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Abstract

For an arbitrary connected reductive group G, we consider the motivic integral over the
arc space of an arbitrary Q-Gorenstein horospherical G-variety XΣ associated with a
colored fan Σ and prove a formula for the stringy E-function of XΣ which generalizes
the one for toric varieties. We remark that, in contrast to toric varieties, the stringy
E-function of a Gorenstein horospherical variety XΣ may be not a polynomial if some
cones in Σ have nonempty sets of colors. Using the stringy E-function, we can formulate
and prove a new smoothness criterion for locally factorial horospherical varieties. We
expect that this smoothness criterion holds for arbitrary spherical varieties.

Introduction

Throughout the paper, we consider algebraic varieties and algebraic groups over the ground
field C.

Let G be a connected reductive group and H ⊆G a closed subgroup. The homogeneous
space G/H is said to be horospherical if H contains a maximal unipotent subgroup U ⊆G. In
this case, the normalizer NG(H) is a parabolic subgroup P ⊆G and P/H is an algebraic torus
T . The horospherical homogeneous space G/H can be described as a principal torus bundle with
the fiber T over the projective homogeneous space G/P . The dimension r of the torus T is
called the rank of the horospherical homogeneous space G/H. Let M be the lattice of characters
of the torus T , and let N = Hom(M, Z) be the dual lattice. According to the Luna–Vust
theory [LV83], any G-equivariant embedding G/H ↪→X of a horospherical homogeneous space
G/H can be described combinatorially by a colored fan Σ in the r-dimensional vector
space NR :=N ⊗Z R. In the case where H = U , G-equivariant embeddings of G/U have been
considered independently by Pauer; see [Pau81, Pau83]. Equivariant embeddings of horospherical
homogeneous spaces are generalizations of the well-known toric varieties which are torus
embeddings T ↪→X (G= T , H = {e}).

Our paper is motivated by some known formulas for stringy invariants of toric varieties. Let
X be a Q-Gorenstein toric variety defined by a fan Σ⊂NR, and denote by |Σ| ⊂NR its support.
Then there is a piecewise-linear function ωX : |Σ| → R such that its restriction to every cone
σ ∈ Σ is linear and ωX takes value −1 on all primitive lattice generators of 1-dimensional faces
of σ. It was shown in [Bat98] that the stringy E-function of the toric variety X can be computed
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by the formula

Est(X; u, v) := (uv − 1)r
∑

n∈|Σ|∩N

(uv)ωX(n). (1)

If X is smooth and projective, then the stringy E-function of X coincides with the usual
E-function,

E(X; u, v) =
r∑
i=1

b2i(X)(uv)i,

where b2i(X) is the (2i)th Betti number of X. Using the decomposition of X into torus orbits,
we can compute E(X; u, v) by the formula

E(X; u, v) =
∑
σ∈Σ

(uv − 1)r−dim σ = (uv − 1)r
∑
σ∈Σ

(−1)dim σ

(1− uv)dim σ
.

Hence, ∑
n∈N

(uv)ωX(n) =
∑
σ∈Σ

(−1)dim σ

(1− uv)dim σ
= (−1)rP (RΣ, uv) = (−1)r

∑r
i=1 b2i(X)(uv)i

(1− uv)r
,

where P (RΣ, t) =
∑

i>0 dimRiΣ t
i is the Poincaré series of the graded Stanley–Reisner ring

RΣ =
⊕

i>0 R
i
Σ associated with the fan Σ.

Recall the definition of the Stanley–Reisner ring RΣ. Let e1, . . . , es be the primitive integral
generators of all 1-dimensional cones in Σ. We consider the polynomial ring C[z1, . . . , zs] whose
variables z1, . . . , zs are in bijection with the lattice vectors e1, . . . , es. Then the Stanley–Reisner
ring RΣ is the quotient of C[z1, . . . , zs] by the ideal generated by those square-free monomials
zi1 . . . zik such that the lattice vectors ei1 . . . eik do not generate any k-dimensional cone in Σ.
The cohomology ring H∗(X, C) of the smooth projective toric variety X associated with Σ is
isomorphic to the quotient of RΣ modulo the ideal generated by a regular sequence f1, . . . , fr
in R1

Σ (see, e.g., [Dan78, Theorem 10.8]).
In this paper, we prove a formula similar to (1) for any Q-Gorenstein horospherical variety

X defined by a colored fan Σ:

Est(X; u, v) := E(G/H; u, v)
∑

n∈|Σ|∩N

(uv)ωX(n), (2)

where ωX : |Σ| → R is a certain Σ-piecewise-linear function (see Theorem 4.3). Let X be a
complete and locally factorial horospherical variety defined by a colored cone Σ. Let e1, . . . , es be
the primitive integral generators of all 1-dimensional cones in Σ. Consider the positive integers
ai :=−ωX(ei) for i ∈ {1, . . . , s}, and define the weighted Stanley–Reisner ring RwΣ corresponding
to the colored fan Σ by putting deg zi = ai in the standard Stanley–Reisner ring RΣ (here we
consider Σ as an uncolored fan). In Proposition 6.1, we prove that∑

n∈N
(uv)ωX(n) = (−1)rP (RwΣ, uv) = (−1)r

∑
σ∈Σ

(−1)dim σ∏
ei∈σ(1− (uv)ai)

,

where P (RwΣ, t) is the Poincaré series associated with the weighted Stanley–Reisner ring RwΣ. So
we get

Est(X; u, v) = (−1)rE(G/H; u, v)P (RwΣ, uv).
In contrast to toric varieties, the stringy E-function of a locally factorial horospherical variety

X need not be a polynomial. If X is smooth, then Est(X; u, v) = E(X; u, v) is polynomial
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and, in particular, the stringy Euler number, est(X) := Est(X; 1, 1), is equal to the usual Euler
number e(X) := E(X; 1, 1). If X is a locally factorial horospherical variety whose closed orbits
are projective, then we show that est(X) > e(X) and that equality holds if and only if X is
smooth (see Theorem 5.3). We conjecture that the equality

est(X) = e(X)

can be used as a smoothness criterion for arbitrary locally factorial spherical varieties (see
Conjecture 6.7).

The key idea behind formula (2) for toric varieties is the isomorphism

T (K)/T (O)'N,

where O := C[[t]], K := C((t)), and T (O) (respectively, T (K)) denotes the set of O-valued
(respectively, K-valued) points in T . We remark that the stringy motivic integral over the arc
space X(O) of a toric variety X is equal to its restriction to the arc space T (K). The latter
contains countably many orbits of the maximal compact subgroup T (O)⊂ T (K), which are
parametrized by the elements n of the lattice N . The stringy motivic integral over a T (O)-orbit
corresponding to an element n ∈N is equal to (L− 1)rLωX(n), where (L− 1)r is the stringy
motivic volume of the torus T and L is the class of the affine line in the Grothendieck ring
K0(VarC) of algebraic varieties. Our approach in the proof of formula (2) is to use a more
general bijection

G(O)\(G/H)(K)'N,
which holds for any horospherical homogeneous space G/H; see [GN10, LV83].

The paper is organized as follows.
Section 1 contains a review of known facts about the spaces of arcs of algebraic varieties

and their relation to motivic integrals and stringy E-functions. In § 2, we collect basic results on
horospherical embeddings. In § 3, we prove that there is a bijection between the quotient by G(O)
of the intersection X(O) ∩ (G/H)(K) and the set of lattice points |Σ| ∩N for any horospherical
G/H-embedding (Theorem 3.1). Section 4 is devoted to the formula which expresses the stringy
motivic volume of any Q-Gorenstein horospherical variety as a sum over lattice points n ∈N ∩ |Σ|
(Theorem 4.3). We use this formula to obtain a smoothness criterion for locally factorial
horospherical embeddings in § 5 (Theorem 5.3). Section 6 contains some applications, examples
and open questions, as well as a conjecture related to our results.

1. Arc spaces, motivic integration and stringy motivic volumes

Interesting invariants of a singular algebraic variety X can be obtained via non-Archimedean
motivic integration over the space of arcs J∞(X).

Here we recall some basic definitions relating to the arc space of an algebraic variety; we
refer the reader to [DL99, Mus01] or [EM09] for more details concerning this topic. Let X be an
algebraic variety over C. For any m> 0, we denote by Jm(X) the mth jet scheme of X over C
whose C-valued points are all morphisms of schemes Spec C[t]/(tm+1)→X. One has J0(X) =X,
and J1(X) = TX is the total space of the tangent bundle over X. For m> n, the natural ring
homomorphism C[t]/(tm+1)→ C[t]/(tn+1) induces truncation morphisms

πm,n : Jm(X)−→Jn(X).

The truncation morphisms form a projective system whose projective limit is an infinite-
dimensional scheme J∞(X) over C. The scheme J∞(X) is called the arc space of X, and
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the C-valued points of J∞(X) are all morphisms Spec C[[t]]→X. For each m, there is a natural
morphism

πm : J∞(X)−→Jm(X)
induced by the ring homomorphism C[[t]]→ C[[t]]/(tm+1)' C[t]/(tm+1).

The motivic integration over the arc space of a smooth variety is due to Kontsevich [Kon95].
A generalization of it for singular varieties was suggested by Denef and Loeser in [DL99]. Another
generalization, motivated by stringy invariants, was proposed in [Bat98]; see also [Cra04, Vey06].

Let VarC be the category of complex algebraic varieties, and denote by K0(VarC) the
Grothendieck ring of VarC. For an element X in VarC, we denote by [X] its class in K0(VarC).
The symbol L stands for the class of the affine line A1, and we denote by 1 the class of Spec C.
For example,

[Pn] = Ln + Ln−1 + · · ·+ L + 1.
The map X 7→ [X] naturally extends to the category of constructible algebraic sets. There
is a natural function, dim : K0(VarC)→ Z ∪ {∞}, which can be extended to the localization
MC := K0(VarC)[L−1] of K0(VarC) with respect to L simply by setting dim(L−1) :=−1. For any
m ∈ Z, set FmMC := {τ ∈MC | dim τ 6m}. Then {FmMC}m∈Z is a decreasing filtration ofMC
and we let M̂C denote the separated completion of MC with respect to this filtration.

