ON THE TRIPLE CHARACTERIZATION FOR STONE ALGEBRAS

RAYMOND BALBES

1. Introduction. In [1], C. C. Chen and G. Grätzer developed a method for studying Stone algebras by associating with each Stone algebra L, a uniquely determined triple $(C(L), D(L), \phi(L))$, consisting of a Boolean algebra $C(L)$, a distributive lattice $D(L)$, and a connecting map $\phi(L)$. This approach has been successfully exploited by various investigators to determine properties of Stone algebras (e.g. H. Lakser [9] characterized the injective hulls of Stone algebras by means of this technique). The present paper is a continuation of this program.

After summarizing the properties of the category of triples, the epimorphisms in this category are determined confirming a conjecture of G. Grätzer. The prime ideals, $\mathscr{P}(L)$, of a Stone algebra L are characterized in terms of its triple. As a first application of this result it is shown that

$$
|\mathscr{P}(L)|=|\mathscr{P}(C(L))|+|\mathscr{P}(D(L))| .
$$

Another application yields a construction for the Stone algebra having a given triple. In the last section necessary and sufficient conditions are given in order that a Boolean algebra and a distributive lattice with 1 uniquely determine a triple.
2. Preliminaries. Let \mathbf{B} be the class of Boolean algebras, \mathbf{D}_{01} the class of distributive lattices with 0,1 and \mathbf{D}_{1} the class of distributive lattices with $1\left(\mathscr{B}, \mathscr{D}_{01}\right.$, and \mathscr{D}_{1} are the corresponding categories respectively). For $L \in \mathbf{D}_{01}$, let $C(L)$ be the Boolean algebra of complemented elements of L. If $L \in \mathbf{D}_{1}$, $\bar{D}(L)$ is the lattice of filters of L. Recall that $\bar{D}(L) \in \mathbf{D}_{01}$; in fact, for F_{1}, $F_{2} \in \bar{D}(L), F_{1} \cdot F_{2}=F_{1} \cap F_{2}, F_{1}+F_{2}=\left\{x+y \mid x \in F_{1}, y \in F_{2}\right\}, 0_{\bar{D}(L)}=$ $[1)$ and $1_{\bar{D}(L)}=L$. The poset of prime ideals of a distributive lattice L is $\mathscr{P}(L)$ and we set $\mathscr{P}_{0}(L)=\mathscr{P}(L) \cup\{\emptyset\}$. Let \mathbf{n} be the n-element chain $0<1<\ldots<n-1$. For $J \in \mathscr{P}(L), f_{J}: L \rightarrow \mathbf{2}$ is the \mathbf{D}_{01}-homomorphism defined by

$$
x f_{J}= \begin{cases}1, & \text { if } x \notin J \\ 0, & \text { if } x \in J .\end{cases}
$$

We introduce the category \mathscr{K}, called the category of triples, as follows. The objects of \mathscr{K} are triples (C, D, ϕ) where $C \in \mathbf{B}, D \in \mathbf{D}_{1}$ and $\phi: C \rightarrow$ $\bar{D}(D)$ is a \mathbf{D}_{01}-homomorphism. The morphisms in $\left[(C, D, \phi),\left(C_{1}, D_{1}, \phi_{1}\right)\right]_{\mathscr{K}}$

Received January 9, 1974 and in revised form, May 23, 1974.
are the pairs (f, g) where $f \in\left[C, C_{1}\right]_{\mathscr{B}}, g \in\left[D, D_{1}\right]_{\mathscr{D}_{1}}$ and $(a \phi) g \subseteq a f \phi_{1}$ for each $a \in C$. The composition of morphisms is defined by $\left(f_{1}, g_{1}\right)\left(f_{2}, g_{2}\right)=$ $\left(f_{1} f_{2}, g_{1} g_{2}\right)$ for $\left(f_{i}, g_{i}\right) \in\left[\left(C_{i}, D_{i}, \phi_{i}\right),\left(C_{i+1}, D_{i+1}, \phi_{i+1}\right)\right]_{\mathcal{H}}$ for $i=1,2 . \mathrm{We}$ see that $\left(1_{C}, 1_{D}\right)$ is the identity on (C, D, ϕ) where 1_{A} is the identity on a set A. Moreover $(f, g) \in\left[(C, D, \phi),\left(C_{1}, D_{1}, \phi_{1}\right)\right]_{\mathscr{K}}$ is an isomorphism (in $\left.\mathscr{K}\right)$ if and only if f is an isomorphism in \mathscr{B}, g is an isomorphism in \mathscr{D}_{01} and $(a \phi) g=a f \phi^{\prime}$ for each $a \in C$.

