ON THE TRIPLE CHARACTERIZATION FOR STONE ALGEBRAS

RAYMOND BALBES

1. Introduction. In [1], C. C. Chen and G. Grätzer developed a method for studying Stone algebras by associating with each Stone algebra L, a uniquely determined triple $(C(L), D(L), \phi(L))$, consisting of a Boolean algebra C(L), a distributive lattice D(L), and a connecting map $\phi(L)$. This approach has been successfully exploited by various investigators to determine properties of Stone algebras (e.g. H. Lakser [9] characterized the injective hulls of Stone algebras by means of this technique). The present paper is a continuation of this program.

After summarizing the properties of the category of triples, the epimorphisms in this category are determined confirming a conjecture of G. Grätzer. The prime ideals, $\mathscr{P}(L)$, of a Stone algebra L are characterized in terms of its triple. As a first application of this result it is shown that

$$|\mathscr{P}(L)| = |\mathscr{P}(C(L))| + |\mathscr{P}(D(L))|.$$

Another application yields a construction for the Stone algebra having a given triple. In the last section necessary and sufficient conditions are given in order that a Boolean algebra and a distributive lattice with 1 uniquely determine a triple.

2. Preliminaries. Let **B** be the class of Boolean algebras, \mathbf{D}_{01} the class of distributive lattices with 0, 1 and \mathbf{D}_1 the class of distributive lattices with $1(\mathcal{B}, \mathcal{D}_{01}, \text{and } \mathcal{D}_1 \text{ are the corresponding categories respectively})$. For $L \in \mathbf{D}_{01}$, let C(L) be the Boolean algebra of complemented elements of L. If $L \in \mathbf{D}_1$, $\overline{D}(L)$ is the lattice of filters of L. Recall that $\overline{D}(L) \in \mathbf{D}_{01}$; in fact, for F_1 , $F_2 \in \overline{D}(L)$, $F_1 \cdot F_2 = F_1 \cap F_2$, $F_1 + F_2 = \{x + y | x \in F_1, y \in F_2\}$, $0_{\overline{D}(L)} = [1)$ and $1_{\overline{D}(L)} = L$. The poset of prime ideals of a distributive lattice L is $\mathcal{P}(L)$ and we set $\mathcal{P}_0(L) = \mathcal{P}(L) \cup \{\emptyset\}$. Let **n** be the *n*-element chain $0 < 1 < \ldots < n - 1$. For $J \in \mathcal{P}(L)$, $f_J : L \to \mathbf{2}$ is the \mathbf{D}_{01} -homomorphism defined by

$$xf_J = \begin{cases} 1, & \text{if } x \notin J \\ 0, & \text{if } x \in J. \end{cases}$$

We introduce the category \mathscr{H} , called the category of triples, as follows. The objects of \mathscr{H} are triples (C, D, ϕ) where $C \in \mathbf{B}, D \in \mathbf{D}_1$ and $\phi : C \to \overline{D}(D)$ is a \mathbf{D}_{01} -homomorphism. The morphisms in $[(C, D, \phi), (C_1, D_1, \phi_1)]_{\mathscr{H}}$

Received January 9, 1974 and in revised form, May 23, 1974.

are the pairs (f, g) where $f \in [C, C_1]_{\mathscr{B}}$, $g \in [D, D_1]_{\mathscr{D}_1}$ and $(a\phi)g \subseteq af\phi_1$ for each $a \in C$. The composition of morphisms is defined by $(f_1, g_1)(f_2, g_2) =$ (f_1f_2, g_1g_2) for $(f_i, g_i) \in [(C_i, D_i, \phi_i), (C_{i+1}, D_{i+1}, \phi_{i+1})]_{\mathscr{K}}$ for i = 1, 2. We see that $(1_c, 1_D)$ is the identity on (C, D, ϕ) where 1_A is the identity on a set A. Moreover $(f, g) \in [(C, D, \phi), (C_1, D_1, \phi_1)]_{\mathscr{K}}$ is an isomorphism $(in \mathscr{K})$ if and only if f is an isomorphism in \mathscr{B} , g is an isomorphism in \mathscr{D}_{01} and $(a\phi)g = af\phi'$ for each $a \in C$.