Let X be a d-dimensional smooth variety.

Definition 1.1. A subset C in J∞(X) is called a cylinder if there exist m ∈ N and a
constructible subset Bm ⊆ Jm(X) such that C = π−1

m (Bm). Such a set Bm is called a m-base
of C.

If C ⊆ J∞(X) is a cylinder with m-base Bm ⊆ Jm(X), we define its motivic measure µX(C)
by

µX(C) := [Bm]L−md = [πm(C)]L−md ∈ K0(VarC).

This definition does not depend on m; indeed, because X is smooth, the map

πn,m : πn(C)→ πm(C)

is a locally trivial A(n−m)d-bundle for any n>m. The collection of cylinders forms an algebra
of sets, which means that J∞(X) is a cylinder and that if C and C ′ are cylinders, then so are
J∞(X) r C and C ∩ C ′. On the set of cylinders, the measure µX is additive on finite disjoint
unions. Furthermore, for cylinders C ⊆ C ′, one has dim µX(C) 6 dim µX(C ′).

Definition 1.2. A subset C ⊂ J∞(X) is said to be measurable if for every n ∈ N there exist a
cylinder Cn and cylinders Dn,i, i ∈ N, such that

C 4 Cn ⊆
⋃
i∈N

Dn,i

and dim µX(Dn,i) 6−n for all i. Here C 4 Cn = (C r Cn) ∪ (Cn r C) denotes the symmetric
difference of two sets.

If C is measurable, we define its motivic measure µX(C) by

µX(C) := lim
n→∞

µX(Cn).

This limit converges in M̂C and is independent of the Cn; cf. [Bat98, Theorem 6.18].

Proposition 1.3 [Bat98, Propositions 6.19 and 6.22]. (i) The measurable sets form an
algebra of sets and the motivic measure µX is additive on finite disjoint unions. If (Ci)i∈N
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is a disjoint sequence of measurable sets such that limi→∞ µX(Ci) = 0, then C :=
⋃
i∈N Ci is

measurable and

µX(C) =
∑
i∈N

µX(Ci).

(ii) Let Y ⊆X be a locally closed subvariety. Then J∞(Y ) is a measurable subset of J∞(X)
and if dim Y < dimX then µX(J∞(Y )) = 0.

Definition 1.4. A function F : J∞(X)→ Z ∪ {+∞} is said to be measurable if F−1(s) is
measurable for all s ∈ Z ∪ {+∞}.

Let A⊆ J∞(X) be a measurable set and F : J∞(X)→ Z ∪ {+∞} a measurable function such
that µX(F−1(+∞)) = 0. Then we set∫

A
L−F dµX :=

∑
s∈Z

µX(A ∩ F−1(s))L−s

in M̂C whenever the right-hand side converges in M̂C. In this case, we say that L−F is integrable
on A. To any subvariety Y of X one associates the order function

ordY : J∞(X)→ N ∪ {∞}

sending an arc ν ∈ J∞(X) to the order of vanishing of ν along Y . An important example of an
integrable function is the function L−ordY where Y is a smooth hypersurface in X.

We consider now the case where X is a singular normal irreducible variety. Let KX be a
canonical divisor of X. Assume that X is Q-Gorenstein, that is, mKX is Cartier for some m ∈ N.
Let f :X ′→X be a resolution of singularities of X such that the exceptional locus of f is a
divisor whose irreducible components D1, . . . , Dl are smooth divisors with only normal crossings,
and set

KX′/X :=KX′ − f∗KX =
l∑

i=1

νiDi,

where the rational numbers νi (1 6 i6 l) are called the discrepancies of f . The rational numbers
νi (1 6 i6 l) can be computed as follows. Since mKX is Cartier, we can consider f∗(mKX) as
a pullback of the Cartier divisor and write

mKX′ − f∗(mKX) =
l∑

i=1

niDi

with ni ∈ Z for all i. Then KX′/X can be viewed as an abbreviation of the Q-divisor
∑l

i=1 νiDi

where νi := ni/m for all i. Assume further that X has at worst log-terminal singularities, that
is, νi >−1 for all i (cf. [KMM87]). Set I := {1, . . . , l} and, for any subset J ⊆ I,

DJ :=
{⋂

j∈J DJ if J 6= ∅,
Y if J = ∅, and D0

J :=DJ r
⋃

j∈IrJ

Dj .

Definition 1.5. We define the stringy motivic volume Est(X) of X by

Est(X) :=
∑

J⊆{1,...,l}

[D0
J ]
∏
j∈J

L− 1
Lνj+1 − 1

∈ M̂C(L1/m).

(In [Vey06], the element Est(X) is also called the stringy E-invariant of X.)
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The inequality νi >−1 for any i implies that the function ordKX′/X :=
∑l

i=1 νi ordDi is
integrable on J∞(X ′); see [Bat98, Theorem 6.28]. So we can express Est(X) in the form of a
motivic integral as follows.

Proposition 1.6. The stringy motivic volume Est(X) can be expressed as the following integral:

Est(X) =
∫
J∞(X′)

L−ordK
X′/X dµX′ ∈ M̂C(L1/m).

The crucial point is that the above expressions of Est(X) do not depend on the chosen
resolution; see [Bat98, Theorem 3.4]. This relevant fact essentially comes from the transformation
rule for motivic integrals; see [DL99].

Recall that the E-polynomial of an arbitrary d-dimensional complex algebraic variety Z is
defined by

E(Z; u, v) :=
d∑

p,q=0

2d∑
i=0

(−1)ihp,q(Hi
c(Z; C))upvq,

where hp,q(Hi
c(Z; C)), for 0 6 i6 2d, is the dimension of the (p, q)-type Hodge component in the

ith cohomology group Hi
c(Z; C) with compact support. The polynomial E has properties similar

to those of the usual Euler characteristic. In particular, the map Z 7→ E(Z; u, v) factors through
the ring K0(VarC). The map Z 7→ E(Z; u, v) extends to MC by setting E(L−1; u, v) := (uv)−1.
Thus, we get a map from MC to Z[u, v, (uv)−1] which uniquely extends to M̂C. This extension
will again be denoted by E.

Definition 1.7. The stringy E-function of X is given by

Est(X; u, v) :=
∑

J⊆{1,...,l}

E(D0
J ; u, v)

∏
j∈J

uv − 1
(uv)νj+1 − 1

(cf. [Bat98]). Note that Est(X; u, v) = E(Est(X); u, v).

Remark 1.8. Whenever X is smooth, we have Est(X) = µX(J∞(X)) = [X] and Est(X; u, v) =
E(X; u, v).

2. Horospherical varieties

In this section, we use our notation from the introduction: G is a connected reductive group
over C, H ⊂G is a closed horospherical subgroup, G/H is the corresponding horospherical
homogeneous space, U is a maximal unipotent subgroup in G such that U ⊆H, B :=NG(U)
is the corresponding Borel subgroup of G, P :=NG(H) is a parabolic subgroup, T := P/H is a
r-dimensional algebraic torus, M is the group of characters of T , and N := Hom(M, Z).

Let S be the set of simple roots of (G, B) with respect to a maximal torus of B. There is a
bijective map I 7→ PI sending a subset I of S to the parabolic subgroup PI of G containing B
such that PI =BWIB where WI ⊆W is the subgroup of the Weyl group W =WS generated by
the reflections sα, α ∈ I. In particular, one has P∅ =B and PS =G. From now on, we denote
by I the subset of S corresponding to P :=NG(H). Let U0 ⊂G/P be the open dense B-orbit.
Then U0 is isomorphic to an affine space, and the Picard group of G/P is free, generated by
the classes [Γα] of irreducible components {Γα | α ∈ S r I} in the complement (G/P ) r U0. The
space of global sections H0(G/P,O(Γα)) is an irreducible representation of the universal cover
of the semisimple group G′ := [G, G] corresponding to the fundamental weight $α associated
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with α ∈ S r I. Let φ :G/H →G/P be the canonical surjective morphism whose fibers are
isomorphic to the torus T . Then the divisors ∆α := φ−1(Γα), for α ∈ S r I, are exactly the
irreducible components in the complement of the open dense B-orbit Ũ0 ' U0 × T in G/H. The
lattice M can be identified with the group C[Ũ0]∗/C∗ of invertible regular functions over Ũ0

modulo nonzero constant functions.

Definition 2.1. A normal G-variety X is said to be horospherical if G has an open orbit in X
that is isomorphic to the horospherical homogeneous space G/H. In that case, X is also called
a G/H-embedding.

Horospherical varieties are special examples of spherical varieties. According to the Luna–Vust
theory [LV83], any G/H-embedding X can be described by a colored fan Σ in the r-dimensional
vector space NR :=N ⊗Z R. Our basic reference for spherical varieties is [Kno91]. For recent
expositions on horospherical varieties, see also [Pas, ch. 1] or [Tim11, ch. 5].

LetX be a horosphericalG/H-embedding. Each irreducible divisor D inX defines a valuation
vD : C(X)∗→ Z on the function field C(X) which vanishes on C∗. The restriction of vD to the
lattice M ' C[Ũ0]∗/C∗ yields an element %D of the dual lattice N .

Let X (P ) be the character group of the parabolic subgroup P = PI . This group can be
identified with the set of all characters χ ∈ X (B) of the Borel subgroup B such that 〈χ, α̌〉= 0
for all α ∈ I, where α̌ ∈Hom(X (B), Z) denotes the coroot corresponding to α. Since every
character of P induces a line bundle over G/P , we get a homomorphism X (P )→ Pic(G/P ).
Its composition with the monomorphism of character groups M →X (P ), induced by the
epimorphism P → T = P/H, gives a homomorphism δ :M → Pic(G/P ). Let δ∗ : Pic(G/P )∗→N
be the dual map. Then the lattice points {%∆α | α ∈ S r I} ⊂N corresponding to the divisors
∆α ⊂X, α ∈ S r I, are exactly the δ∗-images of the dual basis to {[Γα] | α ∈ S r I} in Pic(G/P )∗.
For simplicity, we set %α := %∆α for any α ∈ S r I. We note that %α is equal to the restriction to
the sublattice M ⊆X (B) of the corresponding coroot α̌.

