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Quantum Bits

4.1 Quantum Bits

We stressed previously that although classical bits (or equivalently, bits) are not

vectors, embedding them into a two-dimensional vector space Q gives several

advantages. The first advantage is that we can represent bit operators by either

dyadics or matrices, which allows an efficient encoding of bit dynamics in familiar

linear algebraic terms. The second advantage is that it allows us to generalize

bits to stochastic bits directly and efficiently.

A third advantage that is of fundamental importance in quantized detector

networks (QDN) and which we explore in this chapter is that we can generalize

bits to their quantum counterparts, known as quantum bits (or equivalently,

qubits).

A qubit is a complex two-dimensional Hilbert space, denoted Q. That is a

mathematical statement, but we need more. A signal qubit (Q, C) is a qubit Q
with an empirical context C that defines a preferred basis B ≡{0,1} for that

particular Hilbert space Q.

Normally, we shall denote a signal qubit (Q, C) by Q whenever the context C

is understood and kept in mind. It is implicitly assumed that all of this discussion

is relative to some observer conducting experiments in a real laboratory.

4.2 Preferred Bases

Viewed in the right empirical context, a classical bit can be identified with a

preferred basis for a given signal qubit, as follows. First, we shall use the same

notation 0, 1 for the two elements of a given classical bit and for their embedding

in the associated qubit Q. In that embedding, we shall take the vectors 0 and 1

in Q to satisfy the “inner product” rule

ij = δij , i, j = 0, 1, (4.1)
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where 0 and 1 are the duals of 0 and 1, respectively, and δij is the Kronecker

delta. Then the relationship between the bit B ≡ {0,1} and its quantum coun-

terpart Q is this: the elements of B are identified as the natural orthonormal

basis for Q, known as the preferred basis .

The existence of the preferred basis is fundamental to our approach to physics

and is in no way controversial. We do not claim that there is a unique or absolute

preferred frame in the Universe. Any preferred frame is preferred only by virtue

of the relative context associated with a given observer. By definition of what

is meant by “observer,” each observer is assumed always to know the empirical

context associated with each signal qubit that they use, being nothing other than

a mathematical representation of some detector in the observer’s laboratory. We

can be confident that there is always going to be such a local preferred basis,

because the idea that an observer could extract real information in an experiment

with no knowledge about their apparatus makes no sense whatsoever.

By definition, each detector has only two possible outcome states, known as

ground state and signal state. This contextually defines the preferred basis: 0

represents the ground (no signal) state of the apparatus and 1 represents the

signal state of the apparatus.

We emphasize the following point. There runs throughout QM a strand of

thinking, conditioned by experience with CM, that states of SUO have some sort

of existence of their own. According to this logic, such states do not need any

preferred bases for their mathematical representation. This line of thinking then

leads to the notion that observers are not needed either.

It is along such realist lines of thinking that Hidden Variables theory (Bohm,

1952), decoherence (in its original form) (Joos, 2012), and the Multiverse (Many

Worlds) (Deutsch, 1997) are based. The problem with those interpretations of

QM is that they are each contextually incomplete with a generalized proposition

classification1 of zero, meaning that those theories are empirically vacuous.

4.3 Qubit Properties

The power and mystery of QM stems from the possibility of creating states in the

laboratory that are represented by linear superpositions of preferred basis states.

Given the preferred basis, then any pure signal qubit state Ψ can be written in

the form

Ψ = α0+ β1, (4.2)

where α and β are complex numbers and 0, 1 are the two elements of the preferred

basis.

The fact that α and β are complex and not real is of fundamental significance

here. Recall that in our discussion of stochastic bits in Chapter 3, the components

1 Generalized propositions and their classification is discussed in Section 2.12.
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of a stochastic bit state such as (3.19) are nonnegative real numbers representing

conditional probabilities. Because the components of a quantum bit state are

not even real, let alone nonnegative, we encounter here the first of several issues

in the interpretation of QM. This particular issue is generally regarded as being

resolved by Born’s interpretation of the above complex components as probability

amplitudes (Born, 1926), discussed in Section 4.6.

