A NOTE ON FIBONACCI TYPE GROUPS

BY
C. M. CAMPBELL AND E. F. ROBERTSON

1. Introduction. Let F_{n} be the free group on $\left\{a_{i}: i \in \mathbb{Z}_{n}\right\}$ where the set of congruence classes $\bmod n$ is used as an index set for the generators. The permutation $(1,2,3, \ldots, n)$ of \mathbb{Z}_{n} induces an automorphism θ of F_{n} by permuting the subscripts of the generators. Suppose w is a word in F_{n} and let $N(w)$ denote the normal closure of $\left\{w \theta^{i-1}: 1 \leq i \leq n\right\}$. Define the group $G_{n}(w)$ by $G_{n}(w)=F_{n} / N(w)$ and call $w \theta^{i-1}=1$ the relation (i) of $G_{n}(w)$.

In this note we consider the group $G_{n}(w)$ where w is the word

$$
w=a_{h} a_{2 h} \cdots a_{r h}\left(a_{r h+k}^{-1}\right)
$$

and r, h, k are integers such that $k \geq 0, h \geq 1, r \geq 2$. For this particular choice of w we denote $G_{n}(w)$ by $\mathbf{R}(r, n, k, h)$. The groups $\mathbf{R}(2, n, n-1,2)$ are discussed in [6] while the groups $\mathbf{R}(2, n, k, h)$ have been investigated by Johnson and Mawdesley. The groups $\mathbf{R}(r, n, k, 1)$ are the generalized Fibonacci groups $\mathbf{F}(r, n, k)$ discussed in [2], [3], [4] and [7] while the groups $\mathbf{R}(r, n, 1,1)$ are the ordinary Fibonacci groups $\mathbf{F}(r, n)$ discussed in [5] and [8]. We exhibit some isomorphisms, showing that more of the groups $\mathbf{R}(r, n, k, h)$ are generalized Fibonacci groups than are indicated above. We also discuss the group $\mathbf{R}(3,6,5,2)$, a finite non-metacyclic group which is not a generalized Fibonacci group.
2. Some isomorphisms. It follows immediately from the definition that if $k_{1} \equiv k_{2} \bmod n$ and $h_{1} \equiv h_{2} \bmod n$ then $\mathbf{R}\left(r, n, k_{1}, h_{1}\right) \cong \mathbf{R}\left(r, n, k_{2}, h_{2}\right)$ so that when we write $\mathbf{R}(r, n, k, h)$ we shall assume that k and h have been reduced $\bmod n$.

Lemma 1.

$$
\begin{aligned}
\mathbf{R}(r, n, k, h) & \cong \mathbf{R}(r, n, k+(r-1) h,-h) \\
& \cong \mathbf{R}(r, n,-k,-h) \\
& \cong \mathbf{R}(r, n,-k-(r-1) h, h)
\end{aligned}
$$

Proof. The isomorphisms are immediate on considering the maps $\phi_{1}, \phi_{2}, \phi_{3}$ from the free group F_{n} on $\left\{x_{i}: i \in \mathbb{Z}_{n}\right\}$ to $\mathbf{R}(r, n, k, h)$ induced by $x_{i} \phi_{1}=a_{i}^{-1}, x_{i} \phi_{2}=a_{-i}$ and $x_{i} \phi_{3}=a_{-i}^{-1}$.

Lemma 2. If α is an integer coprime to n then

$$
\mathbf{R}(r, n, k, h) \cong \mathbf{R}(r, n, k / \alpha, h / \alpha)
$$

Received by the editors March 1, 1974.

Proof. This isomorphism follows from considering the map ϕ from the free group on $\left\{x_{i}: i \in \mathbb{Z}_{n}\right\}$ to $\mathbf{R}(r, n, k, h)$ induced by $x_{i} \phi=x_{i / \alpha}$.

Notice that it follows from this result that if h is coprime to $n, \mathbf{R}(r, n, k, h) \cong$ $\mathbf{F}(r, n, k / h)$.

Theorem 3. Suppose that $(r-1) h \equiv 0 \bmod n$ and k is coprime to n, then

$$
\mathbf{R}(r, n, k, h) \cong \mathbf{F}\left(r^{(n, h)}, d, \gamma\right)
$$

where $d=n /(n, h)$ and γ is such that $(n, h)=\beta n+\gamma h$.
Proof. By Lemma 2 we can assume without loss of generality that $k=1$. The first relation of $\mathbf{R}(r, n, 1, h)$ reduces to

$$
\left(a_{h} a_{2 h} \cdots a_{d h}\right)^{(r-1) / d} a_{h}=a_{h+1}
$$

where the generators $a_{h}, a_{2 h}, \ldots, a_{d h}$ are distinct. This allows us to express a_{h+1} in terms of $a_{h}, a_{2 h}, \ldots, a_{d h}$ and relation (ih) allows us to express $a_{(i+1) h+1}$ also in terms of $a_{h}, a_{2 h}, \ldots, a_{d h}$ for $1 \leq i \leq d-1$. Substituting these expressions in relation (2) gives

$$
\left(a_{h} a_{2 h} \cdots a_{d h}\right)^{\left(r^{2}-1\right) / d} a_{h}=a_{h+2}
$$