Let DX = {D1, . . . , Dt} be the set of G-stable irreducible divisors of X. For any divisor Di,
we denote by %i the lattice point %Di ∈N . Thus, we get a map

% : {∆α | α ∈ S r I} ∪ DX →N

which sends any ∆α (for α ∈ S r I) to %α and any Di ∈ DX (for 1 6 i6 t) to %i. The restriction
of % to DX is injective, but in general the restriction of % to {∆α | α ∈ S r I} is not injective.

Let Z be a G-orbit in X. Denote by XZ the union of all G-orbits in X which contain Z in
their closure. Then XZ is open in X. Moreover, XZ is a G/H-embedding having Z as a unique
closed G-orbit. Such a G/H-embedding is said to be simple. It is well known that any simple
embedding is quasi-projective. This fact follows from a result of Sumihiro, [Sum74, Lemma 8],
which states that any normal G-variety is covered by G-invariant quasi-projective open subsets.
(If X is a simple embedding of G/H with closed G-orbit Y , then any G-stable open neighborhood
of Y in X is the whole of X.) The colored cone corresponding to Z is the pair (σZ , FZ) where
FZ is the set {α ∈ S r I |∆α ⊃ Z} and σZ is the convex cone in NR generated by {%α | α ∈ FZ}
and {%i |Di ⊃ Z}. The colored fan Σ of X is the collection of colored cones (σZ , FZ) where Z
runs through the set of G-orbits of X. We call F :=

⋃
FZ the set of colors of X.

The set of colored cones in the colored fan Σ is a partially ordered set: we write (σ′, F ′) 6
(σ, F) and call (σ′, F ′) a face of (σ, F) if σ′ is a face of σ and F ′ = {α ∈ F | %α ∈ σ′}. On the
other hand, we have a partial order on the set of orbits (Z 6 Z ′ ⇐⇒ Z ⊆ Z ′), and the map
Z 7→ (σZ , FZ) is an order-reversing bijection between the set of orbits of X and the set of colored
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cones [Kno91]. Denote by Zσ,F the G-orbit of X corresponding to (σ, F). The open orbit G/H
corresponds to the cone (0,∅).

An arbitrary pair (σ, F) consisting of a convex rational polyhedral cone σ ⊂NR and a subset
F ⊂ S r I is called a strictly convex colored cone if σ is strictly convex (i.e. −σ ∩ σ = 0) and %α
is a nonzero element in σ for any α ∈ F . A colored fan Σ⊂NR is a collection of strictly convex
colored cones such that all faces of any colored cone (σ, F) ∈ Σ belong to Σ and the intersection
of two colored cones is a common face of both cones; see [Kno91, § 3]. The following result was
proved by Luna and Vust in a more general context; see [LV83, Proposition 8.10] (and also
[Kno91, Theorem 3.3]).

Theorem 2.2. The correspondence X → Σ is a bijection between G-equivariant isomorphism
classes of G/H-embeddings X and colored fans Σ in NR.

We denote by XΣ the G-equivariant G/H-embedding corresponding to a colored fan Σ⊂NR.
For simplicity, we write XΣ as Xσ,F whenever Σ has only one maximal colored cone (σ, F). This
happens if and only if X has a unique closed G-orbit, i.e. when X is simple.

A horospherical G/H-embedding X whose fan Σ has no colors is said to be toroidal.
There is a simple method of constructing a toroidal horospherical variety associated with the
(uncolored) fan Σ. One considers the toric T -embedding YΣ with fan Σ. Using the canonical
epimorphism P → T , we can consider YΣ as a P -variety. Then XΣ is isomorphic to the quotient
space (G× YΣ)/P , where the action of P on G× YΣ is given by p(g, y) := (gp−1, py) for any
p ∈ P , g ∈G and y ∈ YΣ. One has a natural surjective morphism φ :XΣ→G/P whose fibers
are isomorphic to the toric variety YΣ and X 'XΣ. Over the open dense B-orbit U0 in G/P ,
the fibration φ : φ−1(U0)→ U0 is trivial. Every toroidal horospherical variety is obtained as
(GΣ × Y )/P for a unique toric variety YΣ. Moreover, XΣ is simple if and only if YΣ is affine.

Each horospherical variety is dominated by a toroidal variety in the following sense (see
[Bri91, § 3.3]).

Proposition 2.3. For any horospherical G-variety X, there exist a toroidal G-variety X̃ and a
proper birational G-equivariant morphism

f : X̃ →X.

To obtain this toroidal variety X̃, we just need to remove all colors from all colored cones
in the fan of X. It is worth mentioning that X̃ = (G× Y )/P , where Y denotes the closure of T
in X.

In general, the toroidal variety X̃ is not smooth, but its singularities are locally isomorphic to
toric singularities. In the following, it will useful to use a resolution of singularities f ′ :X ′→X,
where f ′ is a proper birationalG-equivariant morphism andX ′ is a smooth toroidalG-equivariant
embedding with (uncolored) fan Σ′ obtained from Σ by removing colors in all colored cones of
Σ and subdividing them into subcones generated by parts of Z-bases of the lattice N . Note that
the fans Σ′ and Σ share the same support |Σ|.

The next proposition describes the stabilizer of G-orbits Zσ,F in the horospherical case.

Proposition 2.4. Let X be a horospherical G/H-embedding where P :=NG(H) = PI is the
parabolic subgroup corresponding to a subset I ⊆ S. Consider a colored cone (σ, F) ∈ Σ (where
F ⊆ S\I). Define the sublattice Mσ :=M ∩ σ⊥ consisting of all elements in M that are
orthogonal to σ ⊂NR. Then every element m ∈Mσ defines a character χm of the parabolic
subgroup PI∪F , and the closed G-orbit Zσ,F ⊆Xσ,F is isomorphic to G/Hσ,F where

Hσ,F := {g ∈ PI∪F | χm(g) = 1 ∀m ∈Mσ}.
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In particular, one has

dim Zσ,F = rkMσ + dimG/PI∪F .

Proof. First of all, we recall that the nonzero elements %α (α ∈ F) are the restrictions of the
coroots α̌ to the sublattice M ⊆X (B). Since %α ∈ σ for all α ∈ F , the restriction of the coroot
α̌ to Mσ is zero for all α ∈ F . The inclusions Mσ ⊆M ⊆X (PI) imply that the restriction of the
coroot α̌ to Mσ is zero for all α ∈ I, too. Hence, we can consider the elements of Mσ as characters
of B that extend to the parabolic subgroup PI∪F .

Without loss of generality, we can assume that X =Xσ,F is the simple horospherical
G/H-embedding corresponding to a colored cone (σ, F). Consider the proper birational
G-equivariant morphism f :Xσ,∅→Xσ,F where Xσ,∅ is the simple toroidal variety associated
with the uncolored cone (σ,∅), i.e. Xσ,∅ is exactly the variety X̃σ,F in the notation of
Proposition 2.3.

Then the toroidal simple horospherical variety Xσ,∅ is a fibration over G/P with the affine
toric fiber Yσ. We remark that f induces a bijection between the set of G-orbits in Xσ,∅ and the
set of G-orbits in Xσ,F . It immediately follows from the theory of toric varieties that the closed
T -orbit Zσ in Yσ is isomorphic to T/Tσ where the subtorus Tσ ⊆ T is the kernel of characters of T
in the sublattice Mσ =M ∩ σ⊥ of M . Moreover, Zσ,∅ := f−1(Zσ,F ) is the closed G-orbit in Xσ,∅
which is isomorphic to G×P (T/Tσ). This implies that the closed G-orbit Zσ,∅ is isomorphic to
G/Hσ,∅ where

Hσ,∅ := {g ∈ P = PI | χm(g) = 1 ∀m ∈Mσ}.

Let z0 ∈ Zσ,∅ be a point with stabilizer Hσ,∅. Then the stabilizer of f(z0) ∈ Zσ,F is a subgroup
Hσ,F ⊆G containing Hσ,∅ so that we have the isomorphism Zσ,F ∼=G/Hσ,F . We remark that
all fibers of the proper birational G-equivariant morphism f :Xσ,∅→Xσ,F are connected and
proper. In particular, f induces a proper G-equivariant surjective morphism of the G-orbits,
Zσ,∅→ Zσ,F , whose fibers are connected proper algebraic varieties isomorphic to Hσ,F/Hσ,∅.
Since the horospherical subgroup Hσ,F contains the horospherical subgroup Hσ,∅, the normalizer
NG(Hσ,F ) =: P1 contains the normalizer NG(Hσ,∅) = P . Indeed, we have that Hσ,∅ ⊇ [P, P ] since
P/Hσ,∅ is commutative. It follows that P1 =B[P1, P1] =BHσ,F = PHσ,F ⊇ P . Let H ′ be the
intersection Hσ,F ∩ P . The inclusions

Hσ,∅ ⊆H ′ ⊆Hσ,F

enable us to decompose the proper morphism f :G/Hσ,∅→G/Hσ,F into the composition of two
proper morphisms with connected fibers,

f1 :G/Hσ,∅→G/H ′ and f2 :G/H ′→G/Hσ,F .

The inclusions

[P, P ]⊆Hσ,∅ ⊆H ′ ⊂ P
imply that the fibers of f1 are isomorphic to a diagonalizable subgroup H ′/Hσ,∅ in the torus
P/Hσ,∅. But H ′/Hσ,∅ is connected and proper only if it consists of one point, i.e. we get
H ′ :=Hσ,F ∩ P =Hσ,∅. Let M1 ⊂X (P1) be the sublattice of all characters of P1 that vanish on
Hσ,F . Since P/[P, P ] is a torus with the group of characters X (P ), it follows from the properties
of diagonalizable groups that there exists a one-to-one correspondence between the sublattices
in the group of characters X (P ) and the closed subgroups in P containing [P, P ]. Therefore, the
equality Hσ,F ∩ P =Hσ,∅ and the injectivity of the restriction map X (P1)→X (P ) imply that
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M1 is also the sublattice of all characters of P that vanish on Hσ,∅; that is, we get the equality
M1 =Mσ.

