PARAMETRIZING FUCHSIAN SUBGROUPS OF THE BIANCHI GROUPS

Dedicated to the memory of Norbert Wielenberg

C. MACLACHLAN AND A. W. REID

1. Introduction. Let d be a positive square-free integer and let O_{d} denote the ring of integers in $\mathbb{Q}(\sqrt{-d})$. The groups $\operatorname{PSL}_{2}\left(O_{d}\right)$ are collectively known as the Bianchi groups and have been widely studied from the viewpoints of group theory, number theory and low-dimensional topology. The interest of the present article is in geometric Fuchsian subgroups of the groups $\mathrm{PSL}_{2}\left(O_{d}\right)$. Clearly $\mathrm{PSL}_{2}(\mathbb{Z})$ is such a subgroup; however results of [18], [19] show that the Bianchi groups are rich in Fuchsian subgroups. Like the Bianchi groups, their Fuchsian subgroups have been studied for a variety of arithmetic, group theoretic and topological reasons (eg. [8],[9],[10],[13],[18],[21],[23],[31],[32]). In this paper, we extend the work in [18] and [21] on Fuchsian subgroups of the Bianchi group and obtain a complete classification in the case of the Picard group $\operatorname{PSL}_{2}\left(O_{1}\right)$

All non-elementary Fuchsian subgroups of Bianchi groups are subgroups of arithmetic Fuchsian subgroups and each Bianchi group contains infinitely many commensurability classes of arithmetic Fuchsian subgroups [18]. These groups can be either cocompact or non-cocompact. The conjugacy classes of maximal arithmetic Fuchsian subgroups and hence the wide commensurability classes of finite covolume Fuchsian subgroups, can be parametrized by their discriminant (see 3.1) which is a positive integer related to the circle or straight line stabilized by the Fuchsian group. We prove (3.3).

THEOREM 1. There are finitely many $\mathrm{PSL}_{2}\left(O_{d}\right)$-conjugacy classes of maximal arithmetic Fuchsian subgroups of $\operatorname{PSL}_{2}\left(O_{d}\right)$ of a fixed discriminant.

The groups $\mathrm{PSL}_{2}\left(O_{d}\right)$ are closely related to the integer points of Special Orthogonal groups of certain integral quaternary quadratic forms (eg. [6],[20] and §4) and the number of conjugacy classes in Theorem 1 can be related to the number of equivalence classes of representations of integers by such forms. This is made explicit for the Picard group and by counting the number of classes of representations using the analytic methods of Siegel [25] we prove: (§6)

Received by the editors June 27, 1989.
AMS subject classification: Primary 11F06, Secondary 20H10.
(c)Canadian Mathematical Society 1991.

THEOREM 5. Let n_{D} denote the number of $\operatorname{PSL}_{2}\left(O_{1}\right)$-conjugacy classes of maximal arithmetic Fuchsian subgroups of $\mathrm{PSL}_{2}\left(O_{1}\right)$ of discriminant D. Then

$$
n_{D}= \begin{cases}1 & \text { if } D \equiv 0,3 \quad(\bmod 4) \\ 3 & \text { if } D \equiv 1 \quad(\bmod 4) \\ 2 & \text { if } D \equiv 2 \quad(\bmod 4)\end{cases}
$$

As an elementary consequence of this theorem we extend and clarify results of Fine [9] which deal with intersection properties of $\mathrm{PSL}_{2}(\mathbb{Z})$ with Fuchsian subgroups of $\operatorname{PSL}_{2}\left(O_{1}\right)$.

In addition the computations involved in the proof of Theorem 5, together with arithmetic methods for computing the number of conjugacy classes of maximal finite cyclic subgroups of arithmetic Fuchsian groups (eg. [30]) allow us to determine the signature of these Fuchsian groups in a very specific way (see Theorems 7 and 8 of $\S 7$ for the precise statement).

Finally, arithmetic Fuchsian subgroups of torsion-free subgroups Γ of finite index in $\operatorname{PSL}_{2}\left(O_{d}\right)$ give rise via the action on hyperbolic space to totally geodesic surfaces immersed in the hyperbolic 3 -manifold determined by Γ. In particular when the group Γ is the group of the Borromean rings B, our prior results allow us to determine that the minimal genus of a closed totally geodesic surface immersed in $S^{3} \backslash B$ is three (see Theorem 9 §8).

ACKNOWLEDGEMENTS. Much of the content of this paper was motivated by the thesis of S. Harding [13] where, in particular, Theorem 5 was stated without a complete proof. Some of the results included here appeared in the thesis of the second author. Funding by the S.E.R.C. at that time is gratefully acknowledged.