If we choose to use the matrix representation of bits (3.3), then we may write

Ψ =
R

[
α

β

]
. (4.3)

Given qubit state (4.2), we define its dual Ψ by

Ψ ≡ α0+ β1 = α∗0+ β∗1, (4.4)

where α∗and β∗ are the complex conjugates of α and β, respectively. Then the

“inner product” ΨΨ is given, using linearity and (4.1), by

ΨΨ = (α0+ β1)(α0+ β1) = (α∗0+ β∗1)(α0+ β1)

= α∗α 00︸︷︷︸
1

+ α∗β 01︸︷︷︸
0

+ β∗α 10︸︷︷︸
0

+ β∗β 11︸︷︷︸
1

= |α|2 + |β|2. (4.5)

A normalized signal qubit state is one for which ΨΨ=1, that is, |α|2 + |β|2 =1.

We shall deal extensively with normalized signal qubit states, as these are asso-

ciated with probability conservation in QM.

Normalized signal qubit states have been defined in terms of their components

relative to the preferred basis. However, we can discuss them more generally as

qubit states, that is, drop the observational context and think of them as just

elements of some qubit. A qubit is a Hilbert space, a concept that is independent

of basis and therefore does not require a preferred basis. We can discuss qubits

in this context in a more abstract way as follows.

Given any element Φ of a Hilbert space, then by definition it has a norm ‖Φ‖
or length given by

‖Φ‖ ≡
√
(Φ,Φ), ≥ 0, (4.6)

where (Φ,Φ) is the inner product of Φ with itself. This length is basis

independent.

A normalized qubit state therefore is an element of a complex two-dimensional

Hilbert space and has unit norm.

4.4 Qubit Operators

We saw in the section in Chapter 3 that there are only four bit operators, denoted

I, F , D, and U , that map bit states to bit states. In contrast, there is an infinite

number of qubit operators that map qubit states to qubit states. simply because

qubits are vector spaces.
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We define a qubit map to be any map from a qubit into itself. Specifically,

given such a map M , then for any element Ψ of qubit Q, the object M(Ψ) is

some element of Q. For example, the identity map I satisfies the rule I(Ψ) = Ψ

for any element Ψ of Q.

This definition of qubit map makes no reference to linearity, so a qubit map

need not be linear, as in the following example.

Example 4.1 Given a qubit Q with preferred basis {0,1}, define the qubit

map M by M(Ψ) = 0 for every element Ψ of Q. Then M is a nonlinear map,

as, for example, we have M(0+ 1) = 0 but M(0) +M(1) = 0+ 0 = 20.

The map in the above example is not unphysical. It has the interpretation of

a resetting or preparation process that prepares a detector to be in its ground

state, ready to receive a signal, regardless of the state it is currently in. We shall

use such a process in later chapters.

Because we are concerned in this book with quantum processes, almost all

of the qubit maps we shall deal with will be linear. Linear qubit maps will be

called qubit operators. It is conventional in the case of linear operators to drop

the round brackets of the argument; that is, we shall write OΨ to mean O(Ψ)

whenever O is a linear operator. Then for linear operator O, for any elements

Ψ,Φ of Q, and for any complex numbers α, β, we have the rule

O{αΨ+ βΦ} = αOΨ+ βOΦ. (4.7)

In QM, linear operators are often associated with dynamical variables and so

additional mathematical structure is introduced. Given two qubit operators O1

and O2 over a qubit Q, we define the linear combination αO1 + βO2 of these

two operators to satisfy the rule

(αO1 + βO2)Ψ ≡ (αO1Ψ) + (βO2Ψ), (4.8)

for arbitrary complex numbers α, β, and arbitrary elements Ψ of Q.2 Then we

state without proof that the set L(Q) of all qubit operators over a qubit Q has

all the properties of a four-dimensional complex Hilbert space (Paris, 2012).

The structure of the vector space L(Q) is relatively easily explored. We saw

in the previous chapter that given the preferred basis {0,1} for Q, the four

elementary transition operators (ETOs) T ij ≡ ij : i, j = 0, 1, form a convenient

basis for L(Q), that is, any qubit operator O can be written in the form

O =
1∑

i=0

1∑
j=0

OijT ij , (4.9)

where the coefficients Oij are complex.