It remains to show that P1 = PI∪F . Since P1 contains P = PI , we get P1 = PJ for some
subset J ⊆ S containing I. Let α ∈ S r I. By the definition of the set of colors F , the simple
root α belongs to F if and only if the closure of the B-invariant divisor ∆α := φ−1(Γα)⊂G/H in
Xσ,F contains the closed orbit Zσ,F ⊆Xσ,F . On the other hand, the horospherical homogeneous
G-space Zσ,F is a torus fibration over G/PJ , and the intersection of a closed B-invariant divisor
∆α ⊂Xσ,F with the closed G-orbit Zσ,F is either a closed B-invariant divisor in Zσ,F (which
projects to a B-invariant divisor in G/PJ) or the whole G-orbit Zσ,F . The latter implies that
∆α contains Zσ,F (i.e. α ∈ F) if and only if α ∈ J . So we obtain J = I ∪ F . 2

3. Arc spaces of horospherical varieties

Let K := C((t)) be the field of formal Laurent series, and let O := C[[t]] be the ring of formal
power series. If X is a scheme of finite type over C, denote by X(K) and X(O) the sets of
K-valued points and O-valued points of X, respectively. Observe that the set X(O) coincides
with the set of C-points of the scheme J∞(X). If X is a normal variety admitting an action of
an algebraic group A, then X(K) and X(O) both admit a canonical action of the group A(O)
induced from the A-action on X.

The following result can be viewed as a generalization, in a slightly different context, of
[GN10, § 8.2] (see also [LV83] or [Doc09]).

Theorem 3.1. Let X be a horospherical G/H-embedding defined by a colored fan Σ. We
consider the two sets X(O) and (G/H)(K) as subsets of X(K). Then there is a surjective map

V :X(O) ∩ (G/H)(K)−→ |Σ| ∩N

whose fiber over any n ∈ |Σ| ∩N is precisely one G(O)-orbit. In particular, we obtain a one-to-one
correspondence between the lattice points in |Σ| ∩N and the G(O)-orbits in X(O) ∩ (G/H)(K).

In the special case where X is a toric T -embedding, Theorem 3.1 is due to Ishii. In more
detail, by [Ish04, Theorem 4.1] (and its proof) we have the following statement.

Lemma 3.2. Let Y := YΣ be a toric T -embedding defined by a fan Σ. For any K-rational point
λ ∈ T (K), denote by λ∗ the corresponding ring homomorphism λ∗ : C[M ]→K and define the
element nλ of the dual lattice N = Hom(M, Z) to be the composition of λ∗|M :M →K∗ and the
standard valuation map ord :K∗→ Z. Then the map

ν : T (K)→N, λ 7→ nλ

induces a canonical isomorphism T (K)/T (O)∼=N , and one obtains a surjective map

ν : Y (O) ∩ T (K)→ |Σ| ∩N, λ 7→ nλ

whose fiber over any n ∈ |Σ| ∩N is precisely one T (O)-orbit.

The above lemma will be used in the proof of Theorem 3.1.

Proof of Theorem 3.1. Consider the canonial surjective morphism φ :G/H →G/P whose fibers
are isomorphic to the algebraic torus T := P/H. We consider p0 := [P ] as a distinguished C-point
of G/P such that the fiber φ−1(p0) = T is the closed subvariety P/H ⊆G/H.

Since G/P is a projective variety, the valuative criterion of properness implies that the natural
map (G/P )(O)→ (G/P )(K) from O-points of G/P to K-points of G/P is bijective. It follows

1336

https://doi.org/10.1112/S0010437X13007124 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007124


The arc space of horospherical varieties and motivic integration

from the local triviality of the map G→G/P that (G/P )(O) =G(O)/P (O). Thus, the group
G(O) acts transitively on G(O)/P (O) = (G/P )(O) = (G/P )(K).

Let λ ∈ (G/H)(K) be a K-point of G/H. Then φ(λ) ∈ (G/P )(K) =G(O)/P (O). So there
exists an element γ ∈G(O) such that γ(φ(λ)) = p0 ∈ (G/P )(C)⊂ (G/P )(K). Since the morphism
φ :G/H →G/P commutes with the left G-action, the equality γ(φ(λ)) = p0 = [P ] implies that
γ(λ) ∈ T (K) = (P/H)(K)⊂ (G/H)(K).

Now we set nλ := ν(γ(λ)) where ν is the map T (K)→N = Hom(M, Z)∼= T (K)/T (O) defined
by Lemma 3.2. It is easy to see that the lattice point nλ does not depend on the choice
of the element γ ∈G(O). Indeed, if γ′ ∈G(O) is another element such that γ′(φ(λ)) = p0, then
the equality γ′(φ(λ)) = γ(φ(λ)) = p0 would imply that the element δ := γ′γ−1 belongs to P (O)
and that its image under the homomorphism P → T = P/H is contained in T (O). Therefore,
we obtain that the K-points γ′(λ), γ(λ) ∈ T (K) define the same element nλ ∈N = T (K)/T (O).
Finally, we get a map V : (G/H)(K)→N, λ 7→ nλ, which is constant on G(O)-orbits.

Denote by X̃ the toroidal embedding of G/H corresponding to the decolorization Σ̃ of Σ. Let
f : X̃ →X be the proper birational G-equivariant morphism as in Proposition 2.3. The valuative
criterion of properness for f implies the equality

X̃(O) ∩ (G/H)(K) =X(O) ∩ (G/H)(K).

Since |Σ|= |Σ̃|, it remains to prove the statement only for the toroidal horospherical variety X̃.
Let YΣ̃ be the closure of the torus T = P/H ⊂G/H in X̃. Recall that the toroidal

horospherical variety X̃ is a homogeneous fiber bundle G×P YΣ̃ over G/P with fiber isomorphic
to the toric variety YΣ̃ (see the discussion after Theorem 2.2). This allows us to consider the set
YΣ̃(O) ∩ T (K) as a subset of X̃(O) ∩ (G/H)(K). The restriction of V to YΣ̃(O) ∩ T (K) is exactly
the map ν : YΣ̃(O) ∩ T (K)→ |Σ̃| ∩N from Lemma 3.2. So the image of V contains |Σ̃|.

In the toric fibration φ : X̃ →G/P , the fiber φ−1(p0)⊂ X̃ is exactly the toric variety YΣ̃ and
the intersection YΣ̃ ∩G/H is exactly the torus T = P/H. Since the group G(O) acts transitively
on (G/P )(O) = (G/P )(K), for any λ ∈ X̃(O) ∩ (G/H)(K) there exists an element γ ∈G(O) such
that γ(φ(λ)) = p0. This implies that γ(λ) ∈ YΣ̃(O) ∩ T (K) and V(λ) = V(γ(λ)). Therefore the
images of ν and V are the same.

It remains only to show that the fibers of V are precisely the G(O)-orbits. The latter follows
from the G(O)-action on X(O) and from the canonical isomorphism G(O)\(G/H)(K)'N
induced by V; see, e.g., [GN10, § 8.2] (or [LV83]), because the subset X(O) ∩ (G/H)(K)⊂
(G/H)(K) is G(O)-invariant. 2

We assume until the end of this section that X is a smooth toroidal G/H-embedding such
that every closed orbit in X is projective. This means that X corresponds to an uncolored fan
Σ such that every maximal cone of Σ is generated by a Z-basis of N . Then X is a fibration over
G/P with fiber isomorphic to the smooth toric T -embedding Y := YΣ, and the surjective map
φ :X →G/P induces, for m ∈ N, surjective morphisms φm : Jm(X)→Jm(G/P ). For any m ∈ N,
denote by πm : J∞(X)→Jm(X) and π′m : J∞(Y )→Jm(Y ) the canonical projection maps. For
any n ∈ |Σ| ∩N , denote by CX,n the G(O)-orbit of X(O) ∩ (G/H)(K) and by CY,n the T (O)-orbit
of Y (O) ∩ T (K) corresponding to n (see Theorem 3.1 and Lemma 3.2). As a consequence of the
above proof of Theorem 3.1, we get the following result.

Corollary 3.3. Let n ∈ |Σ| ∩N and m ∈ N. Then the restriction to πm(CX,n) of φm is
surjective onto Jm(G/P ) and its fiber is isomorphic to π′m(CY,n).
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We aim to calculate the motivic measure (with respect to µX ; cf. Definition 1.1) of the
G(O)-orbits in X(O) ∩ (G/H)(K), the other orbits having zero measure.

Let n ∈ |Σ| ∩N and let σ be a r-dimensional cone of Σ such that n ∈ σ. Fix a basis
{u1, . . . , ur} of the semigroup σ∨ ∩M .

Lemma 3.4. Let q > max({〈n, uj〉 | j = 1, . . . , r}). In the notation of Corollary 3.3, the set CY,n
is a cylinder with q-basis π′q(CY,n)' (A r 0)r × Aqr−

∑r
j=1〈n,uj〉.

Proof. By our choice of q, for any ν ∈ π′q(CY,n) the truncated arc π′q(ν) can be viewed as a r-tuple
(ν(1), . . . , ν(r)) where

ν(j) = ν
(j)
〈n,uj〉t

〈n,uj〉 + ν
(j)
〈n,uj〉+1t

〈n,uj〉+1 + · · ·+ ν(j)
q tq for j ∈ 1, . . . , r,

with ν
(j)
〈n,uj〉 ∈ C∗ and (ν(j)

〈n,uj〉+1, . . . , ν
(j)
q ) ∈ Cq−〈n,uj〉. Indeed, the orbit CY,n is the set of all arcs

ν ∈ Yσ(O) ∩ T (K) such that nν = n (see Lemma 3.2). So the space of the truncated arcs π′q(ν)
is isomorphic to

(A r 0)r × A
∑r
j=1(q−〈n,uj〉) = (A r 0)r × Aqr−

∑r
j=1〈n,uj〉.