Recall from [1] that for a Stone algebra L, we can associate the triple ($C(L), D(L), \phi(L))$ where $D(L)$ is the member of \mathbf{D}_{1} consisting of the dense elements of L and $\phi(L): C(L) \rightarrow \bar{D}(D(L))$ is the \mathbf{D}_{01}-homomorphism defined by $a \phi(L)=\left\{d \in D(L) \mid d \geqq a^{*}\right\}$ for each $a \in C(L)$.

The assignment $L \mapsto(C(L), D(L), \phi(L))$ can be extended to a functor (implicit in [1]) which establishes an equivalence from the category of Stone algebras and Stone homomorphisms to the category \mathscr{K}. Indeed the functor takes the Stone homomorphism $f: L \rightarrow L_{1}$ into $(f|C(L), g| D(L))$ - the codomain of $f \mid C(L)$ and $g \mid D(L)$ are taken to be $C\left(L_{1}\right)$ and $D\left(L_{1}\right)$ respectively. The following result from [1] will be needed.

Lemma 2.1. If $(C, C, \phi) \in \mathrm{Ob} \mathscr{K}$ then for each $a \in C$ and $d \in D$, there is an element $d_{\rho_{a}} \in D$ such that $\left[d_{\rho_{a}}\right)=a \phi \cap[d)$. Moreover $\left(d_{\rho_{a}}\right)\left(d_{\rho_{\bar{a}}}\right)=d$.

Proof. For $a \in C$ and $d \in D$, we have $d \in a \phi+\bar{a} \phi$ so $d=x y$ for some $x \in a \phi, y \in \bar{a} \phi$. It is easy to see that $d+x$ is the required element, $d_{\rho a}$.

For $(C, D, \phi) \in \mathrm{Ob} \mathscr{K}$ and $J \in \mathscr{P}(D)$, define $I(J)=\{c \in C \mid \bar{c} \phi \cap J \neq \emptyset\}$.
Lemma 2.2. If $(C, D, \phi) \in \mathscr{K}$ then for each $J \in \mathscr{P}(D), I(J) \in \mathscr{P}(C)$ and $\left(f_{I(J)}, f_{J}\right) \in\left[(C, D, \phi),\left(\mathbf{2}, \mathbf{2}, \phi_{\overline{2}}\right)\right]_{\mathscr{K}}$, where $\phi_{\overline{2}}: \mathbf{2} \rightarrow \bar{D}(\mathbf{2})$ is defined by $0 \phi_{\overline{2}}=$ [1) and $1 \phi_{\overline{2}}=[0)$.

Proof. It is routine to verify that $I(J)$ is a proper ideal. If $c_{1} \in I(J)$ and $c_{2} \notin I(J)$ then $\bar{c}_{1} \phi \cap J=\bar{c}_{2} \phi \cap J=\emptyset$ so $\bar{c}_{1} \phi \subseteq D \sim J$ and $\bar{c}_{2} \phi \subseteq D \sim J$. But $D \sim J \in \bar{D}(D)$ so $\overline{c_{1} c_{2}} \phi=\bar{c}_{1} \phi+\bar{c}_{2} \phi \subseteq D \sim J$ and hence $c_{1} c_{2} \notin I(J)$. Thus $I(J) \in \mathscr{P}(C)$.
It follows that $f_{J} \in[D, 2]_{\mathbf{D}_{1}}$ and $f_{I(J)} \in[C, 2]_{\mathscr{B}}$. To prove that $(a \phi) f_{J} \subseteq a f \phi_{I(J)} \phi_{\overline{2}}$, first suppose $a \notin I(J)$ then $a f_{I(J)}=1$ so $(a \phi) f_{J} \subseteq[0)=\left(a f_{I(J)}\right) \phi_{\overline{2}}$. Next suppose $a \in I(J)$. So there is an element $x \in \bar{a} \phi \widehat{\cap}$. Now if $d \in a \phi$ then $d f_{J}=1$. Indeed if $d f_{J}=0$ then $d \in J$ so $d+x \in a \phi \cap \bar{a} \phi=0 \phi=\{1\}$ and hence $1=d+x \in J$, a contradiction. Thus, $(a \phi) f_{J}=\left\{d f_{J} \mid d \in a \phi\right\}=$ $\{1\} \subseteq a f_{I(J)} \phi_{\overline{2}}$.
We close the section with an application of Lemma 2.2.
Theorem 2.3. A morphism $(f, g) \in\left[(C, D, \phi),\left(C_{1}, D_{1}, \phi_{1}\right)\right]_{\mathscr{*}}$ is an epimorphism if and only if f is an epimorphism in \mathscr{B} and g is epimorphism in \mathscr{D}_{1}.