Recall from [1] that for a Stone algebra L, we can associate the triple $(C(L), D(L), \phi(L))$ where D(L) is the member of \mathbf{D}_1 consisting of the dense elements of L and $\phi(L) : C(L) \to \overline{D}(D(L))$ is the \mathbf{D}_{01} -homomorphism defined by $a\phi(L) = \{d \in D(L) | d \ge a^*\}$ for each $a \in C(L)$.

The assignment $L \mapsto (C(L), D(L), \phi(L))$ can be extended to a functor (implicit in [1]) which establishes an equivalence from the category of Stone algebras and Stone homomorphisms to the category \mathscr{H} . Indeed the functor takes the Stone homomorphism $f: L \to L_1$ into (f|C(L), g|D(L)) – the codomain of f|C(L) and g|D(L) are taken to be $C(L_1)$ and $D(L_1)$ respectively. The following result from [1] will be needed.

LEMMA 2.1. If $(C, C, \phi) \in Ob \mathscr{K}$ then for each $a \in C$ and $d \in D$, there is an element $d_{\rho_a} \in D$ such that $[d_{\rho_a}] = a\phi \cap [d]$. Moreover $(d_{\rho_a})(d_{\rho_a}) = d$.

Proof. For $a \in C$ and $d \in D$, we have $d \in a\phi + \bar{a}\phi$ so d = xy for some $x \in a\phi$, $y \in \bar{a}\phi$. It is easy to see that d + x is the required element, d_{ρ_a} .

For $(C, D, \phi) \in Ob \mathscr{K}$ and $J \in \mathscr{P}(D)$, define $I(J) = \{c \in C | \bar{c}\phi \cap J \neq \emptyset\}$.

LEMMA 2.2. If $(C, D, \phi) \in \mathcal{K}$ then for each $J \in \mathcal{P}(D)$, $I(J) \in \mathcal{P}(C)$ and $(f_{I(J)}, f_J) \in [(C, D, \phi), (\mathbf{2}, \mathbf{2}, \phi_{\overline{2}})]_{\mathcal{K}}$, where $\phi_{\overline{2}} : \mathbf{2} \to \overline{D}(\mathbf{2})$ is defined by $0\phi_{\overline{2}} = [1)$ and $1\phi_{\overline{2}} = [0)$.

Proof. It is routine to verify that I(J) is a proper ideal. If $c_1 \in I(J)$ and $c_2 \notin I(J)$ then $\bar{c}_1 \phi \cap J = \bar{c}_2 \phi \cap J = \emptyset$ so $\bar{c}_1 \phi \subseteq D \sim J$ and $\bar{c}_2 \phi \subseteq D \sim J$. But $D \sim J \in \bar{D}(D)$ so $\bar{c}_1 \bar{c}_2 \phi = \bar{c}_1 \phi + \bar{c}_2 \phi \subseteq D \sim J$ and hence $c_1 c_2 \notin I(J)$. Thus $I(J) \in \mathscr{P}(C)$.

It follows that $f_J \in [D, 2]_{D_1}$ and $f_{I(J)} \in [C, 2]_{\mathscr{B}}$. To prove that $(a\phi)f_J \subseteq af\phi_{I(J)}\phi_{\overline{2}}$, first suppose $a \notin I(J)$ then $af_{I(J)} = 1$ so $(a\phi)f_J \subseteq [0) = (af_{I(J)})\phi_{\overline{2}}$. Next suppose $a \in I(J)$. So there is an element $x \in \overline{a}\phi \cap J$. Now if $d \in a\phi$ then $df_J = 1$. Indeed if $df_J = 0$ then $d \in J$ so $d + x \in a\phi \cap \overline{a}\phi = 0\phi = \{1\}$ and hence $1 = d + x \in J$, a contradiction. Thus, $(a\phi)f_J = \{df_J | d \in a\phi\} = \{1\} \subseteq af_{I(J)}\phi_{\overline{2}}$.

We close the section with an application of Lemma 2.2.

THEOREM 2.3. A morphism $(f, g) \in [(C, D, \phi), (C_1, D_1, \phi_1)]_{\mathcal{K}}$ is an epimorphism if and only if f is an epimorphism in \mathcal{B} and g is epimorphism in \mathcal{D}_1 .

Proof. The sufficiency of the condition is trivial. Conversely, suppose that (f, g) is epic in $\mathscr{H}, f_1, f_1' \in [C_1, C_2]_{\mathscr{B}}$ and $ff_1 = ff_1'$. Let $g_1 \in [D_1, \mathbf{1}]_{\mathscr{B}}$ and $\phi_2 \in [C_1, C_2]_{\mathscr{B}}$ and $ff_1 = ff_1'$.

