(Q3)/2Jb(Q3)

Because of our choice of U3, the image of the composite of the top and right-hand
arrows does not contain the identity. Because Sel2(Yb) is trivial, the composite
of the left-hand and bottom arrows has image contained in the trivial subgroup.
It follows that Xb(Z(3)) must be empty. This completes the proof.

5. The proof of Proposition 3.6

We take up the notation and assumptions of Section 3. In the two figures
on this page, we display the characters a ∈ X ∗(T θ ) which appear in the
weight decomposition of V . There are 41 weights; each weight space is one-
dimensional, except for the weight space of the trivial character, which is two-
dimensional. In the table on the left, we list the characters that appear, giving
each a number. In the figure on the right, we display the Hasse diagram of the set
ΦV ∪ 0, now identified with 1, . . . , 41, with respect to the natural partial order
on this set.
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# Weight
1 1 2 3 2
2 1 2 3 1
3 1 2 2 1
4 1 1 2 1
5 1 2 1 1
6 1 1 1 1
7 1 0 1 1
8 1 2 1 0
9 0 1 2 1

10 0 1 1 1
11 1 1 1 0
12 1 1 0 0
13 0 0 1 1
14 1 0 1 0
15 0 1 1 0
16 1 0 0 0
17 0 1 0 0
18 −1 0 1 1
19 0 0 1 0
20 1 0 −1 0
21 0 0 0 0
22 −1 0 1 0
23 0 0 −1 0
24 1 0 −1 −1
25 0 −1 0 0
26 −1 0 0 0
27 0 −1 −1 0
28 −1 0 −1 0
29 0 0 −1 −1
30 −1 −1 0 0
31 −1 −1 −1 0
32 0 −1 −1 −1
33 0 −1 −2 −1
34 −1 −2 −1 0
35 −1 0 −1 −1
36 −1 −1 −1 −1
37 −1 −2 −1 −1
38 −1 −1 −2 −1
39 −1 −2 −2 −1
40 −1 −2 −3 −1
41 −1 −2 −3 −2

1

2

3

5 4

8 6 9

11 7 10

12 14 15 13

17 16 19 18

20 21 22

24 23 26 25

29 27 28 30

32 35 31

33 36 34

38 37

39

40

41
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In the following table, we give the result of running the inductive procedure of
Proposition 3.6. We recall that this procedure gives a collection C of cusp data;
by definition, a cusp datum is a pair (M0,M1) of subsets of ΦV ∪ {0} such that
M1 ⊂ (ΦV∪{0})−M0. For each cusp datum, we must compute the corresponding
cusp integral (3.2), and show that it is O(λ#M0−δ) for some δ > 0. For the reader’s
convenience, we recall that this integral is given by the formula∫

t∈T (M0,M1,λ)

∏
a∈Φ(G,T θ )+

a(t)
∏

a∈M0

a(t)−1 dt =
∫

t∈T (M0,M1,λ)

w(t) dt, (5.1)

where

T (M0,M1, λ)= {t ∈ T θ (R)0 | ∀i = 1, . . . , 4, ai(t)6 c; ∀a ∈ M1, λa(t)> 1/J }.
(5.2)

These integrals can be evaluated in elementary terms, and this is one way to
finish the proof of the proposition. In the last column of the table below, we have
written the corresponding integrand in (5.1) as a vector w(t) = tw1

1 tw2
2 tw3

3 tw4
4 ,

where ti = ai(t). Thus, for example, the cusp integral in the first column can be
rewritten as∫ c

t1=0

∫ c

t2=0

∫ c

t3=0

∫ c

t4=0
t7
1 t12

2 t15
3 t8

4 · 1λt1t2
2 t3

3 t4>1/J · d
×t1 d×t2 d×t3 d×t4.