Proof. The sufficiency of the condition is trivial. Conversely, suppose that (f, g) is epic in $\mathscr{K}, f_{1}, f_{1}{ }^{\prime} \in\left[C_{1}, C_{2}\right]_{\mathscr{B}}$ and $f f_{1}=f f_{1}{ }^{\prime}$. Let $g_{1} \in\left[D_{1}, \mathbf{1}\right]_{\mathscr{D}}$ and $\phi_{2} \in$
$\left[C_{2}, \bar{D}(\mathbf{1})\right]_{\mathscr{B}}$ be constant maps. Then $\left(C_{2}, \mathbf{1}, \phi_{2}\right) \in \operatorname{Ob} \mathscr{K}$ and $\left(f_{1}, g_{1}\right),\left(f_{1}{ }^{\prime}, g_{1}\right) \in$ $\left[\left(C_{1}, D_{1}, \phi_{1}\right),\left(C_{2}, \mathbf{1}, \phi_{2}\right)\right]_{\mathscr{H}}$. But then $(f, g)\left(f_{1}, g_{1}\right)=\left(f f_{1}, g g_{1}\right)=\left(f f_{1}{ }^{\prime}, g g_{1}\right)=$ $(f, g)\left(f_{1}{ }^{\prime}, g_{1}\right)$ so $\left(f_{1}, g_{1}\right)=\left(f_{1}{ }^{\prime}, g_{1}\right)$ and hence $f_{1}=f_{1}{ }^{\prime}$.
Again suppose that (f, g) is epic in \mathscr{K} but that g is not epic in \mathscr{D}_{1}. Since 2 is the only subdirectly irreducible in \mathscr{D}_{1}, there exist distinct prime ideals $J_{1}, J_{1}{ }^{\prime}$ in D_{1} such that $J_{1} \cap D g=J_{1}{ }^{\prime} \cap D g$. We first show:
(1) For each $x \in D_{1}$ there exists $d \in D$ such that $d g \leqq x$.

In order to verify (1), suppose that for some $x \in D, d g \not \leq x$ for any $d \in D$. Then $(x] \cap[(D) g)=\emptyset$ and hence there exists $J \in \mathscr{P}\left(D_{1}\right)$ with $x \in J$ and $J \cap(D) g=\emptyset$. Let $g_{1}: D_{1} \rightarrow \mathbf{2}$ be the constant map with value 1 , then $\left(f_{I(J)}, g_{1}\right),\left(f_{I(J)}, f_{J}\right) \in\left[\left(C_{1}, D_{1}, \phi_{1}\right),\left(\mathbf{2}, \mathbf{2}, \boldsymbol{\phi}_{2}\right)\right]_{\mathscr{H}}$ and $(f, g)\left(f_{I(J)}, f_{J}\right)=$ $(f, g)\left(f_{I(J)}, g_{1}\right)$, contradicting the fact that (f, g) is an epimorphism.
Next we prove:
(2) If $x \in a \phi_{1}$ then there exist $d \in D$ and $c \in C$ such that

$$
\left(d_{\rho_{c}}\right) g \leqq x \text { and } c f=a .
$$

Indeed, since f is epic in \mathscr{B} (and hence onto) there exists $c \in C$ such that $c f=a$. By (1) we obtain an element $d \in D$ such that $d g \leqq x$. Now $\left(d_{\rho_{\bar{c}}}\right) g \in$ $(\bar{c} \phi) g \subseteq(\bar{c} f) \phi_{1}=(c \bar{c}) \phi_{1}=\bar{a} \phi_{1}$, so $x+\left(d_{\rho_{\bar{c}}}\right) g \in a \phi_{1} \cap \bar{a} \phi_{1}=\{1\}$ and hence $x+\left(d_{\rho_{\bar{c}}}\right) g=1$. Thus,

$$
\left(d_{\rho_{c}}\right) g=x\left(\left(d_{\rho_{c}}\right) g\right)+\left(\left(d_{\rho_{\bar{c}}}\right) g\right)\left(\left(d_{\rho_{c}}\right) g\right) \leqq x+d g \leqq x .
$$

We can now show that $\left(f_{I\left(J_{1}\right)}, f_{J_{2}}\right) \in\left[\left(C_{1}, D_{1}, \phi_{1}\right),\left(\mathbf{2}, \mathbf{2}, \phi_{\overline{2}}\right)\right]_{\mathscr{K}}$. It suffices to prove that $\left(a \phi_{1}\right) f_{J_{2}} \subseteq\left(a f_{I\left(J_{1}\right)}\right) \phi_{\overline{2}}$ for $a \in I\left(J_{1}\right)$. But $a \in I\left(J_{1}\right)$ implies the existence of an element $y \in \bar{a} \phi_{1} \cap J_{1}$. We will prove that $x \in a \phi_{1}$ implies $x \notin J_{2}$.