 $[C_2, \overline{D}(\mathbf{1})]_{\mathscr{B}}$ be constant maps. Then $(C_2, \mathbf{1}, \phi_2) \in Ob \mathscr{H}$ and $(f_1, g_1), (f_1', g_1) \in [(C_1, D_1, \phi_1), (C_2, \mathbf{1}, \phi_2)]_{\mathscr{H}}$. But then $(f, g)(f_1, g_1) = (ff_1, gg_1) = (ff_1', gg_1) = (f, g)(f_1', g_1)$ so $(f_1, g_1) = (f_1', g_1)$ and hence $f_1 = f_1'$.

Again suppose that (f, g) is epic in \mathscr{H} but that g is not epic in \mathscr{D}_1 . Since **2** is the only subdirectly irreducible in \mathscr{D}_1 , there exist distinct prime ideals J_1, J_1' in D_1 such that $J_1 \cap Dg = J_1' \cap Dg$. We first show:

(1) For each $x \in D_1$ there exists $d \in D$ such that $dg \leq x$.

In order to verify (1), suppose that for some $x \in D$, $dg \leq x$ for any $d \in D$. Then $(x] \cap [(D)g) = \emptyset$ and hence there exists $J \in \mathscr{P}(D_1)$ with $x \in J$ and $J \cap (D)g = \emptyset$. Let $g_1 : D_1 \to \mathbf{2}$ be the constant map with value 1, then $(f_{I(J)}, g_1), (f_{I(J)}, f_J) \in [(C_1, D_1, \phi_1), (\mathbf{2}, \mathbf{2}, \phi_2)]_{\mathscr{K}}$ and $(f, g)(f_{I(J)}, f_J) = (f, g)(f_{I(J)}, g_1)$, contradicting the fact that (f, g) is an epimorphism. Next we prove:

(2) If $x \in a\phi_1$ then there exist $d \in D$ and $c \in C$ such that

 $(d_{\rho_c})g \leq x \text{ and } cf = a.$

Indeed, since f is epic in \mathscr{B} (and hence onto) there exists $c \in C$ such that cf = a. By (1) we obtain an element $d \in D$ such that $dg \leq x$. Now $(d_{\rho_{\overline{c}}})g \in (\overline{c}\phi)g \subseteq (\overline{c}f)\phi_1 = (\overline{c}\overline{f})\phi_1 = \overline{a}\phi_1$, so $x + (d_{\rho_{\overline{c}}})g \in a\phi_1 \cap \overline{a}\phi_1 = \{1\}$ and hence $x + (d_{\rho_{\overline{c}}})g = 1$. Thus,

$$(d_{\rho_c})g = x((d_{\rho_c})g) + ((d_{\rho_c})g)((d_{\rho_c})g) \leq x + dg \leq x.$$

We can now show that $(f_{I(J_1)}, f_{J_2}) \in [(C_1, D_1, \phi_1), (\mathbf{2}, \mathbf{2}, \phi_{\overline{2}})]_{\mathscr{K}}$. It suffices to prove that $(a\phi_1)f_{J_2} \subseteq (af_{I(J_1)})\phi_{\overline{2}}$ for $a \in I(J_1)$. But $a \in I(J_1)$ implies the existence of an element $y \in \overline{a}\phi_1 \cap J_1$. We will prove that $x \in a\phi_1$ implies $x \notin J_2$.

Indeed suppose $x \in a\phi_1 \cap J_2$. But by (2) there exists $d \in D$ and $c \in C$ such that $(d_{\rho_c})g \leq x$ so $(d_{\rho_c})g \in J_2$. Hence $(d_{\rho_c})g \in J_2 \cap Dg \subseteq J_1$ and therefore $(d_{\rho_c})g + y \in J_1$. Now $(d_{\rho_c})g \in (c\phi)g \subseteq (cf)\phi_1 = a\phi_1$ so $y + (d_{\rho_c})g \in \bar{a}\phi_1 \cap a\phi_1 = \{1\}$ which implies the contradiction $1 = y + (d_{\rho_c})g \in J_1$. Thus $x \in a\phi_1$ implies $x \notin J_2$ so

 $(a\phi_1)f_{J_2} = \{xf_{J_2}|x \in a\phi_1\} = \{1\} \subseteq (af_{J_2})\phi_2.$

Finally, $J_1 \cap Dg = J_2 \cap Dg$ implies $gf_{J_1} = gf_{J_2}$ so $(f, g)(f_{I(J_1)}, f_{J_2}) = (ff_{I(J_1)}, gf_{J_2}) = (ff_{I(J_1)}, gf_{J_1}) = (f, g)(f_{I(J_1)}, f_{J_1})$. But (g, f) is epic so $f_{J_2} = f_{J_1}$, a contradiction.