2. Preliminaries.

2.1. Let H^{3} denote the upper halfspace model of hyperbolic 3 -space so that

$$
H^{3}=\left\{(z, t): z \in \mathbb{C}, \quad t \in \mathbb{R}^{+}\right\}
$$

endowed with the hyperbolic metric $\frac{|d z|^{2} d t t^{2}}{t^{2}}$.
The group $\mathrm{PSL}_{2}(\mathbb{C})$ acts on $\hat{\mathbb{C}}$ via linear fractional transformation and the action extends in a natural way to H^{3} so that $\mathrm{PSL}_{2}(\mathbb{C})$ is the full group of orientation-preserving isometries of H^{3} (eg. [1] Chap. 4).

A Kleinian group is a discrete subgroup of $\mathrm{PSL}_{2}(\mathbb{C})$ and a Fuchsian group is a Kleinian group which stabilizes a circle or straight line \mathcal{C} in \mathbb{C} and preserves the components of \mathbb{C} / \mathcal{C}.

If F is a Fuchsian group stabilizing C then F is non-elementary if its limit set on C consists of more than two points ([1] Chap. 5). In the extended action on H^{3}, F preserves the hyperbolic plane $H(\mathcal{C})$ represented by the hemisphere or plane on C in H^{3} orthogonal to \mathbb{C} with the restriction of the hyperbolic metric.

The group F is said to have finite covolume (resp. F is cocompact) if $H(\mathcal{C}) / F$ is of finite volume (resp. compact) and we denote the covolume of F by vol (F). Furthermore every Fuchsian group of finite covolume has a presentation of the following form ([1] Chap. 10)

$$
\begin{align*}
& \text { Generators: } a_{1}, b_{1}, \ldots, a_{g}, b_{g}, x_{1}, \ldots, x_{r}, p_{1}, \ldots, p_{t} \\
& \text { Relations: } \prod_{j=1}^{g}\left[a_{j}, b_{j}\right] \prod_{i=1}^{r} x_{i} \prod_{k=1}^{t} p_{k}=1 x_{i}^{m_{i}}=1(i=1,2, \ldots, r) \tag{1}
\end{align*}
$$

where the $a_{j}, b_{j}(j=1,2, \ldots, g)$ are hyperbolic, the $x_{i}(i=1,2, \ldots, r)$ are elliptic and the $p_{k}(k=1,2, \ldots, t)$ parabolic. The integer r (resp. t) is the number of conjugacy classes of maximal finite cyclic (resp. parabolic) subgroups of F, and the quotient $H(C) / F$ is a compact surface of genus g with t punctures and r distinguished points. The integers $m_{1}, m_{2}, \ldots, m_{r}$ are the periods of F. The group F is cocompact if and only if $t=0$ and torsion-free if and only if $r=0$.

The $(r+2)$-tuple of integers $\left(g ; m_{1}, m_{2}, \ldots, m_{r}: t\right)$ is the signature of F and such an F has covolume given by

$$
\begin{equation*}
\operatorname{vol}(F)=2 \pi\left[2(g-1)+t+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)\right] \tag{2}
\end{equation*}
$$

2.2. Arithmetic Fuchsian groups are obtained as follows ([2],[30])(We use [30] extensively as a reference for the relevant material on quaternion algebras). Let k be a totally real number field and A a quaternion algebra over k ramified at all archimedean places except one. Let ρ be an isomorphism of A into $M_{2}(\mathbb{C}), O$ an order of A and O^{1} the elements of norm one in O. Then $P \rho\left(O^{1}\right)$ (where $P: G L_{2}(\mathbb{C}) \rightarrow \mathrm{PGL}_{2}(\mathbb{C})$) is a Fuchsian group and if \mathcal{C} is the invariant circle of $P \rho\left(O^{1}\right)$, then $P \rho\left(O^{1}\right)$ has finite covolume in $H(\mathcal{C})$. The class of arithmetic Fuchsian groups is that given by the union of the commensurability classes of all such $P_{\rho}\left(O^{1}\right)$. ([30] Chap. 4).

An arithmetic Fuchsian group is cocompact if and only if the associated algebra A is a division algebra of quaternions ([30] Chap. 4). Thus any non-cocompact arithmetic Fuchsian group is conjugate in $\mathrm{PSL}_{2}(\mathbb{C})$ to a group commensurable with $\mathrm{PSL}_{2}(\mathbb{Z})$ since the only quaternion algebra giving rise to arithmetic Fuchsian groups which is not a division algebra is $M_{2}(\mathbb{Q})$.

Arithmetic Kleinian groups are obtained in a similar way and in analogy with the above, any non-cocompact arithmetic Kleinian group is conjugate in $\mathrm{PSL}_{2}(\mathbb{C})$ to a group commensurable with some $\mathrm{PSL}_{2}\left(O_{d}\right)$.
2.3. The arithmetic Fuchsian groups described in this paper all arise from indefinite quaternion algebras over \mathbb{Q} (see $\S 3.1$ below). As such they are classified up to isomorphism by a finite set, of even cardinality, of primes at which the algebra is ramified ([30] Chap. 3). They arise here naturally in the form ($\frac{a, b}{a}$) with $a, b \in \mathbb{Z} \backslash\{0\}$
which describes the quaternion algebra over \mathbb{Q} whose standard basis $\{1, i, j, i j\}$ satisfies $i^{2}=a, j^{2}=b, i j=-j i$.