2 Note that the + symbol on the left-hand side of (4.8) denotes operator addition, while the
+ symbol on the right-hand side denotes vector addition.
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In addition to their vectorial additive properties, it is useful to define multi-

plication of qubit operators. We define the multiplicative product O1O2 of two

qubit operators O1, O2 by the rule (O1O2)Ψ ≡ O1 {O2Ψ} for any element Ψ

of Q. The product of any two ETOs is also an ETO, that is, ETO multiplication

is closed. Specifically, the multiplication rule is

T ijT kl = δjkT il. (4.10)

This ETO multiplication rule (4.10) is associative, that is to say, that

(T abT cd)T ef = T ab(T cdT ef ), (4.11)

but not commutative, which means T abT cd 	= T cdT ab in general.

These properties and the existence of the identity operator I mean that qubit

operators form a mathematical structure known as a unital associative algebra.

4.5 Signal Bit Operators

The space of operators O(Q) over qubit Q contains infinitely many elements.

Fortunately, the necessary existence, in our approach, of the preferred signal basis

{0,1} singles out a very small number of special qubit operators that we shall

use extensively and refer to as signal bit operators . In addition to the identity

operator I and the zero operator Z (it maps any vector into the zero vector)

there are four important signal bit operators, defined as follows.

The Projection Operators

The qubit projection operators P , P̂ are defined by

P ≡ T 00 = 00, P̂ ≡ T 11 = 11. (4.12)

The Signal (Annihilation and Creation) Operators

The signal operators A, Â are in conventional parlance adjoints of each other

and are defined by

A ≡ T 01 = 01, Â ≡ T 10 = 10. (4.13)

The four operators P , P̂ , A, and Â are by inspection just the four ETOs T ij

introduced earlier. The advantage in this new designation is mainly psychological:

the projection operators play one role in our formalism while the signal operators

play another, and it is very helpful to distinguish between them.

In this new notation, the multiplication rule (4.10) is best expressed in the

form of a table, Table 4.1, where the entries are the products LR, operator L

coming from the left-most column and R coming from the top-most row.

4.6 The Standard Born Interpretation

Although superficially qubits look similar to s-bits mathematically, being repre-

sentable by two component column matrices, they are very different objects as
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Table 4.1 Products of signal bit operators

L\R P P̂ A Â

P P Z A Z

P̂ Z P̂ Z Â
A Z A Z P

Â Â Z P̂ Z

far as physics is concerned. The components of an s-bit are real and interpreted

as conditional probabilities, whereas the components of a qubit relative to its

preferred basis are complex amplitudes and so cannot be probabilities. It was Max

Born who gave the empirically correct interpretation of such complex amplitudes

(Born, 1926), as follows.

The Born Interpretation

In QM, suppose H is a Hilbert space with inner product of elements ψ, φ denoted

by (ψ, φ). Consider two normalized elements Ψ and Φ in H that represent phys-

ical states of some system under observation. Then the conditional probability

Pr(Ψ|Φ) of finding the system to be in state Ψ, given that the system was

prepared to be in state Φ, is given by

Pr(Ψ|Φ) = |(Ψ,Φ)|2. (4.14)

There is a lot of implicit contextual information not given in such a definition,

but physicists generally know what is meant and implied. Specifically, they would

understand that the formalism refers to a statistical analysis of a sequence of

runs. State Φ is prepared through one device at the start of each run, allowed to

evolve undisturbed by the observer over some intermediate space-time regime,

and then passed through another device that produces an outcome. Each outcome

occurs randomly from a range of potential outcomes, with a countable frequency

distribution over the ensemble of runs. In general, the ratios of observed outcome

frequencies, when a large number of runs is performed, conform excellently to

the probabilities predicted by the above Born rule.

Points to note are the following.

Symmetry

There is an inherent symmetry in the relationship between the two states in rule

(4.14), referred to as the microscopic reversibility of quantum processes (Bohm,

1952). This is because of the mathematical equality |(Ψ,Φ)| = |(Φ,Ψ)|, which
immediately leads to the physical prediction Pr(Ψ|Φ) = Pr(Φ|Ψ). This relation

has been confirmed empirically countless times.
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Complex Amplitudes

The inner product (Ψ,Φ) is complex, which means it does not have the classical

interpretation of a probability. Physicists get around this by referring to such

expressions as “the amplitude for Φ to go to Ψ,” or similar terminology, thereby

endowing it with a touch of familiarity. The fact is, however, no one understands

precisely why complex amplitudes occur in QM and it remains one of the enduring

mysteries of the subject. Schwinger suggested that the appearance of complex

numbers in QM is associated with the existence of antiparticles (Schwinger,

1958). Other physicists have investigated the theoretical and empirical possibility

of replacing complex amplitudes in QM with hypercomplex (or quaternionic)

amplitudes (Adler, 1995; Procopio et al., 2016; Adler, 2016), but there is at this

time no empirical evidence that such a step is necessary.

