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FURTHER RESULTS ON THE DEFICIENCIES OF
ALGEBROID FUNCTIONS

LIANZHONG YANG

Let f(z) be an n-valued algebroid function of finite lower order /x. In this paper, we
give some further results on the deficiencies of f(z). Particularly if 0 ̂  /i ^ 1/2,
the corresponding result is best possible.

1. INTRODUCTION

Let /(z) be an n-valued algebroid function of finite lower order /i, defined by an
irreducible equation

where AQ , A\, ..., An are entire functions without common zeros, and we assume that
the reader is familiar with the fundamental concepts of Nevanlinna's theory and adopt,
with their usual meaning, classical symbols such as (see [1, 4, 5])

N(r,f),T(r,f),S(a,f),a(a,f)

In a previous paper, Yang [6] established an inequality (Spread Relation):

r 4
(2) <r(a, f) ^ mm < 2ir, - arcsin ..

{ n V 2
and prove the following theorem.

THEOREM A. Let /(z) be an n-valued algebroid function of lower order
I*. (0 < /i < oo). Then on summing over all the deficient values a of f{z), we have

2fi

It is well known that if f(z) is an entire function of lower order \i (0 ^ fi ^ 1/2),
then /(z) has no finite deficient values. This and Theorem A suggest the following
problems for a n-valued algebroid function /(z):

(a) What is the best possible upper bound of 53 ^(a> / ) when /(z) is of lower
order /x (0 </* < 1/2)?

(b) What is the best possible upper bound of ^2 •y/S(a, f) where the £ is
the summation over all deficient values of /(z) ?
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In the present paper, we shall prove

THEOREM 1 . Let f(z) be a n-valued algebroid function of finite lower order ft.
Then on summing over all the deficient values a of f(z), we have

n

THEOREM 2 . Let f(z) be an n-valued algebroid function of finite lower order ,
then

2. Two LEMMAS

LEMMA 1 . Let f(z) be an n-valued algebroid function of lower order

(0 < \i < oo), then

y j mm < 2TT, — arcsm y — - — > ^ 2nir,

where the J^ is the summation over all the deficient values a of f(z).
a

PROOF: By the spread relation (2), Lemma 1 is a rewritten form of a theorem due
to Yang [6, Theorem 2.1]. 0

In order to state a lemma of Edrei [2], we assume that

x=9(s) ( 0 < a < l )

is a real continuous function satisfying the following conditions

(1) p(0) = 0, p ( l ) = l .
(2) f'{s) and <p"(s) exist for 0 < 3 < 1, and they are strictly positive and

continuous in the interval (0, 1).

Denote by ip{x) the inverse function:

LEMMA 2 . Let the quantities Xj (j = 1, 2, . . . , fc; n + 1 < A: < oo) be subject to

the constraints
k

(3) 0 < * , - < l (1 < > < * ) , £ > ( * , ) < J7<co,

then

(4)
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Equality is possible in (4) if and only if k < oo and

(1) exactly [H] of x are equal to 1;

(2) one x is <p(H - [H]);

(3) all other x, if they exist, are equal to 0.

3. PROOF OF THEOREM 1

We consider the following three cases.

CASE (A) , fi = 0. By a result of Gu [3], f(z) has at most n deficient values and
Theorem 1 follows in this case.

CASE (B) . fi > 1/2. We denote by B = {a: S(a, f) > 0} the set of all the deficient
values of f(z). By Lemma 1, we have

(5) y min < 2TT, — arcsin y — - — > ^ 2n7r.
age I ^ J

It is obvious that our assumption /x > 1/2 implies

4 . /*(a, / ) o
- • ' v J ' < 2TT,

so it follows from (5) that

Hence, from an elementary triangular inequality, we can deduce that

arcsin

This proves Theorem 1 in Case (b).