3. Finiteness results.

3.1. Let F be a non-elementary Fuchsian subgroup of $\operatorname{PSL}_{2}\left(O_{d}\right)$ stabilizing a circle or straight line \mathcal{C} in \mathbb{C}. Then F is a subgroup of

$$
\begin{aligned}
\operatorname{Stab}\left(\mathcal{C}, \operatorname{PSL}_{2}\left(O_{d}\right)\right) & =\left\{\gamma \in \operatorname{PSL}_{2}\left(O_{d}\right) \mid \gamma(\mathcal{C})=\mathcal{C}\right. \\
& \text { and } \gamma \text { preserves the components of } \mathbb{C} \backslash \mathcal{C}\} .
\end{aligned}
$$

which is a maximal arithmetic Fuchsian subgroup of $\operatorname{PSL}_{2}\left(O_{d}\right)[18]$. Thus every finite covolume Fuchsian subgroup of $\mathrm{PSL}_{2}\left(O_{d}\right)$ is arithmetic.

Notation 1. Foŕ brevity, denote $\operatorname{PSL}_{2}\left(O_{2}\right)$ by Γ_{d}.
NOTATION 2. Except briefly in $\S 6.6$ we will only consider finite covolume subgroups. Thus without further mention, we reserve the term " F is a Fuchsian group" to mean that F is a finite covolume Fuchsian group.

In [18] it is shown that C has an equation of the form

$$
\begin{equation*}
a|z|^{2}+B z+\bar{B} \bar{z}+c=0 \tag{3}
\end{equation*}
$$

where $a, c \in \mathbb{Z}$ and $B \in O_{d}$, to which we associate the triple (a, B, c).
DEFINITION 3.1. Let $B=\frac{1}{2}\left(b_{1}+b_{2} \sqrt{-d}\right)$ with $b_{i} \in \mathbb{Z}(i=1,2)$ and $b_{1} \equiv b_{2}$ $(\bmod 2)(\operatorname{and} \equiv 0 \quad(\bmod 2)$ unless $d \equiv-1 \quad(\bmod 4))$. The triple (a, B, c) is called primitive if

$$
\begin{array}{lcc}
\text { g.c.d. }\left(a, \frac{b_{1}}{2}, \frac{b_{2}}{2}, c\right)=1 & \text { for } b_{1} \equiv b_{2} \equiv 0 & (\bmod 2) \\
\text { g.c.d. }\left(a, b_{1}, b_{2}, c\right)=1 & \text { for } b_{1} \equiv b_{2} \not \equiv 0 & (\bmod 2)
\end{array}
$$

Clearly a circle or straight line can be represented uniquely by a primitive triple up to sign.

Definition 3.2. The discriminant of \mathcal{C} is defined to be

$$
D=D(C)+|B|^{2}-a c=\frac{1}{4}\left(b_{1}^{2}+d b_{2}^{2}\right)-a c
$$

where (a, B, c) is the primitive triple representing C.
We also refer to this as the discriminant of F where F is commensurable with $\operatorname{Stab}\left(C, \Gamma_{d}\right)$.

Note that D is a positive integer. Moreover for every positive integer D let \mathcal{C}_{D} denote the circle $\left\{z \in \mathcal{C}\left||z|^{2}=D\right\}\right.$. Then $\operatorname{Stab}\left(\mathcal{C}_{D}, \Gamma_{d}\right)$ is an arithmetic Fuchsian subgroup of $\operatorname{PSL}_{2}\left(O_{d}\right)$ and moreover: ([18])

THEOREM M. The quaternion algebra associated to any Fuchsian subgroup of Γ_{d} of discriminant D is isomorphic to $\left(\frac{-d, D}{Q}\right)$.

Two circles $\mathcal{C}, \mathcal{C}^{\prime}$ stabilized by Fuchsian subgroups of Γ_{d} are Γ_{d}-equivalent if and only if there exists $T \in \Gamma_{d}$ with $T C=\mathcal{C}^{\prime}$. The following elementary result is a straight forward calculation ([21]).

LEMMA 1. Let \mathcal{C}, C^{\prime} be represented by triples (a, B, c) and $\left(a^{\prime}, B^{\prime}, c^{\prime}\right)$ and let $T C=$ C^{\prime} with $T \in \Gamma_{d}$.
(i) (a, B, c) is primitive if and only if $\left(a^{\prime}, B^{\prime}, c^{\prime}\right)$ is primitive
(ii) $D(\mathcal{C})=D\left(\mathcal{C}^{\prime}\right)$.

Lemma 2. Let \mathcal{C} be a circle represented by a primitive triple (a, B, c). Then $\operatorname{Stab}\left(\mathcal{C}, \Gamma_{d}\right)$ is an arithmetic Fuchsian subgroup of Γ_{d}.