Origin of the Born Rule

There have been attempts to derive the Born interpretation of the wave function

from basic principles, but so far none of these attempts has been satisfactory. An

interesting variant of such attempts is the idea that the Born rule is but the first

step in a possibly infinite hierarchy of terms, a so-called multiorder interference

rule that is a generalization of the above Born rule. Sorkin noted that for a two-slit

interference experiment, the standard Born interpretation gives for the probabil-

ity PrAB of a particle landing at a point on the detecting screen the formula

PrAB = PrA + PrB + IAB , (4.15)

where PrA is the probability when slit B is blocked off, PrB is the probability

when slit A is blocked off, and IAB is the so-called second-order interference

term. Sorkin considered a three-slit experiment with slits A,B, and C and looked

at the case for a generalization of the Born rule of the form

PrABC = PrAB + PrBC + PrAC − PrA − PrB − PrC + IABC , (4.16)

where IABC represents some novel third-order interference term not predicted

by the above Born rule (Sorkin, 1994). A recent experiment has virtually ruled

out such a term (Sinha et al., 2010).

Sorkin’s motivation in this discussion is directly opposite to ours in this book:

he explicitly states that he does not want to base the interpretation of his

generalized probabilities with “some undefined concept of ‘measurement made by

human observers,”’ and takes “the attitude that the ontology of QM is identical

to that of classical realism” (Sorkin, 1994).

Dynamics

The Born rule is usually applied to states of SUOs evolving in time. In such

a case, care has to be taken with the rules for the conservation of probability.

These rules are as contextual as anything else in an experiment. For instance,

if a state Φi is prepared at initial time ti, allowed to evolve undisturbed until
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time tf , then the amplitude to find the system under observation in state Ψf at

final time is given by (Ψf , UfiΦi), where Ufi is the unitary evolution operator

taking states from initial time to final time. In this scenario, total probability is

conserved. On the other hand, particle decay experiments may appear to involve

a loss of total probability, if the mathematical modeling is done in too basic a

fashion. For example, the Schrödinger wavefunction for a decaying particle SUO

is frequently asserted to be given by a function of the form

Ψ(t,x) � e−i(E−iΓ)t/�Φ(x), (4.17)

where Γ is a real constant related to the so-called half-life of the particle. We can

discuss such a scenario in QDN; the QDN approach to particle decay experiments

is covered in Chapter 15.

4.7 The Born Interpretation in QDN

We now consider the Born interpretation from the QDN perspective.

Given a normalized qubit state Ψ = α0+ β1, where |α|2 + |β|2 = 1, then the

conditional probability Pr(0|Ψ) of the observer finding the associated detector

in its ground state 0 is given by the rule Pr(0|Ψ) = |0Ψ|2 = |α|2, while the

conditional probability Pr(1|Ψ) of finding the detector in its signal state 1 is

Pr(1|Ψ) = |1Ψ|2 = |β|2. We shall discuss the generalization of this rule to

collections of detectors in the chapter on quantum register dynamics, Chapter 7.

There are two notational variants that we can use to discuss these probabilities.

Standard Expectation Value Notation

We may write

Pr(0|Ψ) = |0Ψ|2 = (0Ψ)∗(0Ψ) = (Ψ0)(0Ψ)

= Ψ(00)Ψ = ΨPΨ, (4.18)

interpreted in words as “Pr(0|Ψ) is the expectation value of the ground state

projection operator P , contextual on the prepared state Ψ.” Likewise, we have

the rule

Pr(1|Ψ) = Ψ P̂Ψ. (4.19)

Density Operator Notation

Given a pure bit state Ψ, first define the density operator � ≡ ΨΨ. Then the

probabilities Pr(0|Ψ), Pr(1|Ψ) are given by the rules

Pr(0|Ψ) = Tr {P�} , P r(1|Ψ) = Tr{P̂ �}, (4.20)

where Tr denotes the trace operation, discussed in Chapter 9.