Indeed suppose $x \in a \phi_{1} \cap J_{2}$. But by (2) there exists $d \in D$ and $c \in C$ such that $\left(d_{\rho_{c}}\right) g \leqq x$ so $\left(d_{\rho_{c}}\right) g \in J_{2}$. Hence $\left(d_{\rho_{c}}\right) g \in J_{2} \cap D g \subseteq J_{1}$ and therefore $\left(d_{\rho_{c}}\right) g+y \in J_{1}$. Now $\left(d_{\rho_{c}}\right) g \in(c \phi) g \subseteq(c f) \phi_{1}=a \phi_{1}$ so $y+\left(d_{\rho_{c}}\right) g \in$ $\bar{a} \phi_{1} \cap a \phi_{1}=\{1\}$ which implies the contradiction $1=y+\left(d_{\rho_{c}}\right) g \in J_{1}$. Thus $x \in a \phi_{1}$ implies $x \notin J_{2}$ so

$$
\left(a \phi_{1}\right) f_{J_{2}}=\left\{x f_{J_{2}} \mid x \in a \phi_{1}\right\}=\{1\} \subseteq\left(a f_{J_{2}}\right) \phi_{2}
$$

Finally, $J_{1} \cap D g=J_{2} \cap D g$ implies $g f_{J_{1}}=g f_{J_{2}}$ so $(f, g)\left(f_{I\left(J_{1}\right)}, f_{J_{2}}\right)=$ $\left(f f_{I\left(J_{1}\right)}, g f_{J_{2}}\right)=\left(f f_{I\left(J_{1}\right)}, g f_{J_{1}}\right)=(f, g)\left(f_{I\left(J_{1}\right)}, f_{J_{1}}\right)$. But (g, f) is epic so $f_{J_{2}}=f_{J_{1}}$, a contradiction.

This establishes a conjecture of G. Grätzer that a Stone homomorphism $f: L \rightarrow L_{1}$ is an epimorphism if and only if $(C(L)) f=C\left(L_{1}\right)$ and $f \mid D(L)$, with codomain restricted to $D\left(L_{1}\right)$, is an epimorphism in \mathscr{D}_{1}.
3. Prime ideals. We begin by characterizing $\mathscr{P}(L)$ in terms of the triple $(C(L), D(L), \phi(L))$.

Theorem 3.1. Let L be a Stone algebra. Then
(1)

$$
\begin{array}{r}
\mathscr{P}(L) \cong\left\{(I, J) \mid I \in \mathscr{P}(C(L)), J \in \mathscr{P}_{0}(D(L)), a^{*} \phi(L) \cap J=\emptyset\right. \\
\text { or } a \in I \text { for all } a \in C(L)\} .
\end{array}
$$

Proof. Let P be the poset on the right side of (1). For $K \in \mathscr{P}(L)$ it is easily verified that $K \cap C(L) \in \mathscr{P}(C(L))$ and $K \cap D(L) \in \mathscr{P}_{0}(D(L))$. If $d \in a^{*} \phi(L) \cap K \cap D(L)$ then $d \geqq a^{* *}=a$ so $a \in K$.

Thus, the map $h: \mathscr{P}(L) \rightarrow P$ given by $K h=(K \cap C(L), K \cap D(L))$ is well defined and obviously preserves order. Suppose $K, K_{1} \in \mathscr{P}(L)$, $K \cap C(L) \subseteq K_{1} \cap C(L)$ and $K \cap D(L) \subseteq K_{1} \cap D(L)$. For $x \in K, x=$ $x^{* *}\left(x+x^{*}\right)$ so $x^{* *} \in K$ or $x+x^{*} \in K$. In the first case, $x^{* *} \in K \cap C(L) \subseteq K_{1}$ so $x \in K_{1}$. Otherwise, $x+x^{*} \in K \cap D(L) \subseteq K_{1}$ so $x \in K_{1}$.

Suppose that $(I, J) \in P$. Let $K=(I \cup J]_{L}$. Since $I \neq \emptyset, K$ is an ideal. If $K=L$ then $1=a+d$ for some $a \in I, d \in J \cup\{0\}$. But $d \neq 0$ since I is proper so $d \in J$. Thus $d \geqq a^{*}$ implies $d \in a \phi(L) \cap J$. Since $(I, J) \in P$, $a^{*} \in I$ which leads to the contradiction $1=a+a^{*} \in I$. To prove that $K \in \mathscr{P}(L)$, suppose $u v \in K$. Then there exists $a \in I, d \in J \cup\{0\}$ such that $u v \leqq a+d$. If $d=0$ then $u^{* *} v^{* *} \leqq a^{* *}=a$ so $u^{* *} \in I$ or $v^{* *} \in I$, in which case $u \in K$ or $v \in K$. On the other hand suppose $d \in J$. Then $u v a^{*} \leqq d$ so $(u+d)(v+d)\left(a^{*}+d\right) \leqq d$. But $d \in J$ and $\left\{u+d, v+d, a^{*}+d\right\} \subseteq D(L)$ so one of the three elements is in J. If $a^{*}+d \in J$ then $a^{*}+d \in a \phi(L) \cap J$ and hence the contradiction $a^{*} \in I$. Thus $u+d \in J$ or $v+d \in J$. It follows that $u \in K$ or $v \in K$.