CASE (C) . 0 < \i ^ 1/2. Let the set E be defined as in Case (b). By (5) it is easily
seen that there are at most n elements a of E such that

(6)

Denoting by EQ the set of values a such that (6) holds, we deduce from (5) and
(6) that

i J&^ ^ ^ 2(n - k)iz,
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where k is the number of element in .Eo •

Similar to case (b) of the proof of Theorem 1, we have

- E
a£E-E0

a r c s i n 7 * E l 2 + jfc

(7)

V2
n, 0<ix< ;

This completes the proof of Theorem 1.

4. P R O O F OF THEOREM 2

We first assume that fi > 0 and define the sets of values

a

Eo = {a: £(a, / ) > 1 — COS/XTT},

where i?o may be empty.

Since 6(a, / ) ^ 1 — cos /X7r implies

4 .
— arcsin y
/x V 2

27T,

it follows from Lemma 1 that

(8)

where p is the number of elements of EQ .
Notice that our assumption fi > 0 implies there are at least n + 1 elements in E

(see [3]). We may assume that

E - Eo = {o i , a2, ...,ak;n-p + l s% k < oo}

and (8) may be rewritten

(9) - arcsin
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We now define quantities dj by the relations

(10) 8{ah f) = 2dj sin2 ^ , (j = 1, 2, . . . , k)

and confine our attention to

(11) 0 < dj < 1 (j = 1, 2, . . . . k).

Consider the function

whose inverse is

(13) s = <p-1{x)=i>{x) = —a.Tcsmlx1/2sin(^TTti\\, (0

In view of (10) and (13), (9) takes the form

(14)

Notice that <p(s) (defined by (12)) satisfies the conditions of Lemma 2, and therefore
(11), (10), (14) and Lemma 2 show that

Jb Jfc

j; ^ n - p, ^ 6{a.j, f) < (n - p)(l - cos Tiyi).
i=i

This gives £ *(a> /) = ^ 5(a' /) + E 6(a' /)
a£E a£E-E0

^ (n - p ) ( l - COS7T/i) +

so that

(is)

Next if /i — 0, it is known that /(z) has at most n deficient values [3], so that

(15) is also true in this case. Theorem 2 is thus proved. U
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5. SHARPNESS OF THE THEOREMS

Let f(z) be defined by the following equation

E(z)fn - E(z) + 1 = 0

where E(z) is an entire function of lower order /x (0 ^ (M ^ 1/2). It is clear that
f(z) is an n-valued algebroid function of lower order fj.. Now let a* = exp{2fc7rz/n}
(Jfe = 1, . . . , n ) . It follows that N(r, a*, / ) is equal to zero and so 6(a.k, / ) = 1 for
k = l,2, ...,n.

The example mentioned above shows that the upper bound n of the sums is sharp
in our theorems if the algebroid function /(z) has a small lower order.

REMARK. It is seen that the upper bound of the sum in Theorem 1 is much smaller than
that in Theorem A, but we do not know if the result of Theorem 1 is best possible when
fi > y/2/n. We also find in the theorems that equality is possible in Theorem 2 if and
only if f(z) has exactly n deficient values a; (t = 1, 2, . . . , n) such that 6(ai, / ) = 1,
i = 1,2, ... ,n, when 0 ^ /x < s/2/ir.

REFERENCES

[1] A. Baernstein, 'Proof of Edrei's spread conjecture', Proc. London Math. Soc. 26 (1973),
418-434.

[2] A. Edrei, 'Solution of the deficiency problem for functions of small lower order', Proc.
London Math. Soc. 26 (1973), 435-445.

[3] Y. Gu, 'The growth of algebroid functions with several deficient values', Contemp. Math.

25 (1983), 45-49.
[4] W.K. Hayman, Meromorphic functions (Oxford, 1964).
[5] R. Nevanlinna, Analytic functions (Springer-Verlag, Berlin, Heidelberg, New York, 1970).
[6] L-Z. Yang, 'Sums of deficiencies of algebroid functions', Bull. Austral. Math. Soc. 42

(1990), 191-200.

Department of Mathematics
Shandong University
Jinan
Shandong 250100
People's Republic of China

https://doi.org/10.1017/S0004972700012570 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012570