Moreover, if ν ∈ Y (O) lies in π′−1
q (π′q(CY,n)), then ν ∈ CY,n. Hence CY,n = π′−1

q (π′q(CY,n)) and CY,n
is a cylinder whose q-basis is the constructible set π′q(CY,n). 2

Theorem 3.5. We have µX(CX,n) = [G/H] L−
∑r
j=1〈n,uj〉.

Proof. By Corollary 3.3 and Definition 1.1, the motivic measure of the cylinder CX,n =
π−1
q (πq(CX,n)) of X(O), for q� 0, is expressed by the formula

µX(CX,n) = [πq(CX,n)]L−qd = [Jq(G/P )] (L− 1)r Lqr−
∑r
j=1〈n,uj〉L−qd.

Since Jq(G/P ) is a locally trivial Aq(d−r)-bundle over G/P and [G/P ](L− 1)r = [G/H], we get
µX(CX,n) = [G/H] L−

∑r
j=1〈n,uj〉. 2

4. The stringy motivic volume of horospherical varieties

The aim of this section is to prove a formula for Est(X) for any Q-Gorenstein horospherical
embedding G/H ↪→X; see Theorem 4.3.

For this purpose, we need to explain the canonical class of a horospherical variety. Let
G/H ↪→X be a Q-Gorenstein d-dimensional horospherical embedding. For α ∈ S, denote by
$α the corresponding fundamental weight of S. Let ρS (respectively, ρI) be the half-sum of
positive roots of S (respectively, of I). Note that ρS =

∑
α∈S $α. For any α ∈ S r I, we define

the integers aα by the equality

2(ρS − ρI) =
∑

α∈SrI

aα$α.

We refer to [Bri93, § 4.1] or [Bri97, Theorem 4.2] for the following result.

Proposition 4.1. Let X be a G/H-embedding. Then

KX =
∑

α∈SrI

−aα∆α +
t∑

j=1

−Dj ,

where D1, . . . , Dt are the irreducible divisors in the complement of X to the dense open G-orbit,
and ∆α (α ∈ S r I) is the closure of ∆α in X.
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Let Σ⊂NR be the colored fan corresponding to X. The Q-Gorenstein property is equivalent
to the existence of a continuous function

ωX : |Σ| → R

satisfying the following conditions (cf. [Bri93, Proposition 4.1]):

(P1) ωX(eτ ) =−1 for a primitive integral generator eτ of an uncolored ray τ of Σ;

(P2) ωX(%α) =−aα for a colored cone (σ, F) of Σ and α ∈ F ;

(P3) ωX is linear on each cone σ ∈ Σ.

Let f ′ :X ′→X be a proper birational G-equivariant morphism where X ′ is a smooth toroidal
G-equivariant embedding with (uncolored) fan Σ′ obtained from Σ by removing colors and
subdividing (see the discussion after Proposition 2.3). Denote by

KX′/X :=KX′ − f ′
∗
KX

the discrepancy divisor of f ′.
Let τ ′1, . . . , τ

′
q be the rays of Σ′ which are not rays of Σ (this set may be empty),

let eτ ′1 , . . . , eτ ′q be the respective primitive integral generators, and let D′1, . . . , D
′
q be the

respective irreducible G-stable divisors of X ′. Also, let τ1, . . . , τt be the uncolored rays of Σ
and (τt+1, Ft+1), . . . , (τs, Fs) the colored ones. Denote by D1, . . . , Ds the irreducible G-stable
divisors of X ′ corresponding to the rays τ1, . . . , τs of Σ′. Thus,

{D′1, . . . , D′m} ∪ {D1, . . . , Ds}

is the set of irreducible G-stable divisors of X ′. Let eτ1 , . . . , eτs be, respectively, primitive integral
generators of the rays τ1, . . . , τs of Σ′.

Proposition 4.2. Assume that X is Q-Gorenstein. Then

KX′/X =
q∑
i=1

(−1− ωX(eτ ′i ))D
′
i +

s∑
j=t+1

(−1− ωX(eτj ))Dj .

Moreover, KX′/X is a smooth simple normal crossings Cartier divisor and X has at worst log-
terminal singularities.

Proof. Since X ′ is smooth, there is a continuous function, ωX′ : |Σ′| → R, satisfying the following
conditions:

(P1′) ωX′(eτ ′i ) = ωX′(eτj ) =−1 for all i= 1, . . . , q and j = 1, . . . , s;

(P2′) ωX′ is linear on each cone of Σ′.

Define a function ψ : |Σ′| → R by setting ψ(n) := ωX′(n)− ωX(n) for any n ∈NR. Then ψ is
a continuous map which is linear on each cone of Σ′ (use properties (P3) and (P2′)). By
Proposition 4.1,

KX′ =
∑

α∈SrI

−aα∆α +
q∑
i=1

−D′i +
s∑
j=1

−Dj and KX =
∑

α∈SrI

−aα∆α +
t∑

j=1

−Dj .

So, by conditions (P1), (P2) and (P1′), we get

KX′/X =
q∑
i=1

(−1− ωX(eτ ′i ))D
′
i +

s∑
j=t+1

(−1− ωX(eτj ))Dj .
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Since X is Q-Gorenstein, X has at worst log-terminal singularities; see [Bri93, Theorem 4.1].
Finally, X ′ being smooth and toroidal, KX′/X is a smooth simple normal crossings divisor. 2

We are now in a position to state the main result of this section.

Theorem 4.3. Let G/H ↪→X be a Q-Gorenstein d-dimensional horospherical embedding with
colored fan Σ⊂NR, and let ωX be as above. Then

Est(X) = [G/H]
∑

n∈|Σ|∩N

LωX(n).

The rest of this section is devoted to the proof of Theorem 4.3: the theorem will be a
straightforward consequence of Lemmas 4.4 and 4.5. We shall keep the above notation and denote
by CX′,n the G(O)-orbit in X ′(O) ∩ (G/H)(K) corresponding to n ∈ |Σ| ∩N (cf. Theorem 3.1).

Lemma 4.4. We have

Est(X) =
∑

n∈|Σ|∩N

∫
CX′,n

L−ordK
X′/X dµX′ .

Proof. Since the G(O)-orbits in X ′(O) which are not contained in (G/H)(K) have zero motivic
measure, by Definition 1.5 we obtain

Est(X) =
∫
X′(O)

L−ordK
X′/X dµX′ =

∫
X′(O)∩(G/H)(K)

L−ordK
X′/X dµX′ .

In addition, by Theorem 3.1, X ′(O) ∩ (G/H)(K) is a countable disjoint union of G(O)-orbits,
and each of these G(O)-orbits corresponds to a point n ∈ |Σ| ∩N :

X ′(O) ∩ (G/H)(K) =
⊔

n∈|Σ|∩N

CX′,n.

All the CX′,n are cylinders, and their union is a measurable set. The lemma is then a consequence
of Proposition 1.3(i). 2

Lemma 4.5. For any lattice point n ∈ |Σ| ∩N , we have∫
CX′,n

L−ordK
X′/X dµX′ = [G/H] LωX(n).

Proof. Let (σ, F) be a colored cone in Σ such that σ contains n. We remark that the statement
of the lemma is local, so it suffices to prove it in the case where X is the simple horospherical
variety corresponding to (σ, F). Furthermore, we can assume that σ has the maximal dimension
r (i.e. the unique closed G-orbit in X is projective); otherwise, we could embed σ as a face into
some r-dimensional cone σ̂ such that the restriction of the linear function ωX̂ to σ coincides with
ωX and the smooth subdivision of σ extends to a smooth subdivision of σ̂. Here, X̂ is the simple
horospherical G/H-embedding corresponding to the r-dimensional colored cone (σ̂, F). Thus, it
is enough to consider the case where every maximal cone of Σ′ is generated by a Z-basis of N .

For the sake of simplicity we set, in the notation of Proposition 4.2, c′i :=−1− ωX(eτ ′i ) for
i ∈ {1, . . . , q} and cj :=−1− ωX(eτj ) for j ∈ {t+ 1, . . . , s}. Thus,

KX′/X =
q∑
i=1

c′iD
′
i +

s∑
j=t+1

cjDj .
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Let n ∈ |Σ| ∩N . By the definition of motivic integrals,∫
CX′,n

L−ordK
X′/X dµX′ =

∑
ν∈Q

µX′({λ ∈ CX′,n | ordKX′/X (λ) = ν}) L−ν .

Let σ be a r-dimensional cone of Σ′ that contains n and is generated by a basis {e1, . . . , er}
of N .

Its dual basis, {u1, . . . , ur}, is a basis of the semigroup σ∨ ∩M . Possibly after renumbering
the vectors e1, . . . , er, we can assume that there exist l ∈ {1, . . . , q} and k ∈ {1, . . . , s} such
that, in the notation of Proposition 4.2, {e1, . . . , el} is a part of {eτ ′1 , . . . , eτ ′q}, {el+1, . . . , el+k}
is a part of {eτ1 , . . . , eτt}, and {el+k+1, . . . , er} is a part of {eτt+1 , . . . , eτs}.

It follows from the description of CX′,n (see the proof of Lemma 3.4) that, for any λ ∈ CX′,n,

ordKX′/X (λ) =
l∑

i=1

c′i〈n, ui〉+
r∑

j=l+k+1

cj〈n, uj〉.

As a result, we get∫
CX′,n

L−ordK
X′/X dµX′ = µX′(CX′,n) L−

∑l
i=1 c

′
i〈n,ui〉−

∑r
j=l+k+1 cj〈n,uj〉.

In addition, by Theorem 3.5 we have

µX′(CX′,n) = [G/H] L−
∑r
j=1〈n,uj〉.

So it only remains to show that ωX(n) =−
∑r

j=1〈n, uj〉 −
∑l

i=1 c
′
i〈n, ui〉 −

∑r
j=l+k+1 cj〈n, uj〉.