Since $I \subseteq K \cap C(L), J \subseteq K \cap D(L)$ it remains to verify that $K \cap C(L)$ $\subseteq I$ and $K \cap D(L) \subseteq J$. First let $a \in K \cap C(L)$ so $a \leqq b+d$ where $b \in I$, $d \in J \cup\{0\}$. We can assume $d \neq 0$. Then $a b^{*} \leqq d$ so $d \in\left(a b^{*}\right)^{*} \phi(L) \cap J$ and hence $a b^{*} \in I$. But I is prime so $a \in I$. Finally let $d \in K \cap D(L)$, $d \leqq a+d_{1}$, where $a \in I, d_{1} \in J \cup\{0\}$. If $d_{1}=0,1=a \in I$ so assume $d_{1} \in J$. Then $\left(a^{*}+d_{1}\right)\left(d+d_{1}\right) \leqq d_{1}$ so $a^{*}+d_{1} \in J$ or $d+d_{1} \in J$. Now $a^{*}+d_{1} \in J$ implies $a^{*}+d_{1} \in a \phi(L) \cap J$ which means $a^{*} \in I$. So we can assume $d+d_{1} \in$ J and hence $d \in J$.

It is well known (and can easily be seen from (1)) that the poset of minimal prime ideals of L is isomorphic with $\mathscr{P}(C(L))$. Moreover, recalling the definition of $I(J)$ preceding Lemma 2.2, we have:

Corollary 3.2. For a Stone algebra L,

$$
\mathscr{P}(L) \cong\{(I, \emptyset) \mid I \in \mathscr{P}(C(L))\} \cup\{(I(J), J) \mid J \in \mathscr{P}(D(L))\} .
$$

In particular $|\mathscr{P}(L)|=|\mathscr{P}(C(L))|+|\mathscr{P}(D(L))|$.
Proof. Again let P represent the right side of (1). For $I \in \mathscr{P}(C(L))$ it is obvious that $(I, \emptyset) \in P$. Next let $J \in \mathscr{P}(D(L))$. By Lemma $2.2, I(J) \in$ $\mathscr{P}(C(L))$ and if $a \notin I(J)$ then $a^{*} \phi(L) \cap J=\emptyset$. Conversely, let $(I, J) \in P$. We can assume $J \neq \emptyset$ so $J \in \mathscr{P}(D(L))$. But then $I(J) \subseteq I$ for if $a \in I(J)$ then $a^{*} \phi(L) \cap J \neq \emptyset$ so $a \in I$. By Nachbin's theorem, $I(J)=I$.

In showing that the functor in Section 2 is an equivalence, it is necessary to prove that for $(C, D, \phi) \in \mathscr{K}$, there exists a Stone algebra L such that (C, D, ϕ) $\cong(C(L), D(L), \phi(L))$. This was accomplished in Section 4 of [1]. Recently, in [7], T. Katrinák has given a new shorter construction of L (see [3, Problem $55])$. Theorem 3.1 also leads to a more direct construction of L by replacing each abstract symbol $\langle a, d\rangle$, used in [1], by a set. Specifically we obtain, for the objects of \mathscr{K}, the analogue of the Stone representation theorem.

Let $(C, D, \boldsymbol{\phi}) \in \mathrm{Ob} \mathscr{K}$ and set

$$
P=\left\{(I, J) \mid I \in \mathscr{P}(C), J \in \mathscr{P}_{0}(D), \bar{a} \phi \cap J=\emptyset \text { or } a \in I \text { for all } a \in C\right\} .
$$

For each $a \in C$ and $d \in a \phi$, let $\langle a, d\rangle=\{(I, J) \in P \mid a \notin I, d \notin J\}$ and $R=$ $\{\langle a, d\rangle \mid a \in C, d \in a \phi\}$. It follows immediately from Lemma 2.1 that $d \in a \phi, e \in b \phi$ implies $e\left(d_{\rho_{\bar{b}}}\right)+d\left(e_{\rho_{\bar{a}}}\right) \in(a+b) \phi$ and $\left(d_{\rho_{b}}\right)\left(e_{\rho_{a}}\right) \in(a b) \phi$. We will show that R is a ring of sets by establishing:

$$
\begin{align*}
& \langle a, d\rangle \cup\langle b, e\rangle=\left\langle a+b, e\left(d_{\rho \overline{\bar{b}}}\right)+d\left(e_{\rho_{\bar{a}}}\right)\right\rangle, \text { and } \tag{2}\\
& \langle a, d\rangle \cap\langle b, e\rangle=\left\langle a b,\left(d_{\rho b}\right)\left(e_{\rho_{a}}\right)\right\rangle \tag{3}
\end{align*}
$$