4.8 Classical and Quantum Ensembles

The crucial differences between stochastic bits and qubits are not easy to see at

the rank-one level but one of them is this: in CM, a stochastic bit state represents
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an observer’s epistemic uncertainty as to which bit state a detector is actually

in before they observe it, whereas in QM an observer can be certain of which

qubit state a quantized detector is in and it is only the future outcome of an

observation that is uncertain. Moreover, the uncertainty in the quantum case is

generally regarded as intrinsic, or aleatoric, uncertainty.

There are several other ways of saying much the same thing. We can discuss

state preparation, the processes that lead up to an observer having a contextual-

based belief about the signal state of their detector, before observation. A stochas-

tic bit state represents the observer’s uncertainty about the preparation pro-

cesses, whereas in the quantum case, the observer need have no such uncertainty

about the preparation of a qubit state. Such a qubit state is called a pure state.

The Born rule discussed above makes no reference to state preparation and it is

assumed that the qubit state is pure.

Another way of showing the difference between stochastic bits and qubits is

in terms of questions and answers. Given a stochastic bit of the form S ≡ a0+

(1− a)0, then iS, i = 0, 1, represents a stochastic answer, which is a probability.

On the other hand, given a qubit Ψ, then iΨ, i = 0, 1, represents a quantum

answer , which is a complex amplitude. Quantum answers have to be processed

according to the Born rule given above in order to extract outcome probabilities.

Yet another way of seeing the difference between a stochastic bit and a qubit

comes from the notion of ensemble. These are discussed in more detail in the

Appendix. An ensemble can be either a real collection of near identical systems

under observation, such as atoms in a crystal, or a hypothetical collection of

imagined alternative futures, only one of which is going to be realized. Stochastic

bits are generally associated with the former type of ensemble, while qubits are

associated with the latter. We shall refer to the former kind of ensemble as a

classical ensemble and refer to the latter kind as a quantum ensemble.

The differences between stochastic bits and qubits will become more obvious

when we deal with quantum registers, or collections of qubits, discussed in

Chapter 7.

4.9 Basis Transformations

Given a particular detector, then its associated physics provides the associated

empirical context: if they looked, the observer would recognize when that detec-

tor was in its ground state 0 and when it was in its signal state 1. If this were

not the case, we would have to ask what observation meant in this case.

This unambiguity about the context is reflected in the two questions an

observer could ask of any detector: Is this detector in its ground state?

and Is this detector in its signal state? A classical bit will always return

an unambiguous answer of yes or no, a stochastic bit returns a probability,

and a quantum bit returns a probability amplitude. This is encoded into the

vector space formalism by the fact that stochastic bits and qubits are linear

combinations of the classical answer states 0 and 1.
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We return now to the fact that the definition of a Hilbert space is basis

independent. Let us explore this further. Ignoring physical context and looking

at a qubit strictly as a mathematical vector space, we are entitled to change our

basis from the preferred basis. Consider therefore replacing each element i in our

original preferred basis with some new vector i′, as follows. First, we note that our

preferred basis B is orthonormal, i.e., ij = δij , i, j = 0, 1. Anticipating physical

applications in later chapters, we shall preserve this relationship. Therefore,

we shall require i′j′ = δij , i, j = 0, 1. For a complex Hilbert space, such

transformations are called unitary.

Given our initial basis B ≡ {0,1}, consider a unitary transformation B →
B′ ≡ {0′,1′} such that i′j′ = δij , for 0 ≤ i, j ≤ 1. For such a transformation we

may write

i → i′ ≡ Ui =
1∑

j=0

j′ U ji, (4.21)

where the complex coefficients U ij satisfy the unitarity relations

1∑
j=0

U ij∗U jk = δik, (4.22)

where U ij∗ is the complex conjugate of U ij . These unitarity relations guarantee

that orthonormality is preserved.

We may always write a unitary matrix in the form

U =

[
α β

γ δ

]
, (4.23)

where the coefficients α, β, γ, and δ are complex. From (4.22) we deduce the

important relations

|α|2 + |β|2 = |γ|2 + |δ|2 = 1, αγ∗ + βδ∗ = 0. (4.24)

4.10 The Preferred Basis Problem

At this point we come across another problem related to the fact that a unitary

transformation of the elements of a Hilbert space H has an implied action on

the elements of its dual space H. This is because although the original definition

of the inner product (ψ, φ) of a Hilbert space H is defined as a map from the

Cartesian product H × H into the complex field, it can also be interpreted as

a mapping of the vector φ in H into the complex numbers by the action of a

one-form (a dual vector) ψ, which is an element of a different vector space, the

dual space H. The implied action of the above unitary operator U on elements

of the dual space is given by

i → i′ ≡ iU † =
1∑

j=0

j′U ji∗, (4.25)

https://doi.org/10.1017/9781009401432.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401432.005


56 Quantum Bits

where U † is the Hermitian conjugate operator. For finite-dimensional vector

spaces, the Hermitian conjugate operator is the same as the adjoint operator,

problems arising only with nonseparable Hilbert spaces (Streater and Wightman,

1964).