As the table has 68 rows, the procedure just described involves calculating 68
integrals. We now discuss a trick, due to Bhargava (see the proof of [Bha10,
Lemma 11]), which allows one to reduce the amount of computation required to
bound the integrals (5.1). Namely, let (M0,M1) be a cusp datum appearing in the
table below. Given a function p : M1 → R>0, we have

∏
a∈M1

(λa(t))p(a)
� 1

inside T (M0,M1, λ), and hence∫
t∈T (M0,M1,λ)

w(t) dt � λ
∑

a∈M1
p(a)

∫
t∈T (M0,M1,λ)

w(t) ·
∏

a∈M1

a(t)p(a) dt. (5.3)

If the exponent of each ti (i = 1, . . . , 4) in the function w(t) ·
∏

a∈M1
a(t)p(a) is

(strictly) positive, then the second integral in (5.3) is bounded independently of
λ, and we obtain ∫

t∈T (M0,M1,λ)

w(t) dt � λ
∑

a∈M1
p(a)
.

The problem of bounding the cusp integral (5.1) is thus reduced to the problem
of finding a function p : M1→ R>0 which satisfies the following two conditions.
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• We have
∑

a∈M1
p(a) < #M0.

• For each i = 1, . . . , 4, we have wi +
∑

a∈M1
p(a) · nai (a) > 0.

It is easy to check (especially using a computer) that such a function p exists for
all of the cusp data appearing in the table below. This completes our proof of the
proposition.

As an example, we discuss the cusp datum appearing in the final row of our
table. We must find non-negative real numbers p13, p17, p24 such that p13+ p17+

p24 < 16 and the vector

(−5+ p24,−3+ p17,−1+ p13 − p24, p13 − p24)

has strictly positive entries. It is not possible to choose the pi all to be integers,
but one possible choice is (p13, p17, p24) = (6 1

2 , 3 1
4 , 5 1

4 ).

