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1.
oo n

Consider a formal series £ an with partial sums sn = £ ak and the corresponding
n=0 n=0

power series f(z) = £ anz
n. Throughout we will assume that / is analytic for | z I < 1, i.e.

n=0

that lim sup | an |
1 / n ^ l . A classical theorem of Fatou-Riesz (see (1, 4)) states that if

lim an = 0 and
n—»0

( F - R): /is analyticfor z = l, /(I) = 0
oo

then Y, an is convergent to 0.
n=0

Jurkat-Peyerimhoff (2, 3) obtained the following modification for absolute con-
vergence:

oo oo

If I ! I an+l —an | < ° o and (F—i?) are satisfied then £ | a n | < ° ° .
n=0 n=0

If we denote by

n—*oo

the space of null sequences and

the space of sequences of bounded variation, then the above theorems may be equivalently
formulated in the following way:

If (F-R) holds then (an)Z e c0 implies (sn)o e c0.
If ( F - i?) holds then (a jo e &„ implies (sn)Z e ^u.

This formulation leads to the consideration of a general theorem of the following type:

Given a certain sequence space V. If (F—i?) holds then (an)o 6 Vimplies (sn) o 6 V.

The main problem now is to decide for which type of sequence spaces this general
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theorem is valid. Remarkably enough there is a sufficient condition of a purely algebraic
nature which applies to a wide class of sequence spaces.

2.
ra

We use the notations a = (an)Z, s = (sn)Z (where sn = £ «k) and ek = (8nk)Z (having 1
k=0

in the fc-th position and 0 otherwise). We also consider two-sided infinite sequences
>01et

X. = {Q = (ft.)-- I Q* = O(\ n | - ) , I n | ->»}.

We consider the convolution product

b = g*a, (6n)o =(#«)-» *(<Oo
defined by

bn= I gn-kak, n = 0 , 1,2,...
k=0

(the sums being assumed to exist for all n = 0, 1, 2,...). We will consider a sequence space
V which is a linear space over C and in addition satisfies the following axioms:

Ao: e0 £ V
B: for each a e Vthere exists a >0 , such that for every g = (gn)^ e 3Ta the condition

g*a = be Vis satisfied.

Axiom B states that a e V is mapped into V by the convolution product g * a, as long as
ft, = O(| n I"*).

Here a = a(a) still may depend on the element a considered. However for many
spaces Vof interest there exists a universal a0 = ao( V) for all a e V, i.e. all g e 5^,, act as
convolution operators mapping V into itself.

We summarise some simple properties of the space V.
(i) For each a = (an)1 e V there exists /3 = /3(a) > 0 such that an = O(n").

oo

This follows from the fact that for a = a(a) the sum bo= £ (1 + k)~aak exists (take

/8(a) = or(a)).
(ii) There exists a] = at( V) > 0 such that for

a = (an)Z
an = O(n~a>) implies (an)Z e V.

Take «i = a(c0) and for an = O(n~a') let

<0; Bo V.

Let us denote by & the set

{g = (ft,)-» \gn^0 for only finitely many n e Z}

Since j e f implies #„ = 0(| n |~a) for all a > 0 we get
(iii) g*a e V for g e &,

i.e. for ^ 6 ^ t h e convolution operation 5*a maps Vinto itself.
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A particular case is given by
(iv) The shift operators

T(k): a = (an)Z ̂ ^k)a = (0, 0,..., 0, a0, au ...)
(aoat k-th position)

T(-k):a = (anro^ri-k)a = (ak,ak+l,...)
(k e Nin both cases) map Vinto itself.

If we consider the axioms

Ak: ek e V

then we get, from (iv),
(v) If B is assumed, then Ao and Ak, k = l,2,... are equivalent.

3.

We now are able to state our main result

Theorem 1. Let V be a linear sequence space over the field C, satisfying the axioms Ao
n

and B. For a = (an)Z consider the sequence s = (sn)o, sn = X ak, and the power series
fc=O

/(z)= I anz
n.

n=O

If the condition
(F- R): fis analytic for z = 1, /(I) = 0

is satisfied, then (an)o e Vimplies (sn)o e V.
We need the following lemma which is essentially known.

Lemma. Given a function f analytic on the arc

having zeros of order ̂  y e N at zx = e'*1 and z2 = e'4"2. Then

r^2

fie^e'^dcf) = O(| n |"y) /or | n |^oo .

Proof. There exists R > 1 such that / is analytic in the closed domain

{z = re'+ 11/J?^ r ^ i?, </>, ^ <f>^ <{>2}.

For n < 0 we write the integral in the form

1 fci*2 1 fR

- f(z)z"-ldz=-\ fire^e^r-'dr

+ f 2 f(Rei4>)R"e"">'dct>+- f r"-1dr: =1+11+111.
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The first integral may be estimated by
r R

|/|=iM (r-l)yrlnldr=O(\n\-y)
Ji

the same estimate being valid for the third integral. The second integral is estimated by

For n > 0 we proceed in a similar way replacing R by 1/R.

Proof of Theorem 1. Let

s(z)= y s zn=-

then

= £ d k
Sn 2mJ z"+1 Z 2 i r iL,- 1 / 2

Since / is analytic for z = 1 and /(l) = 0, s is analytic for z = 1, and there exists 0<<j>0< IT,
such that s is analytic on the arc {z = e'* \ — </>0̂  <̂> ̂  <̂>0}-

Now there exists a polynomial P(z)= £ ptz
fc such that

at Zi = e~"^', z2 = ê '̂*" has zeros of order y l a + a, where a = a(a) is the exponent from
axiom B corresponding to the sequence a = (an) o and ai = a(e0) from property (ii).