For (2), suppose $(I, J) \in\langle a, d\rangle$. Then $a \notin I, d \notin J$. Now $e_{\rho_{\bar{a}}} \notin J$ since $e_{\rho_{\bar{a}}} \in J \cap \bar{a} \phi$ implies $a \in I$, so $d\left(e_{\rho_{\bar{a}}}\right) \notin J$ and hence $(I, J) \in\left\langle a+b, e\left(d_{\rho_{\bar{b}}}\right)+\right.$ $\left.d\left(e_{\rho_{\bar{a}}}\right)\right\rangle$. Similarly $\langle b, e\rangle \subseteq\left\langle a+b, e\left(d_{\rho_{\bar{b}}}\right)+d\left(e_{\rho_{\bar{a}}}\right)\right\rangle$. Conversely, suppose $a+b \notin I$ and $e\left(d_{\rho_{\bar{b}}}\right)+d\left(e_{\rho_{\bar{a}}}\right) \nexists J$. Without loss of generality, assume $a \notin I$. First suppose $b \in I$. Then $d_{\rho b} \notin J$. Indeed, $d_{\rho b} \in b \phi \cap J$ implies $\bar{b} \in I$, a contradiction. But $d_{\rho_{\bar{b}}} \geqq e\left(d_{\rho_{\bar{b}}}\right)+d\left(e_{\rho_{\bar{a}}}\right)$ so $d_{\rho_{\bar{b}}} \notin J$. Since $d \geqq\left(d_{\rho b}\right)\left(d_{\rho_{\bar{b}}}\right)$ we conclude that $d \notin J$ and hence $(I, J) \in\langle a, d\rangle$. On the other hand suppose $b \notin I$. Then $e+d \geqq e\left(d_{\bar{\rho}}\right)+d\left(e_{\rho \bar{a}}\right)$ implies $d \notin J$ or $e \notin J$ so $(I, J) \in\langle a, d\rangle$ of $(I, J) \in\langle b, e\rangle$. (3) is verified in a similar manner.

It is obvious that $\langle a, 1\rangle$ and $\langle 1, d\rangle$ are members of R for all $a \in C$ and $d \in D$ and that $\emptyset=\langle 0,1\rangle=0_{R}$ and $P=\langle 1,1\rangle=1_{R}$. Moreover R is pseudocomplemented with
(4) $\langle a, d\rangle^{*}=\langle\bar{a}, 1\rangle$.

Indeed it is clear that $\langle a, d\rangle \cap\langle\bar{a}, 1\rangle=\emptyset$. Conversely suppose $\langle a, d\rangle \cap\langle b, e\rangle=\emptyset$ but $b \nsubseteq \bar{a}$. Then there exists $(I, \emptyset) \in P$ such that $(I, \emptyset) \in\langle a, d\rangle \cap\langle b, e\rangle$, a contradiction, so $\langle b, e\rangle \subseteq\langle\bar{a}, 1\rangle$.
Since $\langle a, d\rangle^{*} \cup\langle a, d\rangle^{* *}=1_{R}, R$ is a Stone algebra with $C(R)=\{\langle\bar{a}, 1\rangle \mid a \in C\}$ and $D(R)=\{(1, d) \mid d \in D\}$.
To show $(C, D, \phi) \cong(C(R), D(R), \phi(R))$, we note that it is easy to verify that the map $f: C \rightarrow C(R)$, defined by $a f=\langle a, 1\rangle$ is an isomorphism in \mathscr{B}. It is clear that the map $g: D \rightarrow D(R)$ defined by $d g=\langle 1, d\rangle$ preserves order and is onto. Suppose $d \nsubseteq d_{1},\left\{d, d_{1}\right\} \subseteq D$. Then there exists $J \in \mathscr{P}(D)$ such that $d_{1} \in J, d \notin J$. But $(I(J), J) \in P$ and $(I(J), J) \in\langle 1, d\rangle \sim\left\langle 1, d_{1}\right\rangle$ so g is an isomorphism in \mathscr{D}. It remains to verify that for $a \in C,(a \phi) g=(a f) \phi(R)$. First suppose $\langle 1, d\rangle \in(a f) \phi(R)$. Then $\langle\bar{a}, 1\rangle \subseteq\langle 1, d\rangle$ but suppose $d \notin a \phi$.

Then there exists $J \in P(D)$ such that $a \phi \cap J=\emptyset$ and $d \in J$. Then $(I(J), J) \in$ P and $(I(J), J) \in\langle\bar{a}, 1\rangle$ for if $\bar{a} \in I(J)$ then $a \notin I(J)$ implies $\bar{a} \phi \cap J=\emptyset$. But $a \phi \cap J=\emptyset$ and hence the contradiction $J=\emptyset$. We conclude that $(I(J), J) \in\langle 1, d\rangle$, contradicting $d \in J$. For the converse, assume $d \in a \phi$ and $(I, J) \in\langle\bar{a}, 1\rangle$ then $\bar{a} \notin I$ so $a \phi \cap J=\emptyset$. But $d \in a \phi$ so $d \notin J$ and hence $(I, J) \in\langle 1, d\rangle$.