Proof. We can assume that $a \neq 0$ [18]. Let $V=\left(\begin{array}{c}a \bar{B} \\ 0 \\ 1\end{array}\right)$ so that $V C=\mathcal{C}_{D}$ where $D=$ $|B|^{2}-a c$. Since $V \in G L_{2}\left(\mathbb{Q}(\sqrt{-d})\right.$, it follows that $P(V) \Gamma_{d} P(V)^{-1}$ is commensurable with Γ_{d} ([30] Chap. 4). Thus $P(V) \operatorname{Stab}\left(\mathcal{C}, \Gamma_{d}\right) P(V)^{-1}$ is commensurable with $\operatorname{Stab}\left(\mathcal{C}_{D}, \Gamma_{d}\right)$, which as indicated in (3.1) is arithmetic.

Let $\Sigma_{d}=\left\{\right.$ circles C represented by primitive triples in $\left.O_{d}\right\}$.
3.2. THEOREM 1. There are finitely many $\operatorname{PSL}_{2}\left(O_{d}\right)$-conjugacy classes of maximal Fuchsian subgroups of $\mathrm{PSL}_{2}\left(O_{d}\right)$ of fixed discriminant.

Proof. The conjugacy classes of maximal Fuchsian subgroups of Γ_{d} are in one-to-one correspondence with the Γ_{d}-equivalence classes of circles $\mathcal{C} \in \sum_{d}$. Let C be represented by a primitive triple (a, B, c) and define $\Phi(a, B, c)=\left(\begin{array}{ll}a & B \\ B & c\end{array}\right)$ which represents a binary hermitian form. Note that $\operatorname{det} \Phi(a, B, c)=-D$. Thus Φ defines a bijection from \sum_{d} to \mathcal{H}_{d} where

$$
\mathcal{H}_{d}=\left\{\left(\begin{array}{ll}
a & B \\
\bar{B} & c
\end{array}\right) a, c \in \mathbb{Z} \quad B \in O_{d}, a c-|B|^{2}<0, \text { and }(a, B, c) \text { primitive }\right\} .
$$

Now if $T \in \mathrm{GL}_{2}\left(O_{d}\right)$ then T acts on \mathcal{H}_{d} by

$$
\left(\begin{array}{ll}
a & B \\
\bar{B} & c
\end{array}\right) \mapsto T\left(\begin{array}{ll}
a & B \\
\bar{B} & c
\end{array}\right) T^{*}
$$

Under this action determinants are preserved and the centre acts trivially so that it can be considered as a $\mathrm{PGL}_{2}\left(O_{d}\right)$ action. Now $\mathrm{PGL}_{2}\left(O_{d}\right)$ also acts on Σ_{d}. Furthermore if $T C=C^{\prime}$ and C^{\prime} is represented by $\left(a^{\prime}, B^{\prime}, c^{\prime}\right)$ then $V \Phi(a, B, c) V^{*}=\Phi\left(a^{\prime}, B^{\prime}, c^{\prime}\right)$ where $V=\left(T^{-1}\right)^{t}$, and conversely. Thus the $\operatorname{PGL}_{2}\left(O_{d}\right)$-equivalence classes of circles C are in one-to-one correspondence with the $\mathrm{PGL}_{2}\left(O_{d}\right)$-equivalence classes of binary Hermitian forms as described above. But by a result of P. Humbert [16] there are finitely many $\mathrm{PGL}_{2}\left(O_{d}\right)$-equivalence classes of such binary Hermitian forms of determinant $-D$. Thus
for any group commensurable with $\mathrm{PGL}_{2}\left(O_{d}\right)$ and so in particular for Γ_{d}, there are finitely many conjugacy classes of maximal Fuchsian subgroups of fixed discriminant.

Remark. In the case $d=1$, Theorem 1 was proved by Harding [13] using a geometric argument.
3.3. In this section we investigate the dependence of $\operatorname{vol}\left(\operatorname{Stab}\left(\mathcal{C}, \Gamma_{d}\right)\right)$ on the discriminant D.

From Theorem M in §3.1, the quaternion algebra associated to $\operatorname{Stab}\left(\mathcal{C}, \Gamma_{d}\right)$ is isomorphic to $\left(\frac{-d, D}{Q}\right)$ so that there is a representation ρ of this algebra into $M_{2}(\mathbb{C})$ and a maximal order O such that $\operatorname{Stab}\left(\mathcal{C}, \Gamma_{d}\right)$ is commensurable with $P \rho\left(O^{1}\right)$. But by the criteria of Takeuchi [27] we can assume that $\operatorname{Stab}\left(C, \Gamma_{d}\right) \subseteq P \rho\left(O^{1}\right)$. The covolume of the groups $P \rho\left(O^{1}\right)$ depends only on the isomorphism class of the quaternion algebra $\left(\frac{-d, D}{Q}\right)$ ([30] Chap. 4). The isomorphism class does not uniquely determine the integer D and indeed for each D there are infinitely many D^{\prime} such that $\left(\frac{-d, D}{\mathbf{Q}}\right) \cong\left(\frac{-d, D^{\prime}}{\mathbf{Q}}\right)$. Nonetheless we prove,

TheOrem 2. Let $\left\{D_{n}\right\}$ be a sequence of positive integers such that $\lim _{n \rightarrow \infty} D_{n}=$ ∞. Then $\lim _{n \rightarrow \infty} \operatorname{vol}\left(\mathcal{C}_{n}, \Gamma_{d}\right)=\infty$ where $D\left(\mathcal{C}_{n}\right)=D_{n}$.