The point is that according to our interpretation of the dual vectors 0 and

1, they are associated with questions to be asked of answer states. Given the

transformation (4.25), we have to ask what “a linear combination of questions”

means. While the Born interpretation gives us a meaning for an answer to a

classical question asked of a linear combination of vectors, it is not immediately

obvious what the interpretation of an object such as u0+v1 is. Our current view is

that it is a mathematical artefact devoid of physical significance. What underpins

this view is that observers are always sure in their minds which questions they

are asking in a laboratory.

Another way of saying this is that we have not considered quantizing observers:

they are always regarded as classical and this policy will be maintained through-

out this book. This does not mean we shall not consider quantizing apparatus.

There will be situations where linear combinations of questions makes physical

sense. For instance, we saw in the previous chapter that we could interpret linear

combinations of questions of stochastic bits in terms of probabilities. On the

quantum side, not only will such a possibility be available to us, but there will

be a quantum side to this issue. Linear complex combinations of questions will

have a role in the information void, the regime between state preparation and

state outcome detection. In this regime, quantum rules apply and the concept of

observer is not meaningful.

We should add at this point that the linear combination of quantum questions

we have just referred to is not the same thing as a mixed quantum question.

A mixed quantum question would be the analogue of a mixed state in QM,

where an observer has an epistemic uncertainty as to which quantum state had

been prepared. A mixed quantum question would likewise involve an experiment

where an observer had an epistemic uncertainty as to which quantum question

was being asked. This is not the same thing as a linear combination of quantum

questions (which carries the implication that the observer itself is quantized).

One of the problems of interpretation that arises in the Multiverse paradigm

(Deutsch, 1999) is that observers and SUOs are described by the vacuous concept

of a wave function for the Universe. Since there is by assertion no primary

observer, it is not clear what superposition of different observers means, if any-

thing. In this respect, the original ideas of Everett’s “Relative State” interpre-

tation of QM seem less unattractive (Everett, 1957), because of the adjective

relative.3 It is not unreasonable to imagine that one observer A could describe

what other observers B and C are doing by a quantum state vector. On that

3 Everett does explicitly postulate an absolute wave function for the Universe, something
QDN cannot accept, because such a postulate has a GPC of zero.
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basis, relative to A, B and C are systems under observation and not observers.

QDN is fully compatible with that idea, but regards the Multiverse concept as

anathema.

4.11 Rank-One Qubit Evolution

As with bits and s-bits, we can consider the dynamical evolution of a single qubit

state. Given a normalized qubit stateΨn ≡ αn0n+βn1n in Qn at stage Σn where

|αn|2 + |βn|2 = 1, we consider a linear map Un+1,n from Qn to Qn+1 such that

normalization is preserved; i.e., we require

Ψn → Ψn+1 ≡ Un+1,nΨn, Φn → Φn+1 ≡ ΦnU
†
n+1,n, (4.26)

with Ψn+1Ψn+1 = 1.

We come now to an important point. In the conventional theory of Hilbert

spaces and in its application to standard QM, unitary transformations are maps

from a given Hilbert space back into itself. In our situation this is no longer the

case. We are dealing with maps from a Hilbert space at time n to another Hilbert

space associated with time n + 1. For example, the transformation (4.26) gives

the dyadic representation

Un+1,n =

1∑
i,j=0

in+1U
ij
n+1,njn. (4.27)

This operator is one that not only preserves the norm but also preserves inner

products under the transformation from one Hilbert space to the next. Such

a transformation will be called a semi-unitary transformation, rather than a

unitary transformation, for the good reason that in a more general context, the

dimensions of the Hilbert spaces need not be the same. When the dimensions

of the Hilbert spaces are different, then we need to consider the retraction of

an evolution operator, rather than its inverse. We shall discuss this important

aspect of our dynamics in more detail later.