We close by noting that the above construction is a concrete representation of the Chen-Grätzer construction. This follows from the fact that for $\langle a, d\rangle$ and $\langle b, e\rangle \in R,\langle a, d\rangle \subseteq\langle b, e\rangle$ if and only if $a \leqq b$ and $d \leqq e_{\rho_{a}}$ (cf. [1, p. 887]).
4. Uniqueness of ϕ. In [1], it is shown that for any $C \in \mathbf{B}, C \neq 1$ and any $D \in \mathbf{D}_{1}$ there exists $\phi: C \rightarrow \bar{D}(D)$ such that $(C, D, \phi) \in \mathrm{Ob} \mathscr{K}$; if $C=\mathbf{1}$ then there exists ϕ such that $(C, D, \phi) \in \mathrm{Ob} \mathscr{K}$ if and only if $D=\mathbf{1}$. Thus, for a given C and D the existence of a ϕ for which $(C, D, \phi) \in \mathscr{K}$ is completely settled. In this section we will answer the corresponding uniqueness question. There are three trivial cases to handle first: if $(C, D, \phi) \in \mathscr{K}$ and $C=\mathbf{1}$ or $C=\mathbf{2}$ or $D=\mathbf{1}$ then ϕ is uniquely determined (as well as D in the first case) since ϕ preserve 0,1 . We now proceed to the general case.

Theorem 4.1. Let $C \in \mathbf{B}, D \in \mathbf{D}_{1}$ and $C \neq \mathbf{2}, C \neq \mathbf{1}, D \neq \mathbf{1}$. There exists exactly one member (up to isomorphism) of $\mathrm{Ob} \mathscr{K}$ of the form (C, D, ϕ) if and only if
(i) $C(\bar{D}(D))=\left\{0_{\bar{D}(D)}, 1_{\bar{D}(D)}\right\}$, and
(ii) If I_{1}, I_{2} are prime ideals in C then there exists a \mathbf{B}-automorphism f of L such that $I_{1} f=I_{2}$.

Proof. (\Rightarrow) Suppose $\bar{D}(D)$ contains a complemented element d, other than $0_{\bar{D}(D)}$ and $1_{\bar{D}(D)}$. Since $C \neq \mathbf{1}, \mathbf{2}$, there exist distinct prime ideals I_{1}, I_{2} in C. Then the maps $\phi_{i}: C \rightarrow \bar{D}(D), i=1,2$, defined by

$$
c \phi_{1}=\left\{\begin{array}{ll}
1_{\bar{D}(D)}, \quad \text { if } c \notin I_{1} \cup I_{2} \\
\bar{d}, & \text { if } c \in I_{2} \sim I_{1} \\
d, & \text { if } c \in I_{1} \sim I_{2} \\
0_{\bar{D}(D)}, & \text { if } c \in I_{1} \cap I_{2}
\end{array} \quad \text { and } c \phi_{2}= \begin{cases}1_{\bar{D}(D)}, & \text { if } c \notin I_{2} \\
0_{\bar{D}(D)}, & \text { if } c \in I_{2}\end{cases}\right.
$$

are \mathbf{D}_{01}-homomorphisms. But then $\left(C, D, \phi_{i}\right), i=1,2$ are objects in \mathscr{K} and by hypothesis there is an isomorphism $(f, g) \in\left[\left(C, D, \phi_{1}\right),\left(C, D, \phi_{2}\right)\right]_{\mathscr{x}}$. Now choose $b \in I_{2} \sim I_{1}$. Then $b \phi_{1}=\bar{d}$ so $(\bar{d}) g=\left(b \phi_{1}\right) g=(b f) \phi_{2} \in$ $\left\{0_{\bar{D}(D)}, 1_{\bar{D}(D)}\right\}$. Since g is an automorphism of D, the map $F \rightarrow(F) g$ is an automorphism of $\bar{D}(D)$ and hence $(\bar{d}) g \in\left\{0_{\bar{D}(D)}, 1_{\bar{D}(D)}\right\}$, implies $\bar{d} \in$ $\left\{0_{\bar{D}(D)}, 1_{\bar{D}(D)}\right\}$.