This establishes a conjecture of G. Grätzer that a Stone homomorphism $f: L \to L_1$ is an epimorphism if and only if $(C(L))f = C(L_1)$ and f | D(L), with codomain restricted to $D(L_1)$, is an epimorphism in \mathcal{D}_1 .

3. Prime ideals. We begin by characterizing $\mathscr{P}(L)$ in terms of the triple $(C(L), D(L), \phi(L))$.

THEOREM 3.1. Let L be a Stone algebra. Then

(1)
$$\mathscr{P}(L) \cong \{(I,J) | I \in \mathscr{P}(C(L)), J \in \mathscr{P}_0(D(L)), a^*\phi(L) \cap J = \emptyset$$

or $a \in I$ for all $a \in C(L)\}.$

Proof. Let P be the poset on the right side of (1). For $K \in \mathscr{P}(L)$ it is easily verified that $K \cap C(L) \in \mathscr{P}(C(L))$ and $K \cap D(L) \in \mathscr{P}_0(D(L))$. If $d \in a^*\phi(L) \cap K \cap D(L)$ then $d \ge a^{**} = a$ so $a \in K$.

Thus, the map $h: \mathscr{P}(L) \to P$ given by $Kh = (K \cap C(L), K \cap D(L))$ is well defined and obviously preserves order. Suppose $K, K_1 \in \mathscr{P}(L), K \cap C(L) \subseteq K_1 \cap C(L)$ and $K \cap D(L) \subseteq K_1 \cap D(L)$. For $x \in K, x = x^{**}(x + x^*)$ so $x^{**} \in K$ or $x + x^* \in K$. In the first case, $x^{**} \in K \cap C(L) \subseteq K_1$ so $x \in K_1$. Otherwise, $x + x^* \in K \cap D(L) \subseteq K_1$ so $x \in K_1$.

Suppose that $(I, J) \in P$. Let $K = (I \cup J]_L$. Since $I \neq \emptyset$, K is an ideal. If K = L then 1 = a + d for some $a \in I$, $d \in J \cup \{0\}$. But $d \neq 0$ since I is proper so $d \in J$. Thus $d \ge a^*$ implies $d \in a\phi(L) \cap J$. Since $(I, J) \in P$, $a^* \in I$ which leads to the contradiction $1 = a + a^* \in I$. To prove that $K \in \mathscr{P}(L)$, suppose $uv \in K$. Then there exists $a \in I$, $d \in J \cup \{0\}$ such that $uv \le a + d$. If d = 0 then $u^{**}v^{**} \le a^{**} = a$ so $u^{**} \in I$ or $v^{**} \in I$, in which case $u \in K$ or $v \in K$. On the other hand suppose $d \in J$. Then $uva^* \le d$ so $(u + d)(v + d)(a^* + d) \le d$. But $d \in J$ and $\{u + d, v + d, a^* + d\} \subseteq D(L)$ so one of the three elements is in J. If $a^* + d \in J$ then $a^* + d \in a\phi(L) \cap J$ and hence the contradiction $a^* \in I$. Thus $u + d \in J$ or $v + d \in J$. It follows that $u \in K$ or $v \in K$.

Since $I \subseteq K \cap C(L)$, $J \subseteq K \cap D(L)$ it remains to verify that $K \cap C(L)$ $\subseteq I$ and $K \cap D(L) \subseteq J$. First let $a \in K \cap C(L)$ so $a \leq b + d$ where $b \in I$, $d \in J \cup \{0\}$. We can assume $d \neq 0$. Then $ab^* \leq d$ so $d \in (ab^*)^*\phi(L) \cap J$ and hence $ab^* \in I$. But I is prime so $a \in I$. Finally let $d \in K \cap D(L)$, $d \leq a + d_1$, where $a \in I$, $d_1 \in J \cup \{0\}$. If $d_1 = 0$, $1 = a \in I$ so assume $d_1 \in J$. Then $(a^* + d_1)(d + d_1) \leq d_1$ so $a^* + d_1 \in J$ or $d + d_1 \in J$. Now $a^* + d_1 \in J$ implies $a^* + d_1 \in a\phi(L) \cap J$ which means $a^* \in I$. So we can assume $d + d_1 \in J$ and hence $d \in J$.