Proof. Let Γ be a torsion-free subgroup of Γ_{d} of finite index. Suppose as $D_{n} \rightarrow \infty$, the volumes remain bounded. $\operatorname{Then} \operatorname{vol}\left(\operatorname{Stab}\left(\mathcal{C}_{n}, \Gamma\right)\right)$ remains bounded since

$$
\left[\operatorname{Stab}\left(\mathcal{C}_{n}, \Gamma_{d}\right): \operatorname{Stab}\left(\mathcal{C}_{n}, \Gamma\right)\right] \leq\left[\Gamma_{d}: \Gamma\right]
$$

Thus there exists a subsequence $\left\{D_{n}\right\}$ such that the groups $\operatorname{Stab}\left(C_{n}, \Gamma\right)$ all have the same signature. But by a result of Thurston ([29] Corollary 8.8.6) infinitely many of these are conjugate in $\mathrm{PSL}_{2}(\mathbb{C})$. An adaptation of an argument of Greenberg ([12] Theorem 2) now implies that infinitely many of them are conjugate in Γ. This is a contradiction since the \mathcal{C}_{n} have distinct discriminants.
4. Γ_{d} and quadratic forms. In [20] the relationship between those arithmetic Kleinian groups which contain non-elementary Fuchsian subgroups and discrete arithmetic subgroups of integer points in orthogonal groups of certain quaternary quadratic forms was exhibited. We now make this explicit for the groups Γ_{d} and subsequently fully exploit it in the case $d=1$.
4.1. Let V be a 4-dimensional vector space over \mathbb{Q}, f a nondegenerate quadratic form on V with integer coefficients and S the associated symmetric matrix. Let $O(f)$ (resp. $S O(f)$) denote the orthogonal (resp. special orthogonal) group of f so that

$$
O(f)=\left\{X \in G L_{4} \mid X^{t} S X=S\right\}
$$

For a subring R of \mathbb{C}, let $O(f, R)$, and $S O(f, R)$ denote the R-points of $O(f)$, and $S O(f)$ respectively.

If f has signature (3,1) then $S O^{o}(f, \mathbb{R})$, the identity component of $S O(f, \mathbb{R})$, is isomorphic to $\mathrm{PSL}_{2}(\mathbb{C})$. In which case $S O^{o}(f, \mathbb{Z})$ is a discrete arithmetic subgroup of $S O^{o}(f, \mathbb{R})$ and therefore is finitely-generated, finitely-presented and of finite covolume in $S O^{o}(f, \mathbb{R})([3])$.

Let $V(\mathbb{R})=V \otimes_{\mathbf{Q}} \mathbb{R}$ and \mathcal{H} denote the projective image of $\{\omega \in V(\mathbb{R}) \mid f(\omega)<0\}$. Equipped with the metric induced by the restriciton of the indefinite metric f, \mathcal{H} is a model of hyperbolic 3 -space. In this model, a Fuchsian group will stabilize the projection of a 3-dimensional linear subspace of $V(\mathbb{R})$ and fix the 1-dimensional subspace orthogonal to it (orthogonal with respect to f).
4.2. Let $A=\left(\frac{-1,1}{\mathbb{Q}(\sqrt{-d})}\right)$ so that A is isomorphic to $M_{2}(\mathbb{Q}(\sqrt{-d}))$ and the order $O_{d}\left[1, i, \frac{1+j}{2}, \frac{i+i j}{2}\right]$ is isomorphic to $M_{2}\left(O_{d}\right)$ ([30] Chaps. 1 and 3). Now A admits the conjugate-linear involution τ given by

$$
\tau\left(a_{0}+a_{1} i+a_{2} j+a_{3} i j\right)=\bar{a}_{0}-\bar{a}_{1} i-\bar{a}_{2} j-\bar{a}_{3} i j \text { where } a_{i} \in \mathbb{Q}(\sqrt{-d}) .
$$

The fixed-point set of τ is a \mathbb{Q}-subspace with basis $\left\{1, \sqrt{-d}, \frac{\sqrt{-d}}{2}(-i+i j), \frac{\sqrt{-d}}{2}(i+i j)\right\}$ and the reduced norm of A restricted to V defines a quadratic form f_{d} given by

$$
\begin{equation*}
f_{d}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2}+d x_{2}^{2}+d x_{3} x_{4} \tag{4}
\end{equation*}
$$