By properties (P1), (P2) and (P3) of ωX , one has

ωX(n) = ωX

( r∑
j=1

〈n, uj〉ej
)

=
l∑

i=1

〈n, ui〉ωX(ei)−
l+k∑
j=l+1

〈n, uj〉+
r∑

j=l+k+1

〈n, uj〉ωX(ej)

= −
r∑
j=1

〈n, uj〉 −
l∑

i=1

c′i〈n, ui〉 −
r∑

j=l+k+1

cj〈n, uj〉.

Then, the expected expression for ωX(n) follows. 2

As noted before, taken together, Lemmas 4.4 and 4.5 complete the proof of Theorem 4.3.

Example 4.6. Consider the case where G= SL3(C), B is the Borel subgroup of G consisting
of upper triangular matrices of G, S = {β1, β2}, and H = U . Then G/H is a quasi-affine
homogeneous horospherical variety whose affine closure is the 5-dimensional affine quadric

Q= {(x1, x2, x3, y1, y2, y3) ∈ A6 | x1y1 + x2y2 + x3y3 = 0};

Q is the affine cone over the Grassmannian G(2, 4). Denote by β̌1 and β̌2 the coroots of
β1 and β2, respectively. The representation of SL3(C) on A6 is the sum of two fundamental
3-dimensional irreducible representations with dominant weights $β1 and $β2 , and Q has
for its maximal colored cone (σ, {β1, β2}), where σ is the cone of NR generated by β̌1|M
and β̌2|M . The quadric Q admits four G-orbits: 0, two copies of A3 r 0, and the dense orbit
G/U . We have [G/U ] = (L2 − 1)(L3 − 1). Using this decomposition into G-orbits of Q, one gets
[Q] = L2(L3 + L− 1). On the other hand, by Theorem 4.3,

Est(Q) = [G/U ]
(∑
k>0

L−2k

)2

=
(L2 − 1)(L3 − 1)

(1− L−2)2
=

L4(L2 + L + 1)
L + 1

.
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Let us show how this result can be obtained using resolutions of singularities of Q. We consider
two different resolutions: the blowing-up of the point 0 ∈Q and a decolorization of Q.

(i) Let p : Q̂→Q be the blowing-up of 0 ∈Q and D the exceptional divisor. We have
KQ̂ − p

∗KQ = 3D and

[Q̂rD] = [Q]− 1 = L2(L3 + L− 1)− 1.

On the other hand, D 'G(2, 4) and [D] can be readily computed using the Betti numbers. Then,
by Definition 1.5, we get

Est(Q) = [Q̂rD] + [D]
(

L− 1
L4 − 1

)
=

L4(L2 + L + 1)
L + 1

.

(ii) Let Q′ be the smooth toroidal variety corresponding to the uncolored fan obtained
from Σ and f ′ :Q′→Q the corresponding proper birational G-morphism. Note that Q′ is the
homogeneous vector bundle on G/B associated with the representation of B on A2 with weights
being the fundamental weights $β1 and $β2 . The exceptional locus of f ′ has two irreducible
components, D1 and D2, and KQ′/Q =D1 +D2. The set Q′ r (D1 ∪D2) is isomorphic to the
open orbit G/U , and D1 r (D1 ∩D2) is a locally trivial fibration over A3 r 0 with fiber P1.
Moreover, D1 ∩D2 is the unique closed G-orbit, which is isomorphic to G/B here. Hence, by
Definition 1.5,

Est(Q) = [Q′ r (D1 ∪D2)] + 2
[D1 r (D1 ∩D2)]

L + 1
+

[D1 ∩D2]
(L + 1)2

=
L4(L2 + L + 1)

L + 1
.

5. Smoothness criterion

We obtain in this section a smoothness criterion (Theorem 5.3) for locally factorial horospherical
embeddings in terms of their stringy Euler numbers (see Definition 5.2). Since the smoothness
condition is a local condition, we can restrict our study to the case of simple horospherical
embeddings.

Recall that a normal variety is said to be locally factorial if any Weil divisor is a Cartier
divisor. The following criterion for the local factorial condition can be readily extracted from
[Bri89, Proposition 3.1] and [Bri93, Proposition 4.2].

Theorem 5.1. Let X be a simple horospherical G/H-embedding with maximal cone (σ, F).
Then X is locally factorial if and only if the following two conditions are satisfied:

(L1) the restriction to {∆α | α ∈ F} of the map % is injective;

(L2) σ is generated by part of a basis of N which contains all the %α for α ∈ F .

Recall that the usual Euler number e(V ) of any complex algebraic variety V is defined by

e(V ) := E(V ; 1, 1).

Definition 5.2. Let X be a d-dimensional normal Q-Gorenstein variety. We adopt the notation
of Definition 1.5 and define the stringy Euler number est(X) of X by

est(X) :=
∑

J⊆{1,...,l}

e(D0
J)
∏
j∈J

1
νj + 1

.

The stringy E-function of X was defined in Definition 1.7. Note that est(X) is none other
than Est(X; 1, 1). We refer to [Bat98] or [Bat99] for more details about stringy Euler numbers.
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Theorem 5.3. Let X be a simple locally factorial horospherical G/H-embedding. Assume that
the maximal cone associated with X has dimension r. Then one has est(X) > e(X), and equality
holds if and only if X is smooth.

Our assumption that the maximal cone associated with X has dimension r means that the
closed orbit of X is projective. The proof of Theorem 5.3 will be achieved at the end of this
section.

Example 5.4. The affine quadric Q introduced in Example 4.6 yields an example of a
horospherical variety which is locally factorial but not smooth:

est(Q) = 3
2 > e(Q) = 1.

Example 5.5. Here we give an example of a singular horospherical variety X for which the stringy
E-function is polynomial.

Consider the case where G= SL4(C), B is the set of upper triangular matrices of G
and S = {β1, β2, β3}. The representation of G on C4 ⊕ ∧2C4 is the sum of two fundamental
representations with dominant weights $β1 and $β2 . The stabilizer of (e1, e1 ∧ e2) ∈ C4 ⊕ ∧2C4

in G is the horospherical subgroup H = P{β3} ∩ (ker$β1 ∩ ker$β2) where (e1, e2, e3, e4) is the
canonical basis of C4. We have dimG/H = 7 and rkG/H = 2. Let X ⊂ ∧2C5 ' C4 ⊕ ∧2C4 be
the closure of the G-orbit of (e1, e1 ∧ e2) in C4 ⊕ ∧2C4. Then X is the affine cone over the
Grassmannian G(2, 5) and contains three more G-orbits, namely (∧2C4 r 0), (C4 r 0) and
0. From this we get [X] = L7 + L5 − L2. The maximal colored cone corresponding to X is
(σ, {β1, β2}) where σ is the cone of NR generated by β̌1|M and β̌2|M . We have aβ1 = 2 and
aβ2 = 3. Hence, by Theorem 4.3,

Est(X) =
(L− 1)2 (L + 1) (L2 + 1) (L2 + L + 1)

(1− L−2)(1− L−3)
= L5(L2 + 1).

We have est(X) = 2> e(X) = 1.

For S′ ⊆ S, denote by ΓS′ the Dynkin diagram corresponding to S′; the vertices of ΓS′ are the
elements of S′. In [Pau83, § 3.5], Pauer gives a smoothness criterion for any G/H-embedding in
the case where H = U ; for the general case, see [Pas, Theorem 2.6] or [Tim11, Theorem 28.10].
Let us recall here the criterion.

Proposition 5.6. Let X be a simple locally factorial horospherical G/H-embedding with
maximal colored cone (σ, F), and let I ⊆ S be such that NG(H) = PI . Then X is smooth if
and only if any connected component Γ of ΓI∪F satisfies one of the following conditions.

(C1) Γ is a Dynkin diagram of type A`, for `> 1, and Γ contains exactly one vertex in F ,
which is extremal:u e e p p p e e e

(C2) Γ is a Dynkin diagram of type C`, for `> 3, and Γ contains exactly one vertex in F ,
which is the simple extremal one:u e e p p p e e < e

(C3) Γ is any Dynkin diagram whose vertices are all in I.

Example 5.7. (i) The standard representation (C`+1, $1) of G= SL`+1(C) is a smooth affine
horospherical variety corresponding to the situation (C1). Specifically, the dense orbit C`+1 r 0
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of C`+1 is isomorphic to G/H where H is the kernel in the standard maximal parabolic P whose
Levi part contains the αj-root subgroups, for j = 2, . . . , `, of the restriction to P of $1.

(ii) The standard representation (C2`, $1) of G= Sp2`(C) is a smooth affine horospherical
variety corresponding to the situation (C2). We have the same description of the dense orbit as
in (i): the dense orbit C2` r 0 of C2` is isomorphic to G/H where H is the kernel in the standard
maximal parabolic P whose Levi part contains the αj-root subgroups, for j = 2, . . . , `, of the
restriction to P of $1.

(iii) The case where F is empty, i.e. situation (C3), corresponds to locally factorial toroidal
embeddings which are known to be smooth.

We state several technical lemmas which will be useful for the proof of Theorem 5.3. Our
main reference for the basics on Lie algebras and root systems is [OV90]. Assume that ΓS is
connected. Let I be a subset of S and let us introduce some standard related notation.

• We denote by R the root system of G, by R+ the set of positive roots of R, by RI the root
subsystem of R generated by I, and by R+

I the set RI ∩R+.

• For any γ ∈R, we denote by γ̌ its coroot and set Š := {β̌ : β ∈ S}.

• If ΓI is connected, we denote by WI the Weyl group associated with RI , that is, the
subgroup of GL(V ), with V := ZRI ⊗Z R, generated by the reflections

sα : V → V, x 7→ x− 〈x, α̌〉 α for α ∈ I.

• The exponents of S (or Š) will be denoted by m1, . . . , m`. We can assume that m1 6 · · ·6
m`. The integers m1 + 1, . . . , m` + 1 are the degrees of the basic WS-invariant polynomials,
and we have

|WS |=
∏̀
i=1

(mi + 1).

In addition,
∑`

i=1 mi = |R+|.