It is well known (and can easily be seen from (1)) that the poset of minimal prime ideals of L is isomorphic with $\mathscr{P}(C(L))$. Moreover, recalling the definition of I(J) preceding Lemma 2.2, we have:

COROLLARY 3.2. For a Stone algebra L,

 $\mathscr{P}(L) \cong \{ (I, \emptyset) | I \in \mathscr{P}(C(L)) \} \cup \{ (I(J), J) | J \in \mathscr{P}(D(L)) \}.$

In particular $|\mathscr{P}(L)| = |\mathscr{P}(C(L))| + |\mathscr{P}(D(L))|.$

Proof. Again let P represent the right side of (1). For $I \in \mathscr{P}(C(L))$ it is obvious that $(I, \emptyset) \in P$. Next let $J \in \mathscr{P}(D(L))$. By Lemma 2.2, $I(J) \in \mathscr{P}(C(L))$ and if $a \notin I(J)$ then $a^*\phi(L) \cap J = \emptyset$. Conversely, let $(I, J) \in P$. We can assume $J \neq \emptyset$ so $J \in \mathscr{P}(D(L))$. But then $I(J) \subseteq I$ for if $a \in I(J)$ then $a^*\phi(L) \cap J \neq \emptyset$ so $a \in I$. By Nachbin's theorem, I(J) = I.

RAYMOND BALBES

In showing that the functor in Section 2 is an equivalence, it is necessary to prove that for $(C, D, \phi) \in \mathscr{H}$, there exists a Stone algebra L such that $(C, D, \phi) \cong (C(L), D(L), \phi(L))$. This was accomplished in Section 4 of [1]. Recently, in [7], T. Katrinák has given a new shorter construction of L (see [3, Problem 55]). Theorem 3.1 also leads to a more direct construction of L by replacing each abstract symbol $\langle a, d \rangle$, used in [1], by a set. Specifically we obtain, for the objects of \mathscr{H} , the analogue of the Stone representation theorem.

Let $(C, D, \phi) \in \operatorname{Ob} \mathscr{H}$ and set

$$P = \{ (I, J) | I \in \mathscr{P}(C), J \in \mathscr{P}_0(D), \bar{a}\phi \cap J = \emptyset \text{ or } a \in I \text{ for all } a \in C \}.$$

For each $a \in C$ and $d \in a\phi$, let $\langle a, d \rangle = \{(I, J) \in P | a \notin I, d \notin J\}$ and $R = \{\langle a, d \rangle | a \in C, d \in a\phi\}$. It follows immediately from Lemma 2.1 that $d \in a\phi, e \in b\phi$ implies $e(d_{p_{\overline{b}}}) + d(e_{p_{\overline{a}}}) \in (a + b)\phi$ and $(d_{pb})(e_{pa}) \in (ab)\phi$. We will show that R is a ring of sets by establishing:

- (2) $\langle a, d \rangle \cup \langle b, e \rangle = \langle a + b, e(d_{\rho_{\overline{b}}}) + d(e_{\rho_{\overline{a}}}) \rangle$, and
- (3) $\langle a, d \rangle \cap \langle b, e \rangle = \langle ab, (d_{\rho b})(e_{\rho a}) \rangle.$

