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As is well known, there is an intimate connection between geodesic 
flows and Hamiltonian sys tems . In fact, if g is a Riemannian, or 
pseudo-Riemannian met r ic on a manifold M (we think of M as q-space 
or the configuration space), we may define a smooth function T on the 

cotangent bundle T*M (q-p- space, or the phase space). This function is 
the kinetic energy of q, and locally is given by 

T (q, pj = | S g l j ( q ) p . P. 
g i , j 1 3 

where q = (q , . . . , q ) and p = (p , . . . , p ) and g has components g . 
1 n 

Using T as a Hamiltonian function, the associated flow (that i s , the global 
solution of Hamilton1 s equations) is exactly the geodesic flow; geodesies 
are obtained by projection to M. 

Conversely, Hamiltonian motion in a potential V and met r ic g, 
that i s , H = T + V, may be thought of as geodesic motion using the 

met r i c (e - V)g if e > V (q). This new met r ic is called the Jacobi me t r i c . 

Traditionally, the theory of c lass ica l mechanics and Riemannian 
geometry always assumes g and V are smooth functions. However, 
the most e lementary examples in fact a re not smooth; see below. One of the 
main reasons for the smoothness assumption was to guarantee existence 
of the flow (geodesies). This objection has now been removed. 

The purpose of this note is to explain in an expository fashion what 
changes a re necessa ry in the above theory to cover the non-smooth case . 
This new situation is quite different, although some interest ing observations 
can be made. 

The main theorem in the non-smooth theory is that if H = T + V is 
g 

singular only on a set of measure zero ( H is a distribution in general) , 
then there exists a measurable flow F : T*M — T*M defined almost 

t 
everywhere which can be assigned to H. This flow i s , in fact, the pointwise 
limit of smooth flows corresponding to smooth approximations of H. We 
shall denote the approximate quantities with a superscr ip t k. Thus 

F t
k ( m ) - F t ( m ) 
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for almost all t, m. Of course the smooth flows a re obtained in the 
usual manner . For the technical machinery needed to c a r r y out this 
p rog ram, see [2] . 

This theorem is an important resul t . It gives us, for the first t ime , 
a systemat ic method for investigating geodesies which a re allowed to have 
sharp c o r n e r s . 

The geodesic flow has a fundamental proper ty in common with the 
smooth case . That is , the length of the tangent to a geodesic (wherever 
the geodesic has one), is of constant length. This cor responds exactly 
to conservation of energy, and holds even when we c ross over s ingular i t ies . 
To clarify this and other proper t ies below, we consider two examples : 

2 
1. For q space take R the Euclidean plane so that q - p space 

4 
is R . Employ the Euclidean met r i c for g. As a potential , let V be 

2 
a delta "function" spread uniformly along the q - ax i s . Roughly, 

1 2 1 
V ( q , q ) - ô(q ) . The corresponding motion in q-space (geodesies 
of the Jacobi "met r i c" ) is just the free motion of par t ic les reflecting 

2 
(elastically) from a "wall" along the q axis . The flow is undefined along 

2 
the q - ax i s . Note that the flow is continuous in t in the configuration 
component q, but not in the p component. This is a general phenomena 
proven below. 

2 
2. Again take M = R and g the Euclidean m e t r i c . This t ime 

define V by 

0 if q < 0 

1 
1 if q > 0 . 

V ( q d , q2) 

The flow on M is now the refract ion of par t ic les according to Snell ' s 
2 

law as they c ross the interface along the q - ax i s . 

These two examples i l lus t ra te how the var ia t ional theory of geodesies 
can go as t ray . In the f i rs t example the method essent ia l ly fails. That is , 
a path undergoing reflection does not ex t remize , more specifically minimize , 
the Lagrangian or Jacobi me t r i c integrated over the path. The Lagrangian 
is just L = T —V. For example, by pulling the reflection point slightly 

g 
away from the wall , dec reases the quantity 

1 
/ L ( q ( t ) , p ( t ) ) dt , 
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while the opposite motion increases it. On the other hand, the second 
example, as is welt known does have the ex t remal proper ty . What is 
the difference ? 

To answer this question, we make a definition which distinguishes 
the two c a s e s . We say a flow F of H = T + V is regular if and only 

if T and V are (locally) bounded functions and each two points q, q 
g 

can be joined by a smooth geodesic c (t) from the approximating system 
k k k k 

H = T + V which (i) minimizes its JLangrangian, and (ii) c (t) converge 
k 

as k -• oo to the geodesic of H. We also assume L -> L boundedly. 

Clear ly , example one is not regular , but the second is . Notice that 

although the flows F converge, this does not imply that geodesies with 

fixed endpoints converge. In fact, in example one, geodesies joining points 
on opposite sides of the wall diverge, and in the limit two such points 
cannot be joined by a geodesic. Here is an important difference with the 
smooth case . 

The basic fact is that in the regular case , we always retain the 

ex t remal proper ty . This is quite easy to see . In fact, if c (t) is an 
approximating geodesic and c (t) is any other curve, 

J L, (c (t ) ) dt < f L ( c ( t ) ) dt ; 

letting k -> oo and employing the dominated convergence theorem gives 

f L ( c ( t ) ) d t < f L ( c ( t ) ) dt. 

The curve c ( t ) and JL are not differentiable, but this st i l l makes sense , 
although the usual var ia t ional techniques fail. Another distinction between 
the examples is that we can define curvature in the second (it is a distribution), 
but not in the f irst . Again see [2] for the tools needed. 

Intuition developed in c lass ica l mechanics and Riemannian geometry 
suggests that the paths in configuration space (geodesies) should always be 
continuous, although the momentum p m a y b e discontinuous. (The paths 
need not be continuous with respect to the initial conditions. ) This is in 
fact t rue and is quite easy to see in this framework. We suppose 

H = T + V where g are (locally) bounded functions and V may be 
g 

s ingular . (Both examples satisfy this . ) F rom the equations for the 
approximating sys tems we have 

t . . 
q 'ft) = 2 / g 1 J ( q ( s ) k ) k p . ( s ) k d s 

j 0 J 
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where i, j re fers to coordinates . Letting k -> oo gives, by dominated 
convergence, 

t . . 
q l ( t ) = S / g 1 J ( q ( s ) ) p . ( s ) ds . 

j 0 J 

Therefore , q (t) is continuous in t, as to be shown. 

Fur ther applications of these ideas may be found in [2], The smooth 
case is done in [1] and background for geodesies is contained in [3] . 

REFERENCES 

1. R. Abraham and J. Marsden, Foundations of mechanics . 
(Benjamin, N. Y. , 1967). 

2. J. Marsden, Generalized Hamiltonian mechanics . Arch, for Rat . 
Mech. and Analysis 28, 5 (1968) 323-361. 

3. S. Helgason, Differential geometry and symmet r ic spaces . 
(Academic P r e s s , N . Y . , 1962). 

Pr inceton University 

212 

https://doi.org/10.4153/CMB-1969-023-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1969-023-0