• For γ ∈R+, the height of γ is ht(γ) :=
∑

β∈S〈$̌β, γ〉 where, for β ∈ S, $̌β is the fundamental
weight of Š corresponding to β̌. We denote by θS the highest root of S and by θŠ the highest
root of Š. One has m` = ht(θS) = ht(θŠ).

• We denote by ρI := (
∑

γ∈R+
I
γ)/2 the half-sum of positive roots of I. We have ρS =

∑
β∈S $β

and 〈ρI , β̌〉= 1 for any β ∈ I.

• Set J := S r I. The integers aα, for α ∈ J , are defined by

aα := 2 〈ρS − ρI , α̌〉= 2− 2〈ρI , α̌〉= 2−
∑
γ∈R+

I

〈γ, α̌〉.

A dominant weight µ is said to be minuscule if 〈µ, θŠ〉= 1. If µ is minuscule, then there is
β ∈ S such that µ=$β; see [Bou02, ch. VI, § 2, Exercise 24].

Lemma 5.8. Let α ∈ J = S r I. Then aα ∈ {2, . . . , m` + 1}. Furthermore, the equality aα =
m` + 1 holds if and only if J = {α} and $α is minuscule, that is, if α is one of the simple
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roots as described below.

A`, `> 1 : uβ1 uβ2 uβ3 p p p uβ`−2 uβ`−1 uβ`

α ∈ {β1, . . . , β`};

B`, `> 2 : eβ1 eβ2 eβ3 p p p eβ`−2 eβ`−1

> uβ`

α= β`;

C`, `> 3 : uβ1 eβ2 eβ3 p p p eβ`−2 eβ`−1

< eβ`

α= β1;

D`, `> 4 :

u
��

β`

uβ1 eβ2 eβ3 p p p e��
@@

β`−2

u@@
β`−1

α ∈ {β1, β`−1, β`};

E6 :

uβ1 eβ3 eβ4 eβ5 uβ6

eβ2

α ∈ {β1, β6};

E7 :

eβ1 eβ3 eβ4 eβ5 eβ6 uβ7

eβ2

α= β7.

Proof. Let α ∈ J . To begin with, since the coefficients of the Cartan matrix of S are nonpositive
outside the diagonal, one has aα > 2. Moreover, aα 6 2− 2〈ρSr{α}, α̌〉. Hence, we may assume
that J = {α}, i.e. that I = S r {α}. Consider now the two cases depending on whether $α is
minuscule or not.

Case 1. Assume that $α is not minuscule, i.e. 〈$α, θŠ〉> 1. Then we have

m` + 1 = ht(θŠ) + 1 =
∑
β∈S
〈$β, θŠ〉+ 1 = 〈$α, θŠ〉+

∑
β∈I
〈$β, θŠ〉+ 1

> 2 +
∑
β∈I
〈$β, θŠ〉= 2 + 〈ρI , θŠ − 〈$α, θŠ〉α̌〉.

Since $α is not minuscule, 〈$α, θŠ〉> 2. So 〈ρI ,−〈$α, θŠ〉α̌〉>−2〈ρI , α̌〉 because −〈ρI , α̌〉> 0.
On the other hand, one has 〈ρI , θŠ〉> 0; otherwise there would be β ∈ I such that 〈β, θŠ〉< 0,
which is impossible since θŠ is the highest root. In conclusion, we get m` + 1> 2− 2〈ρI , α̌〉= aα,
as desired.

Case 2. Assume that $α is minuscule, i.e. 〈$α, θŠ〉= 1. Then aα = 2〈ρS − ρI , α̌〉=
2〈ρS − ρI , α̌+

∑
β∈I〈$β, θŠ〉β̌〉= 2〈ρS − ρI , θŠ〉. Hence we have

aα = 2〈ρS − ρI , θŠ〉 = ht(θŠ) + 〈ρS − ρI , θŠ〉 − 〈ρI , θŠ〉

= m` + 1 +
1
2

( ∑
γ∈R+rRI
γ̌ 6=θŠ

〈γ, θŠ〉 −
∑
δ∈R+

I

〈δ, θŠ〉
)
,
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since 〈γ, θŠ〉= 2 whenever γ̌ = θŠ . Then, our goal is to show that∑
γ∈R+rRI
γ̌ 6=θŠ

〈γ, θŠ〉=
∑
δ∈R+

I

〈δ, θŠ〉.

For any γ ∈R+, we have 〈γ, θŠ〉> 0 since θŠ is the highest root. Set R′ := {γ ∈R+
S rRI | γ 6=

θŠ and 〈γ, θŠ〉> 0} and R′′ := {δ ∈R+
I | 〈δ, θŠ〉> 0}. Then we have to show the equality∑

γ∈R′
〈γ, θŠ〉=

∑
δ∈R′′
〈δ, θŠ〉. (3)

Let γ ∈R′. Since 〈γ, θŠ〉> 0, δ̌ = θŠ − γ̌ is a root of Š and θŠ − δ̌ is a root too. In particular,
〈δ, θŠ〉> 0. Next, we show that δ ∈R+

I .
Since γ 6∈ RI , γ̌ 6∈ RǏ . Moreover, since $α is minuscule, 〈$α, γ̌〉= 〈$α, θŠ〉= 1. So δ̌ =

θŠ − γ̌ ∈R
+
Ǐ

and then δ ∈R+
I . Conversely, if δ ∈R′′, then γ̌ = θŠ − δ̌ is a root and so 〈γ, θŠ〉> 0.

Moreover, γ is clearly an element of R+
S rR+

I which is different from θŠ , that is, γ ∈R′.
Therefore, the map from R′ to R′′ sending γ to δ, where δ̌ = θŠ − γ̌, gives a bijection between
the sets R′ and R′′. So, in order to prove the equality (3), it remains to show that for any γ ∈R′
we have 〈γ, θŠ〉= 〈δ, θŠ〉, where δ̌ = θŠ − γ̌.

Let γ ∈R′ and set p := 〈γ, θŠ〉> 0. Then the γ̌-string through θŠ is {θŠ , . . . , θŠ − pγ̌}. Since
there is no minuscule weight in type G2, we have p ∈ {1, 2}. If p= 1, then θŠ and θŠ − γ̌ = δ̌
are roots but not θŠ − 2γ̌ = δ̌ − γ̌ =−(θŠ − 2δ̌). So the δ̌-string through θŠ is {θŠ , θŠ − δ̌}
and 〈δ, θŠ〉= 1. If p= 2, then θŠ , θŠ − γ̌ = δ̌ and θŠ − 2γ̌ = δ̌ − γ̌ =−(θŠ − 2δ̌) are roots. So
〈δ, θŠ〉> 2 and then 〈δ, θŠ〉= 2. Hence, in both cases, we have obtained that 〈δ, θŠ〉= p= 〈γ, θŠ〉
and the equality (3) is proven.

In conclusion, if $α is minuscule, we have shown that aα =m` + 1. 2

Lemma 5.9. Let S′ be a subset of S such that ΓS′ is connected, and denote by m′1 6 · · ·6m′l
the exponents of S′. Then we have m′j 6mj for any j ∈ {1, . . . , l}. In particular, ht(θS′) 6ml.

Proof. By a classical result, [Kos59], the partition of |R+| formed by the exponents is dual to
that formed by the number of positive roots of each height. This easily implies the statement. 2

Let k be the cardinality of I, and let {m′1, . . . , m′k} be the union of all the exponents of subsets
S′ such that ΓS′ is a connected component of ΓI . Order these exponents so that m′1 6 · · ·6m′k.
Number the roots αk+1, . . . , α` of J so that aαk+1 6 · · ·6 aα` , and for simplicity set aj := aαj
for any j ∈ {k + 1, . . . , `}.

Lemma 5.10. (i) For all i ∈ {1, . . . , k} one has m′i 6mi, and for all j ∈ {k + 1, . . . , `} one
has aj 6mj + 1. In particular,

|WI | ak+1 · · · a` 6 |WS |.
(ii) Equality holds in the above statement if and only if I and J are in one of the configurations

(C1), (C2) or (C3) as described in Proposition 5.6 with F = J .

Proof. (i) By Lemma 5.9, for all i ∈ {1, . . . , k} we have m′i 6mi. Let us turn to the second
statement. For j ∈ {k + 1, . . . , `} set Ij := I ∪ {αk+1, . . . , αj}. Take j ∈ {k + 1, . . . , `} and let
Sj be the connected component of Ij containing αj . We have aj = 2− 〈ρI , α̌〉= 2− 〈ρI∩Sj , α̌〉=
2〈ρSj − ρI∩Sj , α̌〉. So, by Lemma 5.8, aj 6 ht(θSj ) + 1. Hence, by Lemma 5.9, aj 6mj + 1 since Ij
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has cardinality j. All this shows that

|WI |
∏̀

j=k+1

aj =
k∏
i=1

(m′i + 1)
∏̀

j=k+1

aj 6
∏̀
i=1

(mi + 1) = |WS |.

(ii) By the proof of (i), if equality holds in the above statement, then |WI |=
∏k
i=1(mi + 1)

and, for all j ∈ {k + 1, . . . , `}, aj =mj + 1. In particular, a` =m` + 1. Therefore, we are in one
of the situations of Lemma 5.8, and we consider in turn the six cases described in that lemma.

• Type A` with `> 1: the `− 1 smallest degrees of the basic invariants are 2, 3 . . . , `. If α` is
not an extremal vertex, then |WSr{α`}|< ` !, as one can easily verify. So α` must be extremal
and I and J are in the configuration (C1).
• Type B` with `> 2: the `− 1 smallest degrees of the basic invariants are 2, 4, . . . , 2(`− 1),

so their product is strictly greater than |WSr{β`}|= `! and the equality does not hold.
• Type C` with `> 3: I and J are in the configuration (C2).
• Type D` with `> 4: the degrees of the basic invariants of D`, for `> 4, are 2, 4, . . . , 2`− 2, `;

so the `− 1 smallest are 2, 4, . . . , 2`− 4, `, and their product is 2`−2`. But for any i ∈
{1, . . . , `}, |WSr{βi} |6 |WSr{β1}|= 2`−2(`− 1)!< 2`−2`, so the equality does not hold.
• Type E6: the five smallest exponents of E6 are 1, 4, 5, 7, 8, and those of S r {β1} (or of
S r {β6}) are 1, 3, 4, 5, 7; so the equality does not hold.
• Type E7: the six smallest exponents of E7 are 1, 5, 7, 9, 11, 13, and those of S r {β7} are

1, 4, 5, 7, 8, 11; so the equality does not hold.