For (2), suppose $(I, J) \in \langle a, d \rangle$. Then $a \notin I, d \notin J$. Now $e_{\rho_{\overline{a}}} \notin J$ since $e_{\rho_{\overline{a}}} \in J \cap \overline{a}\phi$ implies $a \in I$, so $d(e_{\rho_{\overline{a}}}) \notin J$ and hence $(I, J) \in \langle a + b, e(d_{\rho_{\overline{b}}}) + d(e_{\rho_{\overline{a}}}) \rangle$. Similarly $\langle b, e \rangle \subseteq \langle a + b, e(d_{\rho_{\overline{b}}}) + d(e_{\rho_{\overline{a}}}) \rangle$. Conversely, suppose $a + b \notin I$ and $e(d_{\rho_{\overline{b}}}) + d(e_{\rho_{\overline{a}}}) \notin J$. Without loss of generality, assume $a \notin I$. First suppose $b \in I$. Then $d_{\rho_{\overline{b}}} \notin J$. Indeed, $d_{\rho_{\overline{b}}} \in b\phi \cap J$ implies $\overline{b} \in I$, a contradiction. But $d_{\rho_{\overline{b}}} \geq e(d_{\rho_{\overline{b}}}) + d(e_{\rho_{\overline{a}}})$ so $d_{\rho_{\overline{b}}} \notin J$. Since $d \geq (d_{\rho_{\overline{b}}})(d_{\rho_{\overline{b}}})$ we conclude that $d \notin J$ and hence $(I, J) \in \langle a, d \rangle$. On the other hand suppose $b \notin I$. Then $e + d \geq e(d_{\rho_{\overline{b}}}) + d(e_{\rho_{\overline{a}}})$ implies $d \notin J$ or $e \notin J$ so $(I, J) \in \langle a, d \rangle$ of $(I, J) \in \langle b, e \rangle$. (3) is verified in a similar manner.

It is obvious that $\langle a, 1 \rangle$ and $\langle 1, d \rangle$ are members of R for all $a \in C$ and $d \in D$ and that $\emptyset = \langle 0, 1 \rangle = 0_R$ and $P = \langle 1, 1 \rangle = 1_R$. Moreover R is pseudocomplemented with

(4) $\langle a, d \rangle^* = \langle \bar{a}, 1 \rangle.$

Indeed it is clear that $\langle a, d \rangle \cap \langle \bar{a}, 1 \rangle = \emptyset$. Conversely suppose $\langle a, d \rangle \cap \langle b, e \rangle = \emptyset$ but $b \leq \bar{a}$. Then there exists $(I, \emptyset) \in P$ such that $(I, \emptyset) \in \langle a, d \rangle \cap \langle b, e \rangle$, a contradiction, so $\langle b, e \rangle \subseteq \langle \bar{a}, 1 \rangle$.

Since $\langle a, d \rangle^* \cup \langle a, d \rangle^{**} = 1_R$, *R* is a Stone algebra with $C(R) = \{ \langle \bar{a}, 1 \rangle | a \in C \}$ and $D(R) = \{ (1, d) | d \in D \}$.

To show $(C, D, \phi) \cong (C(R), D(R), \phi(R))$, we note that it is easy to verify that the map $f: C \to C(R)$, defined by $af = \langle a, 1 \rangle$ is an isomorphism in \mathscr{B} . It is clear that the map $g: D \to D(R)$ defined by $dg = \langle 1, d \rangle$ preserves order and is onto. Suppose $d \leq d_1, \{d, d_1\} \subseteq D$. Then there exists $J \in \mathscr{P}(D)$ such that $d_1 \in J, d \notin J$. But $(I(J), J) \in P$ and $(I(J), J) \in \langle 1, d \rangle \sim \langle 1, d_1 \rangle$ so g is an isomorphism in \mathscr{D} . It remains to verify that for $a \in C$, $(a\phi)g = (af)\phi(R)$. First suppose $\langle 1, d \rangle \in (af)\phi(R)$. Then $\langle \bar{a}, 1 \rangle \subseteq \langle 1, d \rangle$ but suppose $d \notin a\phi$.

856

Then there exists $J \in P(D)$ such that $a\phi \cap J = \emptyset$ and $d \in J$. Then $(I(J), J) \in P$ and $(I(J), J) \in \langle \bar{a}, 1 \rangle$ for if $\bar{a} \in I(J)$ then $a \notin I(J)$ implies $\bar{a}\phi \cap J = \emptyset$. But $a\phi \cap J = \emptyset$ and hence the contradiction $J = \emptyset$. We conclude that $(I(J), J) \in \langle 1, d \rangle$, contradicting $d \in J$. For the converse, assume $d \in a\phi$ and $(I, J) \in \langle \bar{a}, 1 \rangle$ then $\bar{a} \notin I$ so $a\phi \cap J = \emptyset$. But $d \in a\phi$ so $d \notin J$ and hence $(I, J) \in \langle 1, d \rangle$.