In order to prove (ii), let I_{1}, I_{2} be prime ideals in C. Define $\phi_{i}: C \rightarrow \bar{D}(D)$ by

$$
c \phi_{i}^{\prime}= \begin{cases}1_{\bar{D}(D)}, & \text { if } c \notin I_{i}, \\ 0_{\bar{D}(D)}, & \text { if } c \in I_{i}\end{cases}
$$

for $i=1,2$. Then $\left(C, D, \phi_{i}{ }^{\prime}\right), i=1,2$ are objects in \mathscr{K} so there is an isomor$\operatorname{phism}\left(f^{\prime}, g^{\prime}\right) \in\left[(C, D, \phi),\left(C, D, \phi^{\prime}\right)\right]_{\mathscr{K}}$. But then $f^{\prime}: C \rightarrow C$ is the required automorphism.
(\Leftarrow) Suppose $\left(C, D, \phi_{1}\right),\left(C, D, \phi_{2}\right) \in \mathrm{Ob} \mathscr{K}$. Set $I_{i}=\left\{c \in C \mid c \phi_{i}=0_{\bar{D}(D)}\right\}$. Since ϕ_{i} is a \mathbf{D}_{01}-homomorphism, it preserves complemented elements. It follows from (i) that $C \phi_{i} \subseteq\left\{0_{\bar{D}(D)}, 1_{\bar{D}(D)}\right\}$ and, in particular that I_{i} is a prime ideal for $i=1,2$. But then by (ii) there is a \mathbf{B}-automorphism $f: C \rightarrow C$ such that $\left(I_{1}\right) f=I_{2}$. It can be verified that $\left(f, 1_{D}\right)$ is an isomorphism in \mathscr{K} from (C, D, ϕ_{1}) to (C, D, ϕ_{2}).

For any finite Boolean algebra C, condition (ii) holds: we can extend to a B-automorphism, any map which permutes the coatoms of C. However, in the infinite case, condition (ii) does not hold in general. For example there exist Boolean algebras with no non-trivial automorphisms (e.g., see [6]). On the other hand, if C is any free Boolean algebra, the condition is satisfied. Indeed if S freely B-generates C and $\left\{I_{1}, I_{2}\right\} \subseteq \mathscr{P}(C)$ define $f: S \rightarrow C$ by

$$
f(s)= \begin{cases}s, & \text { if } s \in\left(I_{1} \cap I_{2}\right) \cup\left(\tilde{I}_{1} \cap \tilde{I}_{2}\right) \\ \bar{s}, & \text { otherwise }\end{cases}
$$

Then f extends to a homomorphism g such that $g^{2}=1, I_{1} g=I_{2}$.
It is easy to verify that for a distributive lattice D, with 0,1 , condition (i) is equivalent to: $C(D)=\{0,1\}$. We have:

Corollary. Let $C \in \mathbf{B}, \quad D \in \mathbf{D}_{1}, \quad 2<|C|<\infty, \quad 1<|D|<\infty$. Then (C, D, ϕ) is uniquely determined by C and D if and only if $C(D)=\{0,1\}$. Thus, the finite Stone algebras which are uniquely determined by their center $\mathbf{2}^{n}, 2 \leqq$ $n<\infty$ and set of dense elements D, are the algebras of the form $\mathbf{2}^{n-1} \times(1 \oplus D)$, where the symbol \oplus denotes ordinal sum and D is a finite distributive lattice with $C(D)=\{0,1\}$.

The "smallest" non-isomorphic Stone algebras with isomorphic centers and dense elements are $\mathbf{3} \times \mathbf{3}$ and $\left(\mathbf{1} \oplus \mathbf{2}^{2}\right) \times \mathbf{2}$.

References

1. C. C. Chen and G. Grätzer, Stone lattices: Construction theorems, Can. J. Math. 21 (1969), 884-894.
2. -_Stone lattices: Structure theorems, Can. J. Math. 21 (1969), 895-903.
3. G. Grätzer, Lattice theory: First concepts and distributive lattices (W. H. Freeman Co., San Francisco, 1971).
4. G. Grätzer and H. Lakser, The structure of pseudocomplemented distributive lattices, II: Congruence extension and amalgamation, Trans. Amer. Math. Soc. 156 (1971), 343-348.
5. -_The structure of pseudocomplemented distributive lattices, III: Injective and absolute subretracts, Trans. Amer. Math. Soc. 157 (1972), 475-487.
6. B. Jónsson, A Boolean algebra without proper automorphisms, Proc. Amer. Math. Soc. 2 (1951), 766-770.
7. T. Katriňák, A new proof of the construction theorem for Stone algebras, Proc. Amer. Math. Soc. 40 (1973), 75-79.
8. H. Lakser, The structure of pseudocomplemented distributive lattices, I: Subdirect decomposition, Trans. Amer. Math. Soc. 156 (1971), 335-342.
9. —— Injective hulls of Stone algebras, Proc. Amer. Math. Soc. 24 (1970), 524-529.
10. L. Nachbin, Une Propriété caracteristique des algèbras Booléinnes, Portugal. Math. 6 (1947), 115-118.
11. M. H. Stone, Topological representations of distributive lattices and Brouwerian logics, Casopis Pěst. Mat. 67 (1937), 1-25.
12. J. Varlet, On the characterization of Stone lattices, Acta Sci. Math. (Szeged) 27 (1966), 81-84.

University of Missouri-St. Louis, St. Louis, Missouri