This proves one implication. The converse implication is an easy computation, which we leave
to the reader. 2

Proposition 5.11. Assume that X is a simple locally factorial G/H-embedding with maximal
colored cone (σ, F) of dimension r. Let I be the subset of S such that NG(H) = PI . Then

est(X) =
|WS |

|WI |
∏
α∈F aα

and e(X) =
|WS |
|WI∪F |

.

Proof. First of all, observe that the Euler number of G/B is the number of fixed points of a
maximal torus, i.e. the order of the Weyl group WS . More generally, for any S′ ⊂ S, the Euler
number of G/PS′ is |WS |/|WS′ |. Thus, we have to show that

est(X) =
e(G/PI)∏
α∈F aα

and e(X) = e(G/PI∪F ).

Now, we observe that the usual Euler number of a horospherical homogeneous space is nonzero
if and only if it has rank zero. As a consequence, one has e(X) = e(G/PI∪F ), according to the
description of G-orbits in X (see Proposition 2.4).

Next, we turn to the formula for est(X). Let e1, . . . , er be the primitive generators of σ. Since
X is locally factorial, e1, . . . , er is a Z-basis of σ ∩N (see Theorem 5.1). Then

∑
ei∈σ∩N

LωX(ei) =
r∏
i=1

1
1− LωX(ei)

=
1

(L− 1)r

r∏
i=1

L−ωX(ei)

L−ωX(ei)−1 + · · ·+ 1
.
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Then, by Theorem 4.3, one has

Est(X) = [G/H]
∑

ei∈σ∩N
LωX(ei) = [G/P ] [T ]

1
(L− 1)r

r∏
i=1

L−ωX(ei)

L−ωX(ei)−1 + · · ·+ 1

= [G/P ]
r∏
i=1

L−ωX(ei)

L−ωX(ei)−1 + · · ·+ 1
.

From this we obtain

est(X) = e(G/P )
r∏
i=1

1
(−ωX(ei))

=
e(G/PI)∏
α∈F aα

.

The last equality holds because the set of elements %α (for α ∈ F) is a subset of the basis
{e1, . . . , er} (see Theorem 5.1). 2

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. We can assume without loss of generality that S is connected and that
I ∪ F = S. By Lemma 5.10 and Proposition 5.11, we have est(X) > e(X). This proves one part
of the theorem. Moreover, equality holds if and only if (I, F) is in one of the configurations
(C1), (C2) or (C3) as described in Proposition 5.6, that is to say, if and only if X is smooth by
Proposition 5.6. 2

Remark 5.12. As a matter of fact, we have given another proof for the first implication of Pauer’s
criterion (Proposition 5.6). Indeed, whenever (I, F) is not in one of the configurations (C1), (C2)
or (C3) of Proposition 5.6, we have shown that est(X)> e(X), and so X is not smooth.

6. Some applications and open questions

Let X be a complete locally factorial horospherical G/H-embedding with colored fan Σ.
Let e1, . . . , es be the primitive integral generators of all 1-dimensional cones in Σ and set
ai :=−ωX(ei) for all i ∈ {1, . . . , s}.

Consider the polynomial ring C[z1, . . . , zs] whose variables z1, . . . , zs are in bijection with the
lattice vectors e1, . . . , es. Recall that the Stanley–Reisner ring RΣ is the quotient of C[z1, . . . , zs]
by the ideal generated by all square-free monomials zi1 . . . zik such that the lattice vectors
ei1 . . . eik do not generate any k-dimensional cone in Σ. Recall also that the weighted Stanley–
Reisner ring RwΣ is defined by putting deg zi = ai in the standard Stanley–Reisner ring RΣ.

Proposition 6.1. Let X be a complete locally factorial horospherical G/H-embedding with
colored fan Σ. Then∑

n∈N (uv)ωX(n) = P (RwΣ, (uv)−1) =
∑

σ∈Σ

(−1)dim σ∏
ei∈σ(1− (uv)ai)

, (4)

Est(X; u, v) = E(G/H; u, v)(−1)rP (RwΣ, uv), (5)

where P (RwΣ, t) denotes the Poincaré series of the weighted Stanley–Reisner ring RwΣ.

Proof. The ring RΣ has a monomial basis over C whose elements are in one-to-one
correspondence with N . Specifically, any monomial zk1

i1
. . . zktit in RΣ corresponds to the lattice

point k1ei1 + · · ·+ kteit , and the weighted degree of zk1
i1
. . . zktit is −k1ωX(ei1)− · · · − ktωX(eit).

Thus, the k-homogeneous component of the weighted Stanley–Reisner ring RwΣ consists of all
monomials zk1

i1
. . . zktit corresponding to lattice points n ∈N such that ωX(n) =−k. This implies
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Figure 1. The colored fan Σ of Q.

the first equality in (4). For any cone σ ∈ Σ, we denote by σ◦ the relative interior of σ. Since X
is locally factorial, by Theorem 5.1 one has∑

n∈N
tωX(n) =

∑
σ∈Σ

∑
n∈σ◦

tωX(n) =
∑
σ∈Σ

∏
ei∈σ

t−ai

1− t−ai
=
∑
σ∈Σ

∏
ei∈σ

(−1)dim σ

1− tai
. (6)

This implies the second equality in (4).
Let us prove the equality (5). By Theorem 4.3 and (4), we have

Est(X; u, v) = E(G/H; u, v)P (RwΣ, (uv)−1).

By the Poincaré duality (see, e.g., [Bat98, Theorem 3.7]), we have

(uv)dimXEst(X; u−1, v−1) = Est(X; u, v),
(uv)dimG/PE(G/P ; u−1, v−1) = E(G/P ; u, v).

The above equalities imply that

Est(X; u, v) = (uv)dimXEst(X; u−1, v−1)
= (uv)dimXE(G/H; u−1, v−1)P (RwΣ, uv)
= (uv)dimG/PE(G/P ; u−1, v−1)(uv)r((uv)−1 − 1)rP (RwΣ, uv)
= E(G/P ; u, v)(uv − 1)r(−1)rP (RwΣ, uv)
= E(G/H; u, v)(−1)rP (RwΣ, uv). 2

Example 6.2. (i) Consider the locally factorial completion Q of the affine 5-dimensional quadric
Q in Example 4.6; Q is a singular projective quadric. The colored fan Σ of Q is represented in
Figure 1 and the positive integer ai =−ωQ(ei) (for i= 1, 2, 3) is displayed near the integral point
ei. The circles stand for the colors %α, for α ∈ F .

The Stanley–Reisner ring is RΣ ' C[z1, z2, z3]/(z1z2z3) and we have

P (Rw
Σ
, t) =

1− t5

(1− t)(1− t2)2
.

Hence, by Proposition 6.1, we get

Est(Q; u, v) =
(1 + uv + (uv)2)(1 + uv + (uv)2 + (uv)3)

(1 + uv)
.
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Figure 2. The colored fan Σ of X.

(ii) Consider the locally factorial completion X of the affine 7-dimensional cone X over the
GrassmannianG(2, 5) from Example 5.5;X is the projective cone over the GrassmannianG(2, 5).
The colored fan Σ of X is represented in Figure 2.

We have

P (Rw
Σ
, t) =

1− t6

(1− t)(1− t2)(1− t3)
,

and

Est(X; u, v) = (1 + (uv)2)(1 + uv + (uv)2 + (uv)3 + (uv)4 + (uv)5).

It would be interesting to compute the cohomology ring H∗(XΣ, C) of an arbitrary smooth
projective horospherical variety XΣ defined by a colored fan Σ. If XΣ is a toroidal horospherical
variety, then XΣ is a toric bundle over G/P , and a general result of Sankaran and Uma, [SU03,
Theorem 1.2], implies the following description of the cohomology ring of XΣ.

Proposition 6.3. Let XΣ be a smooth projective toroidal horospherical variety defined by
a (uncolored) fan Σ. Then the cohomology ring H∗(XΣ, C) is isomorphic to the quotient of
H∗(G/P, C)⊗C RΣ by the ideal generated by the regular sequences f1, . . . , fr, where each fi is
given by

fi := δ(mi)⊗ 1 + 1⊗
s∑
j=1

〈mi, ej〉 ∈ (H2(X, C)⊗R0
Σ)⊕ (H0(X, C)⊗R1

Σ)

for some integral basis {m1, . . . , mr} of the lattice M .

Together with Proposition 6.3, our formula (5) in Proposition 6.1 motivates the following
question.

Question 6.4. Does there exist an analogous description of the cohomology ring of an arbitrary
smooth projective horospherical variety defined by a colored fan Σ which involves the weighted
Stanley–Reisner ring RwΣ?

Another interesting question is motivated by Theorem 4.3.

Question 6.5. How can one compute Est(X; u, v) for an arbitrary Q-Gorenstein spherical G/H-
embedding?
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Remark 6.6. We hope that there is a formula for Est(X; u, v) similar to the one in the
horospherical case, for example involving the summation of (uv)ωX(n) over all lattice points
in the valuation cone V(G/H) of the spherical homogeneous space G/H.

A smoothness criterion for arbitrary spherical varieties was obtained by M. Brion in [Bri91].
Unfortunately, this criterion is difficult to apply in practice. We expect that the smoothness
criterion for locally factorial horospherical varieties (Theorem 5.3) can be extended to arbitrary
locally factorial spherical varieties.

Conjecture 6.7. Let X be a locally factorial spherical G/H-embedding whose closed orbits
are projective. Then one has est(X) > e(X), and equality holds if and only if X is smooth.
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Bri89 M. Brion, Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J.
58 (1989), 397–424.
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