We close by noting that the above construction is a concrete representation of the Chen-Grätzer construction. This follows from the fact that for $\langle a, d \rangle$ and $\langle b, e \rangle \in R$, $\langle a, d \rangle \subseteq \langle b, e \rangle$ if and only if $a \leq b$ and $d \leq e_{pa}$ (cf. [1, p. 887]).

4. Uniqueness of ϕ . In [1], it is shown that for any $C \in \mathbf{B}$, $C \neq 1$ and any $D \in \mathbf{D}_1$ there exists $\phi : C \to \overline{D}(D)$ such that $(C, D, \phi) \in \operatorname{Ob} \mathscr{H}$; if $C = \mathbf{1}$ then there exists ϕ such that $(C, D, \phi) \in \operatorname{Ob} \mathscr{H}$ if and only if $D = \mathbf{1}$. Thus, for a given C and D the existence of a ϕ for which $(C, D, \phi) \in \mathscr{H}$ is completely settled. In this section we will answer the corresponding uniqueness question. There are three trivial cases to handle first: if $(C, D, \phi) \in \mathscr{H}$ and $C = \mathbf{1}$ or $C = \mathbf{2}$ or $D = \mathbf{1}$ then ϕ is uniquely determined (as well as D in the first case) since ϕ preserve 0, 1. We now proceed to the general case.

THEOREM 4.1. Let $C \in \mathbf{B}$, $D \in \mathbf{D}_1$ and $C \neq \mathbf{2}$, $C \neq \mathbf{1}$, $D \neq \mathbf{1}$. There exists exactly one member (up to isomorphism) of Ob \mathscr{K} of the form (C, D, ϕ) if and only if

(i) $C(\bar{D}(D)) = \{0_{\bar{D}(D)}, 1_{\bar{D}(D)}\}, and$

(ii) If I_1 , I_2 are prime ideals in C then there exists a **B**-automorphism f of L such that $I_1 f = I_2$.

Proof. (\Rightarrow) Suppose $\overline{D}(D)$ contains a complemented element d, other than $0_{\overline{D}(D)}$ and $1_{\overline{D}(D)}$. Since $C \neq \mathbf{1}$, $\mathbf{2}$, there exist distinct prime ideals I_1 , I_2 in C. Then the maps $\phi_i : C \rightarrow \overline{D}(D)$, i = 1, 2, defined by

$$c\phi_1 = \begin{cases} 1_{\overline{D}(D)}, & \text{if } c \notin I_1 \cup I_2 \\ \overline{d}, & \text{if } c \in I_2 \sim I_1 \\ d, & \text{if } c \in I_1 \sim I_2 \\ 0_{\overline{D}(D)}, & \text{if } c \in I_1 \cap I_2 \end{cases} \text{ and } c\phi_2 = \begin{cases} 1_{\overline{D}(D)}, & \text{if } c \notin I_2 \\ 0_{\overline{D}(D)}, & \text{if } c \in I_2 \end{cases}$$

are \mathbf{D}_{01} -homomorphisms. But then (C, D, ϕ_i) , i = 1, 2 are objects in \mathscr{K} and by hypothesis there is an isomorphism $(f, g) \in [(C, D, \phi_1), (C, D, \phi_2)]_{\mathscr{K}}$. Now choose $b \in I_2 \sim I_1$. Then $b\phi_1 = \overline{d}$ so $(\overline{d})g = (b\phi_1)g = (bf)\phi_2 \in \{0_{\overline{D}(D)}, 1_{\overline{D}(D)}\}$. Since g is an automorphism of D, the map $F \to (F)g$ is an automorphism of $\overline{D}(D)$ and hence $(\overline{d})g \in \{0_{\overline{D}(D)}, 1_{\overline{D}(D)}\}$, implies $\overline{d} \in \{0_{\overline{D}(D)}, 1_{\overline{D}(D)}\}$.

In order to prove (ii), let I_1, I_2 be prime ideals in C. Define $\phi_i : C \to \overline{D}(D)$ by

$$c\boldsymbol{\phi}_{i}' = \begin{cases} 1_{\overline{D}(D)}, & \text{if } c \notin I_{i}, \\ 0_{\overline{D}(D)}, & \text{if } c \in I_{i} \end{cases}$$

RAYMOND BALBES

for i = 1, 2. Then (C, D, ϕ_i) , i = 1, 2 are objects in \mathscr{K} so there is an isomorphism $(f', g') \in [(C, D, \phi), (C, D, \phi')]_{\mathscr{K}}$. But then $f' : C \to C$ is the required automorphism.