We obtain
J_X f(z)P(z)dz 1 f f(z)g(z)dz_S ~ t "+1 t -

If we let p = (... 0, 0, p0, Pi, • • •, A,, 0, o,.. .)(p0 at 0-th position) we get (s^Z = sw = p*a
which implies (s^Z e V by property (iii). In view of property (i) / has distributional
boundary values

anein*
n = 0

the sum converging in the distributional sense.
We can therefore write

ATI J—,j,o j , l t

Since f(z)g(z) is analytic on {z = e"* | — <̂ 0 = <̂> = <̂ o} having zeros of order ^ yat e±'*bwe
obtain from the lemma
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and y g a , (property (ii)) implies (s(
n
3))o e V. In order to estimate s(

M
4) let be

Then h may be represented by a Fourier series

* ( * * )= Z flf-e*1*.
rt=—°°

Since g(z) is analytic on the arc {z = e1* | <f>0^<f> = 2iT—<l>0} having zeros of order § -y at
e*1*" we obtain from the lemma

Since fie'4") is analytic for — <£0=<£ = 4>o and gie'4") is analytic for <f>0^<f>^2-n-—<t>0, the
product is the well-defined distribution

f(e»)h(e»)= Z fcncm*
n=_co

where

*n = ^ - f 'f(e»)h(e'*)e-h*d<l>= I gn-kak.

So we obtain fcn = s ^ for n g o and

(*(
n
4))o=(<7™)-»*(a,.)o

which implies (stf})o £ Vfrom axiom B and y ^ a ( a ) . From

the statement of the theorem now follows.

4.

We give some examples of sequence spaces for which the Fatou-Riesz-theorem is
valid.

Axiom Ao is satisfied in nearly all sequence spaces of interest, although there exist
trivial counter-examples where it does not hold (take the space spanned by the sequence
(1,1,1,...)). So the essential pointis to show the validity of axiom B. In certain cases there
exists a universal ao = ao( V) not depending on a such that B is satisfied. This might be
checked in the following way. The convolution b = g*a may be formally written as

b = Sa
where

s= I
fc =

is an infinite linear combination in the shift operators
In order to show that S is a well-defined map from V into itself if gn = O(\ n \a"), one

has to show that the operator sum S = X ffk^^ converges in a suitable sense. Usually
k=-o°
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this requires continuity arguments and consequently a topological structure on V.
We give a precise statement in the case of a Banach space.

Theorem 2. Let Vbe a Banach sequence space. Assume that the shift operators r<fc),
k e Z, are bounded linear maps from V into itself with norms

\\rw\\=O(\k\p) as \k\^o=
for some /3 > 0.

Then axiom B is satisfied in V. If in addition axiom A holds then the Fatou-Riesz-
theorem is valid in V.

Proof. Choose a o > /3 + 1 , then | gn \ = O(\ n \~a") implies the convergence of S in the
operator norm topology.

In the spaces c0 and bD we have || Yk || = 1 and we obtain the known results. We now give
some new examples.

(1) Take V= lp the (unweighted) /p-space, 1 ^p^oo , then || r(k) ||= 1, so Theorem 2
shows the validity of the Fatou-Riesz-theorem. (The case p = °° was mentioned already by
Fatou (1).)

More generally we may take certain weighted /p-spaces:
(2) For l ^ p ^ o o let be

w,_ _ .

where ||(an)o ||P denotes the usual /p-norm, and w = (wn)Z is a fixed positive sequence.
Then axiom B is satisfied if the following regularity condition for w holds

sup <M-(\k\+l)p

n=0. 1,2, . . . wn

for some M>0, /3>0 (where w_n = vv0, n = 1, 2,...). For we get

• I n(—k} II III " n + fc U-n + k \\\ _ "^n+fc [I ^ n II _ • * / | i 1 • i \ f l II II

r fc)a p , w = I ) < sup — < M ( \k \ + lr \\a \\
\\\ wn wn+k/\\p - , = 0 . 1 . 2 . . . . wn \\wn\\p

(3) Take the space of Ci-summable series

f } 1 "
C1 = Uan)'Z, lim crnexists} where frn = 1, 5fc.

This is a Banach space with norm || a || = sup | crn |.

Then || r(fc) || = 0(| k |), as seen by direct calculation.

5.

Finally we list some open problems.
1. Conditions for the validity of the Fatou-Riesz-theorem are given by the purely

algebraic axioms Ao and B. Do these axioms imply that the space Vcan be topologised in a
suitable way?
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2. Theorem 1 gives only sufficient conditions for the validity of the Fatou-Riesz-
theorem, and it remains open whether the theorem could be proved in a much wider class
of spaces. Consider

(anTo, l i m s u p ^
n-~ log n

= {a = (flBro f(z)=lanz
nsH"]

(where Hp denote the Hardy space of order p), then a e Vt and (F— R) implies s e V) as
seen directly without using Theorem 1, in Vx and V2 it holds even without the (F— R)
condition.

3. The classical Fatou-Riesz-theorem has the stronger statement: lim an = 0 implies
n—*=»

the uniform convergence of sn(z) on any closed arc of | z | = 1 on which f(z) = X anz" is

analytic. Does there exist a suitable generalisation in general sequence spaces?

Acknowledgement. After finishing this paper we heard from Professor Jurkat that he
had obtained a similar result in connection with the papers published jointly with Professor
Peyerimhoff (2, 3), but which he did not publish.
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