For $y \in A^{1}$, the elements of norm 1 in A, define the automorphism ϕ_{y} of V by

$$
\phi_{y}(x)=y x \tau(y)
$$

so ϕ_{y} induces a homomorphism

$$
\Phi_{d}: A^{1} \rightarrow O\left(f_{d}, \mathbb{Q}\right)
$$

which may be extended to $\left(A \otimes_{\mathbf{Q}(\sqrt{-d})} \mathbb{C}\right)^{1} \cong \mathrm{SL}_{2}(\mathbb{C})$. This then defines an isomorphism, also denoted by Φ_{d},

$$
\Phi_{d}: \mathrm{PSL}_{2}(\mathbb{C}) \rightarrow S O^{o}\left(f_{d}, \mathbb{R}\right)
$$

such that $\Phi_{d}\left(\operatorname{PSL}_{2}\left(O_{d}\right)\right)$ is commensurable with $\mathrm{SO}^{o}\left(f_{d}, \mathbb{Z}\right)$ (see e.g. [20] for details).
REMARK. $\quad \Phi_{d}\left(\operatorname{PSL}_{2}\left(O_{d}\right)\right.$ is not necessarily a subgroup of $S O^{o}\left(f_{d}, \mathbb{Z}\right)$.
Under Φ_{d}, Fuchsian subgroups of Γ_{d} give rise to Fuchsian subgroups of $S O^{o}\left(f_{d}, \mathbb{Z}\right)$ (by dropping to a subgroup of finite index if necessary) as discussed in $\S 4.1$. It is easy to check that every Fuchsian subgroup of $S^{\circ}\left(f_{d}, \mathbb{Z}\right)$ is a subgroup of a maximal Fuchsian subgroup which has the form:

$$
\operatorname{Stab}\left(\omega_{0}, S O^{o}\left(f_{d}, \mathbb{Z}\right)\right)=\left\{T \in S O^{o}\left(f_{d}, \mathbb{Z}\right) \mid T \omega_{0}=\omega_{0}\right\}
$$

where ω_{o} is a fixed normal to the plane stabilized by the Fuchsian subgroup and satisfies $f_{d}\left(\omega_{0}\right)>0$.

We now describe the vectors ω_{0} explicitly
4.3. Let $\mathcal{C} \in \Sigma_{d}$ be a circle of discriminant D represented by the primitive triple (a, B, c) with $B=\frac{1}{2}\left(b_{1}+b_{2} \sqrt{-d}\right)$ as before. Let $F(\mathcal{C})$ denote the group $\operatorname{Stab}\left(\mathcal{C}, \Gamma_{d}\right)$

LEMmA 3. A normal to the plane stabilized by $\Phi_{d}(F(\mathcal{C}))$ is given by

$$
\left(-b_{2} d,-b_{1},-2 c, 2 a\right)
$$

Proof. We deal first with the case $\mathcal{C}=\mathcal{C}_{D}$. Let $B=\left(\frac{-d, D}{Q}\right)$ with standard basis $\left\{1, i_{B}, j_{B}, i_{B} j_{B}\right\}$ and ρ the natural representation of B into $M_{2}(\mathbb{Q}(\sqrt{-d})$ given by

$$
\rho\left(i_{B}\right)=\left(\begin{array}{cc}
\sqrt{-d} & 0 \\
0 & -\sqrt{-d}
\end{array}\right) \quad \rho\left(j_{B}\right)=\left(\begin{array}{ll}
0 & D \\
1 & 0
\end{array}\right)
$$

These matrices act on H^{3} and both preserve the hyperbolic plane $H\left(\mathcal{C}_{D}\right)$ with $\rho\left(i_{B}\right)$ preserving the orientation of $H\left(\mathcal{C}_{D}\right)$ and $\rho\left(j_{B}\right)$ reversing it.

Now $P \rho\left(i_{B}\right)=P\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$ and $P \rho\left(j_{B}\right)=P\left(\begin{array}{cc}0 & i \sqrt{D} \\ i / \sqrt{D} & 0\end{array}\right)$. By direct calculation, the images of these elements under Φ_{d} are

$$
I_{B}=\left[\begin{array}{cccc}
-1 & & & \\
& -1 & & \\
& & 1 & \\
& & & 1
\end{array}\right] \quad J_{B}=\left[\begin{array}{cccc}
-1 & 0 & & \\
0 & 1 & & \\
& & 0 & -D \\
& & -\frac{1}{D} & 0
\end{array}\right]
$$

respectively. Thus $\Phi_{d}\left(F(\mathcal{C})\right.$) stabilizes a plane Π_{D} with normal vector ω_{0} satisfying $I_{B}\left(\omega_{0}\right)=\omega_{0}$ and $J_{B}\left(\omega_{0}\right)=-\omega_{0}$. Solving these equations yields $\omega_{0}=(0,0, D, 1)$.