 (\Leftarrow) Suppose (C, D, ϕ_1) , $(C, D, \phi_2) \in Ob \mathscr{H}$. Set $I_i = \{c \in C | c\phi_i = 0_{\overline{D}(D)}\}$. Since ϕ_i is a \mathbf{D}_{01} -homomorphism, it preserves complemented elements. It follows from (i) that $C\phi_i \subseteq \{0_{\overline{D}(D)}, 1_{\overline{D}(D)}\}$ and, in particular that I_i is a prime ideal for i = 1, 2. But then by (ii) there is a **B**-automorphism $f : C \to C$ such that $(I_1)f = I_2$. It can be verified that $(f, 1_D)$ is an isomorphism in \mathscr{H} from (C, D, ϕ_1) to (C, D, ϕ_2) .

For any finite Boolean algebra C, condition (ii) holds: we can extend to a **B**-automorphism, any map which permutes the coatoms of C. However, in the infinite case, condition (ii) does not hold in general. For example there exist Boolean algebras with no non-trivial automorphisms (e.g., see [6]). On the other hand, if C is any free Boolean algebra, the condition is satisfied. Indeed if S freely **B**-generates C and $\{I_1, I_2\} \subseteq \mathscr{P}(C)$ define $f: S \to C$ by

$$f(s) = \begin{cases} s, & \text{if } s \in (I_1 \cap I_2) \cup (\tilde{I}_1 \cap \tilde{I}_2) \\ \bar{s}, & \text{otherwise.} \end{cases}$$

Then f extends to a homomorphism g such that $g^2 = 1$, $I_1g = I_2$.

It is easy to verify that for a distributive lattice D, with 0, 1, condition (i) is equivalent to: $C(D) = \{0, 1\}$. We have:

COROLLARY. Let $C \in \mathbf{B}$, $D \in \mathbf{D}_1$, $2 < |C| < \infty$, $1 < |D| < \infty$. Then (C, D, ϕ) is uniquely determined by C and D if and only if $C(D) = \{0, 1\}$. Thus, the finite Stone algebras which are uniquely determined by their center 2^n , $2 \leq n < \infty$ and set of dense elements D, are the algebras of the form $2^{n-1} \times (1 \oplus D)$, where the symbol \oplus denotes ordinal sum and D is a finite distributive lattice with $C(D) = \{0, 1\}$.

The "smallest" non-isomorphic Stone algebras with isomorphic centers and dense elements are 3×3 and $(1 \oplus 2^2) \times 2$.

References

- 1. C. C. Chen and G. Grätzer, Stone lattices: Construction theorems, Can. J. Math. 21 (1969), 884-894.
- 2. ——— Stone lattices: Structure theorems, Can. J. Math. 21 (1969), 895-903.
- **3.** G. Grätzer, Lattice theory: First concepts and distributive lattices (W. H. Freeman Co., San Francisco, 1971).
- 4. G. Grätzer and H. Lakser, The structure of pseudocomplemented distributive lattices, II: Congruence extension and amalgamation, Trans. Amer. Math. Soc. 156 (1971), 343-348.
- 5. —— The structure of pseudocomplemented distributive lattices, III: Injective and absolute subretracts, Trans. Amer. Math. Soc. 157 (1972), 475–487.
- 6. B. Jónsson, A Boolean algebra without proper automorphisms, Proc. Amer. Math. Soc. 2 (1951), 766-770.
- 7. T. Katriňák, A new proof of the construction theorem for Stone algebras, Proc. Amer. Math. Soc. 40 (1973), 75–79.

858

- 8. H. Lakser, The structure of pseudocomplemented distributive lattices, I: Subdirect decomposition, Trans. Amer. Math. Soc. 156 (1971), 335-342.
- 9. Injective hulls of Stone algebras, Proc. Amer. Math. Soc. 24 (1970), 524-529.
- 10. L. Nachbin, Une Propriété caracteristique des algèbras Booléinnes, Portugal. Math. 6 (1947), 115-118.
- 11. M. H. Stone, Topological representations of distributive lattices and Brouwerian logics, Časopis Pěst. Mat. 67 (1937), 1-25.
- 12. J. Varlet, On the characterization of Stone lattices, Acta Sci. Math. (Szeged) 27 (1966), 81-84.

University of Missouri-St. Louis, St. Louis, Missouri