Continuing in this way we obtain

$$
\left(a_{h} a_{2 h} \cdots a_{d h}\right)^{\left(r^{j}-1\right) / d} a_{h}=a_{h+j}, \quad 1 \leq j \leq(n, h)
$$

since $a_{h+j}, 1 \leq j \leq(n, h)$ are distinct and $a_{h+(n, h)} \in\left\{a_{h}, a_{2 h}, \ldots, a_{n h}\right\}$. At this stage the n relations for $\mathbf{R}(r, n, 1, h)$ have been reduced to the d relations

$$
\left(\left(a_{h} a_{2 h} \cdots a_{d h}\right)^{\left(r^{(n, h)}-1\right) / a} a_{h} a_{h+(n, h)}^{-1}\right) \theta^{(i-1) h}=1, \quad 1 \leq i \leq d
$$

Putting $x_{i}=a_{i n}, 1 \leq i \leq d$ we obtain the relations

$$
\left.\left.\left(\left(x_{1} x_{2} \cdots x_{d}\right)\right)^{\left(r^{(n, n)}-1\right) / d} x_{1} x_{1+\gamma}^{-1}\right)\right)^{i-1}=1, \quad 1 \leq i \leq d
$$

where $\bar{\theta}$ permutes the subscripts of $x_{i}, 1 \leq i \leq d$, according to the permutation $(1,2, \ldots, d)$. The result now follows.

Corollary. With the conditions on r, n, k, h as in the statement of Theorem 3, $\mathbf{R}(r, n, k, h)$ is metacyclic of order $r^{n}-1$.

Proof. This follows from Theorem 1 of [3] and Theorem 3 on showing that $r^{(n, h)} \equiv 1 \bmod d$ and γ is coprime to n. These are straightforward applications of elementary number theory.

Notice, using the results of [4], that if $\mathbf{R}\left(r, n, k_{1}, h_{1}\right)$ and $\mathbf{R}\left(r, n, k_{2}, h_{2}\right)$ satisfy the conditions of the above theorem then they are isomorphic if, and only if, $\left(n, h_{1}\right)=\left(n, h_{2}\right)$.

Next we show that if $(n, k, h) \neq 1$, then $\mathbf{R}(r, n, k, h)$ is infinite.

Theorem 4. If $(n, k, h)=d \neq 1$, then

$$
\mathbf{R}(r, n, k, h) \cong_{d}^{*} \mathbf{R}(r, n / d, k / d, h / d)
$$

the free product of d copies of $\mathbf{R}(r, n / d, k / d, h / d)$.
Proof. Let $\alpha=n / d, \beta=k / d, \gamma=h / d$ and fix t with $0 \leq t \leq d-1$. With $x_{j}=a_{j d+t}$ the relations $(i d+t), 1 \leq i \leq \alpha$, reduce to

$$
\left(x_{\gamma} x_{2 \gamma} \cdots x_{r \gamma} x_{r \gamma+\beta}^{-1}\right) \bar{\theta}^{i-1}=1, \quad 1 \leq i \leq \alpha,
$$

where the subscripts of the x_{i} are reduced mod α and permuted by $\bar{\theta}$ according to the permutation $(1,2, \ldots, \alpha)$. The result now follows.
3. The group $\mathbf{R}(3,6,5,2)$. The only Fibonacci group known to be finite and not metacyclic is $\mathbf{F}(3,6)$, a group of order 1512, see [2], where the three known finite non-metacyclic generalized Fibonacci groups are discussed. The only finite non-metacyclic group which we have discovered in the class $\mathbf{R}(r, n, k, h)$ other than these generalized Fibonacci groups is $\mathbf{R}(3,6,5,2)$.

Using Tietze transformations the following 2-generator, 2-relation presentation is obtained.

$$
\mathbf{R}(3,6,5,2)=\left\langle a, b \mid a^{-1} b a^{2} b^{-1} a b^{2}=\left(b a^{-1} b^{-1} a^{-1}\right)^{2} b a^{-1} b a b^{-1} a=1\right\rangle
$$

We have investigated this group using the coset enumeration programme [1] which shows that $|\mathbf{R}(3,6,5,2)|=1512=2^{3} \cdot 3^{3} \cdot 7$. It is soluble but not metabelian and has the following Sylow structure. A Sylow 2-subgroup is cyclic and generated by a. It is not normal. Both the Sylow 3-subgroup and the Sylow 7 -subgroup are normal, the Sylow 3-subgroup being the non-abelian group of order 27 with exponent 3. Despite the coincidence in the orders $\mathbf{R}(3,6,5,2)$ is not isomorphic to $\mathbf{F}(3,6)$ since, for example, $\mathbf{F}(3,6)$ has Q_{8} as a Sylow 2-subgroup.

References

1. M. J. Beetham, A programme for the Todd-Coxeter coset enumeration algorithm (unpublished).
2. C. M. Campbell and E. F. Robertson, Applications of the Todd-Coxeter algorithm to generalised Fibonacci groups, Proc. Roy. Soc. Edinburgh (to appear).
3. C. M. Campbell and E. F. Robertson, The orders of certain metacyclic groups, Bull. London Math. Soc. 6 (1974) 312-314.
4. C. M. Campbell and E. F. Robertson, On metacyclic Fibonacci groups, Proc. Edinburgh Math. Soc. 19 (1975), 253-256.
5. J. H. Conway, Solution to advanced problem 5327, Amer. Math. Monthly 74 (1967), 91-93.
6. M. J. Dunwoody, A group presentation associated with a 3-dimensional manifold, Proceedings of the Royal Irish Academy Summer School on Group Theory and Computation (1973).
7. D. L. Johnson, Some infinite Fibonacci groups, Proc. Edinburgh Math. Soc. 19 (1975), 311-314.
8. D. L. Johnson, J. W. Wamsley and D. Wright, The Fibonacci groups Proc. London Math. Soc. 29 (1974), 577-592.

Mathematical Institute, University of St. Andrews, St. Andrews, KY16 9SS, Scotland.