In standard QM, a dynamics that preserves magnitudes of inner products

(as opposed to inner products themselves) is usually realized via either unitary

transformations or anti-unitary transformations. Anti-unitary transformations

are subtle, having a great deal to do with the concept of time reversal in standard

QM. We shall not consider anti-unitary transformations further.

An important issue that impacts on our approach is that one way of discussing

time reversal in QM is to switch bra and ket vectors. Conventionally, this does

not seem to matter but it amounts to switching questions and answers in our

approach, which requires great care in the interpretation.

We may readily generalize our dynamical rule (4.26) to describe evolution from

initial stage SM to final stage SN , where N > M : the product of two semi-unitary

transformations is also a semi-unitary transformation. We find the rule

ΨM → ΨN = UN,MΨM , (4.28)
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where UN,M ≡ UN,N−1UN−1,N−2 . . .UM+1,M . The conditional outcome prob-

abilities Pr(iN |ΨM ) as measured at stage ΣN are then given by

Pr(iN |ΨM ) ≡ |iNΨN |2, i = 0, 1. (4.29)

4.12 Mixed Qubit States

The uncertainty of s-bits is different from that associated with qubits. The former

is due to ignorance on the part of the observer and may be called classical (or

epistemic) uncertainty, while the latter is considered intrinsic and so referred to

as quantum uncertainty on that account.

It is possible to encounter situations where both types of probability occur

naturally. Whenever this happens, the labstates involved are no longer referred

to as pure but mixed . The following example illustrates what we mean.

Example 4.2 An observer is about to ask the question 1 of a single detector

but is not sure how the labstate was prepared. The information that they do

have, however, leads them to believe that the probability of the labstate (prior

to observation) being Ψ ≡ α0 + β1 is p, where |α|2 + |β|2 = 1, while the

probability of the labstate being Φ ≡ γ0+ δ1 is 1− p, where |γ|2 + |δ|2 = 1.

What is the overall probability of finding a signal?

Solution

Consider a very large number N of runs. Of these, approximately pN will

involve the labstate Ψ. The signal outcome probability for each such run

is |β|2 according to the Born rule. Therefore the total number of runs that

involve the labstate Ψ with a signal outcome is approximately pN |β|2. A

similar calculation for the labstate Φ gives the number of signal outcomes as

(1− p)N |δ|2. The total number of signal outcomes is therefore approximately

Np|β|2 +N(1 − p)|δ|2). In the limit N → ∞, the signal outcome probability

is therefore p|β|2 + (1− p)|δ|2 (the answer).

4.13 Density Operators

An efficient and standard way of combining classical and quantum probability

is through the use of dyadics called density operators . Suppose we have a mixed

initial state consisting of k different possible states Ψa, a = 1, 2, . . . , k. The

density operator � is defined by the dyadic

� ≡
k∑

a=1

ωaΨaΨa, (4.30)

where ωa is the probability that the initial state is actually Ψa. The expectation

value 〈O〉� of an observable O is then given by the standard rule
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〈O〉� ≡ Tr {O�} , (4.31)

where Tr denotes the trace operation, discussed in Chapter 9.

To demonstrate how this works, we apply this formalism to the example

considered above.

Example 4.3 With reference to the above example, we see k = 2 and

ω1 = p, Ψ1 ≡ Ψ = α0+ β1

ω2 = 1− p, Ψ2 ≡ Φ = γ0+ δ1.
(4.32)

Hence the density matrix is

� = ω1Ψ1Ψ1 + ω2Ψ2Ψ2

= p{α0+ β1}{α∗0+ β∗1}+ (1− p){γ0+ δ1}{γ∗0+ δ∗1}
= {p|α|2 + (1− p)|γ|2}00+ {pαβ∗ + (1− p)γδ∗}01

+{pβα∗ + (1− p)δγ∗}10+ {p|β|2 + (1− p)|δ|2}11.

(4.33)

The observable to use is P̂ ≡ 11, the projection operator associated with

the signal state 1. Then we find

P̂ � = {pβα∗ + (1− p)δγ∗}10+ {p|β|2 + (1− p)|δ|2}11. (4.34)

Taking the trace then gives

Tr{P̂ �} = {p|β|2 + (1− p)|δ|2}, (4.35)

which agrees with the probability found above in Example 4.2.
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