M0 M1 #M0 Weight of integrand
1 2 1 7 12 15 8
1,2 3 2 6 10 12 7
1,2,3 4,5 3 5 8 10 6
1,2,3,4 5,9 4 4 7 8 5
1,2,3,5 4,8 4 4 6 9 5
1,2,3,4,5 6,8,9 5 3 5 7 4
1,2,3,4,9 5 5 4 6 6 4
1,2,3,5,8 4 5 3 4 8 5
1,2,3,4,5,6 7,8,9 6 2 4 6 3
1,2,3,4,5,8 6,9 6 2 3 6 4
1,2,3,4,5,9 6,8 6 3 4 5 3
1,2,3,4,5,6,7 8,9 7 1 4 5 2
1,2,3,4,5,6,8 7,9,11 7 1 2 5 3
1,2,3,4,5,6,9 7,8,10 7 2 3 4 2
1,2,3,4,5,8,9 6 7 2 2 4 3
1,2,3,4,5,6,7,8 9,11 8 0 2 4 2
1,2,3,4,5,6,7,9 8,10 8 1 3 3 1
1,2,3,4,5,6,8,9 7,10,11 8 1 1 3 2
1,2,3,4,5,6,8,11 7,9,12 8 0 1 4 3
1,2,3,4,5,6,9,10 7,8 8 2 2 3 1
1,2,3,4,5,6,7,8,9 10,11 9 0 1 2 1
1,2,3,4,5,6,7,8,11 9,12,14 9 −1 1 3 2
1,2,3,4,5,6,7,9,10 8,13 9 1 2 2 0
1,2,3,4,5,6,8,9,10 7,11 9 1 0 2 1
1,2,3,4,5,6,8,9,11 7,10,12 9 0 0 2 2
1,2,3,4,5,6,8,11,12 7,9 9 −1 0 4 3
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1,2,3,4,5,6,7,8,9,10 11,13 10 0 0 1 0
1,2,3,4,5,6,7,8,9,11 10,12,14 10 −1 0 1 1
1,2,3,4,5,6,7,8,11,12 9,14 10 −2 0 3 2
1,2,3,4,5,6,7,8,11,14 9,12 10 −2 1 2 2
1,2,3,4,5,6,7,9,10,13 8,18 10 1 2 1 −1
1,2,3,4,5,6,8,9,10,11 7,12,15 10 0 −1 1 1
1,2,3,4,5,6,8,9,11,12 7,10 10 −1 −1 2 2
1,2,3,4,5,6,7,8,9,10,11 12,13,14,15 11 −1 −1 0 0
1,2,3,4,5,6,7,8,9,10,13 11,18 11 0 0 0 −1
1,2,3,4,5,6,7,8,9,11,12 10,14 11 −2 −1 1 1
1,2,3,4,5,6,7,8,9,11,14 10,12 11 −2 0 0 1
1,2,3,4,5,6,7,8,11,12,14 9,16 11 −3 0 2 2
1,2,3,4,5,6,8,9,10,11,12 7,15 11 −1 −2 1 1
1,2,3,4,5,6,8,9,10,11,15 7,12 11 0 −2 0 1
1,2,3,4,5,6,7,8,9,10,11,12 13,14,15 12 −2 −2 0 0
1,2,3,4,5,6,7,8,9,10,11,13 12,14,15,18 12 −1 −1 −1 −1
1,2,3,4,5,6,7,8,9,10,11,14 12,13,15 12 −2 −1 −1 0
1,2,3,4,5,6,7,8,9,10,11,15 12,13,14 12 −1 −2 −1 0
1,2,3,4,5,6,7,8,9,11,12,14 10,16 12 −3 −1 0 1
1,2,3,4,5,6,7,8,11,12,14,16 9,20 12 −4 0 2 2
1,2,3,4,5,6,8,9,10,11,12,15 7,17 12 −1 −3 0 1
1,2,3,4,5,6,7,8,9,10,11,12,13 14,15,18 13 −2 −2 −1 −1
1,2,3,4,5,6,7,8,9,10,11,12,14 13,15,16 13 −3 −2 −1 0
1,2,3,4,5,6,7,8,9,10,11,12,15 13,14,17 13 −2 −3 −1 0
1,2,3,4,5,6,7,8,9,10,11,13,14 12,15,18 13 −2 −1 −2 −1
1,2,3,4,5,6,7,8,9,10,11,13,15 12,14,18 13 −1 −2 −2 −1
1,2,3,4,5,6,7,8,9,10,11,14,15 12,13 13 −2 −2 −2 0
1,2,3,4,5,6,7,8,9,11,12,14,16 10,20 13 −4 −1 0 1
1,2,3,4,5,6,7,8,11,12,14,16,20 9,24 13 −5 0 3 2
1,2,3,4,5,6,7,8,9,10,11,12,13,14 15,16,18 14 −3 −2 −2 −1
1,2,3,4,5,6,7,8,9,10,11,12,13,15 14,17,18 14 −2 −3 −2 −1
1,2,3,4,5,6,7,8,9,10,11,12,14,15 13,16,17 14 −3 −3 −2 0
1,2,3,4,5,6,7,8,9,10,11,12,14,16 13,15,20 14 −4 −2 −1 0
1,2,3,4,5,6,7,8,9,10,11,13,14,15 12,18,19 14 −2 −2 −3 −1
1,2,3,4,5,6,7,8,9,11,12,14,16,20 10,24 14 −5 −1 1 1
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 16,17,18,19 15 −3 −3 −3 −1
1,2,3,4,5,6,7,8,9,10,11,12,13,14,16 15,18,20 15 −4 −2 −2 −1
1,2,3,4,5,6,7,8,9,10,11,12,14,15,16 13,17,20 15 −4 −3 −2 0
1,2,3,4,5,6,7,8,9,10,11,12,14,16,20 13,15,24 15 −5 −2 0 0
1,2,3,4,5,6,7,8,9,10,11,13,14,15,19 12,18 15 −2 −2 −4 −1
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,19 16,17,18 16 −3 −3 −4 −1
1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,20 13,17,24 16 −5 −3 −1 0
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