As noted in the proof of Lemma 2,

$$
P V=P\left(\begin{array}{cc}
\sqrt{a} & \frac{B}{\sqrt{a}} \\
0 & \frac{1}{\sqrt{a}}
\end{array}\right)
$$

maps \mathcal{C} to \mathcal{C}_{D} so that $\Phi_{d}(P V)$ maps the plane stabilized by $\Phi_{d}(F(\mathcal{C}))$ to Π_{D}. Again a direct calculation yields that $\Phi_{d}\left(P V^{-1}\right)\left(\omega_{0}\right)=\left(-b_{2} d,-b_{1},-2 c, 2 a\right)$.

Note that the vector $\omega=\left(-b_{2} d,-b_{1},-2 c, 2 a\right)$ need not be primitive, in the obvious sense, but by dividing by the greatest common divisor we can obtain a primitive vector representing the same one-dimensional subspace.

Definition 4.1. The form discriminant of a maximal Fuchsian subgroup $F(C)$ in Γ_{d} (or of $\Phi_{d}\left(F(\mathcal{C})\right.$) in $\left.\Phi_{d}\left(\Gamma_{d}\right)\right)$ is defined to be $f_{d}\left(\omega_{0}\right)$ where ω_{0} is a primitive vector orthogonal to the plane stabilized by $\Phi_{d}(F(\mathcal{C}))$.

If G is a subgroup of finite index in $O\left(f_{d}, \mathbb{Z}\right)$ and c is a primitive representation of an integer Δ i.e., $f_{d}(c)=\Delta$, then for $g \in G, g c$ is primitive and represents Δ. The number of G-equivalence classes of such representatives is finite ([4] Chap. 9). Clearly ω_{0} in the definition is unique up to sign and so we have

Theorem 3. Let $G=\Phi_{d}\left(\Gamma_{d}\right) \cap O\left(f_{d}, \mathbb{Z}\right)$. The number of G-conjugacy classes of maximal Fuchsian subgroups of $\Phi_{d}\left(\Gamma_{d}\right)$ of fixed form discriminant is finite.

REMARK. The form discriminant and the discriminant D described in $\S 3$ of a Fuchsian subgroup need not be the same if $(d, D)>1$. Nonetheless the relationship between the two sets of discriminants is finite to finite and thus an alternative proof of Theorem 1 may be obtained.

5. Siegel's methods applied to f_{1}.

5.1. We now concentrate on the case $d=1$ and denote f_{1} by f and Φ_{1} by Φ.

In this case $\Phi\left(\Gamma_{1}\right)$ is a subgroup of $S O^{o}(f, \mathbb{Z})$. The group $\operatorname{PGL}_{2}\left(O_{1}\right)$ (or strictly its image in $\left.\mathrm{PSL}_{2}(\mathbb{C})\right)$ is also mapped by Φ into $S O^{o}(f, \mathbb{Z})$ and since $\mathrm{PGL}_{2}\left(O_{1}\right)$ is a maximal arithmetic Kleinian group ([2],[14]) it follows that Φ maps $\operatorname{PGL}_{2}\left(O_{1}\right)$ isomorphically onto $S O^{o}(f, \mathbb{Z})$.

Let $\mathcal{C} \in \Sigma_{1}$ be represented by the primitive triple (a, B, c) where now, with a slight change of notation, $B=b_{1}+b_{2} i$ and $D=b_{1}^{2}+b_{2}^{2}-a c$. By Lemma 3, a primitive normal to the plane stabilized by $\Phi(F(C))$ is $\omega_{0}=\left(-b_{2},-b_{1},-c, a\right)$ and $f\left(\omega_{o}\right)=D$. Note that since ω_{0} is only determined up to sign, we must consider ω_{0} and $-\omega_{0}$ as equivalent.

THEOREM 4. The following are equal

(i) The number of Γ_{1}-conjugacy classes of maximal Fuchsian subgroups of Γ_{1} of discriminant D.
(ii) The number of Γ_{1}-conjugacy classes of maximal Fuchsian groups of Γ_{1} of form discriminant D.
(iii) The number of $\Phi\left(\Gamma_{1}\right)$-equivalence classes of primitive representations of D by f.

PROOF. It remains to show that each primitive representative $(\alpha, \beta, \gamma, \delta) \in \mathbb{Z}^{4}$ of D by f gives rise to a Fuchsian subgroup of Γ_{1}. This follows by taking \mathcal{C} represented by the primitive triple $(\delta,-(\beta+\alpha i), \gamma)$ and applying lemma 2.
5.2. To count primitive representations of integers by integral quadratic forms we use methods due to Siegel [25]. In this section, we describe these results in the form we require following the notation and description used by Elstrodt, Grunewald and Mennicke in their notes [6] where some related calculations are carried out.

It will be convenient to replace the form f by $-2 f$ which has signature $(1,3)$ so that the corresponding matrix S is integral and in the sequel we shall denote what was previously $-2 f$ by f. Siegel's methods are simplified in this case as f lies in a genus of one class (e.g. [4] Chap. 11).

Let X, X^{\prime} be primitive solutions of $f(x)=-2 D$. These are equivalent if there exists $g \in O(f, \mathbb{Z})$ such that $g X=X^{\prime}$ (Note the difference with equivalence as defined in Theorem 4 above). Let the n equivalence classes have representatives $C_{1}, C_{2}, \ldots, C_{n}$, so that $C_{i}^{t} S C_{i}=-2 D$ for $i=1,2, \ldots, n$.

For $p \in \mathbb{Z}$, a prime, let

$$
A_{p^{e}}(S, D)=\text { number of incongruent solutions of } f(x) \equiv-2 D \quad\left(\bmod p^{e}\right)
$$

and define the local density

$$
\alpha_{p}(S, D)=\lim _{e \rightarrow \infty} \frac{A_{p^{e}}(S, D)}{p^{3 e}}
$$

This limit exists and indeed the expression $p^{-3 e} A_{p^{e}}(S, D)$ is independent of e for sufficiently large e.

Now for each C_{i} choose a unimodular complement B_{i} for $i=1,2, \ldots, n$ i.e. an integral 4×3 matrix B_{i} such that $K_{i}=\left[C_{i}: B_{i}\right]$ is unimodular. Let $T=[-2 D], Q_{i}=C_{i}^{t} S B_{i}$ and

$$
\begin{equation*}
H_{i}=B_{i}^{t} S B_{i}-Q_{i}^{t} T^{-1} Q_{i} \quad i=1,2, \ldots, n . \tag{5}
\end{equation*}
$$

Then H_{i} is a 3×3 matrix with associated ternary quadratic form h_{i}. Let λ_{i} denote the number of matrices $T^{-1} Q_{i} W$ which are pairwise incongruent mod 1 where W runs through the elements of $O\left(h_{i}, \mathbb{Z}\right)$. Define

$$
\begin{equation*}
\rho\left(S, C_{i}\right)=\lambda_{i}(2 D)^{3} \frac{\pi}{2}\left(\left(\operatorname{det}\left(2 D H_{i}\right)\right)^{-2} \operatorname{vol}\left(O\left(h_{i}, \mathbb{Z}\right)\right)\right. \tag{6}
\end{equation*}
$$

REMARK. In our case, the forms h_{i} are indefinite ternary quadratic forms with rational coefficients so that $\operatorname{vol}\left(O\left(h_{i}, \mathbb{Z}\right)\right)$ denotes the covolume of the arithmetic group $O\left(h_{i}, \mathbb{Z}\right)$ acting on the 2-dimensional hyperbolic space defined in the obvious way by h_{i}. Define

$$
\begin{equation*}
\mu(S)=2^{-5} \pi^{2} \operatorname{vol}(O(f, \mathbb{Z})) \tag{7}
\end{equation*}
$$

Siegel's Theorem [25].

$$
\begin{equation*}
\sum_{i=1}^{n} \rho\left(S, C_{i}\right)=\mu(S) \prod_{p} \alpha_{p}(S, D) \tag{8}
\end{equation*}
$$

Part of the infinite product on the right-hand side of (8) can be evaluated as follows ([6])

$$
\prod_{p \nmid 2 D} \alpha_{p}(S, D)=\frac{\zeta(2)}{\zeta_{Q(i)}(2)} \prod_{\substack{p \mid D \\ p \text { odd }}}\left(1-\left(\frac{-1}{p}\right) p^{-2}\right)^{-1}
$$

where (\bar{p}) is the Legende symbol, $\zeta(s)$ the Riemann Zeta function and $\zeta_{\mathbf{Q}(i)}(s)$ the Dedekind zeta function of $\mathbb{Q}(i)$. Thus to determine the infinite product, it remains to evaluate $\alpha_{p}(S, D)$ for $p \mid 2 D$.

LEmmA 4. For $p \mid 2 D$ we have

$$
\alpha_{p}(S, D)\left\{\begin{array}{lll}
p^{-3}(p-1)\left(p^{2}-\left(\frac{-1}{p}\right)\right) & p \text { odd } \\
\frac{3}{2} & p=2 \text { and } D \equiv 0,3 \quad(\bmod 4) \\
\frac{5}{2} & p=2 \text { and } D \equiv 1 \quad(\bmod 4) \\
\frac{9}{4} & p=2 \text { and } D \equiv 2 \quad(\bmod 8) \\
\frac{7}{4} & p=2 \text { and } D \equiv 6 \quad(\bmod 8)
\end{array}\right.
$$

Proof. We give the proof for p odd; $p=2$ is similar but more complicated (cf. [6]). Consider the number of solutions $x^{2}+y^{2}-u v \equiv 0(\bmod p)$ excluding $(0,0,0,0)$ by primitivity. Then $x^{2} \equiv-\left(y^{2}+u v\right) \quad(\bmod p)$ has a solution if and only if $y^{2}+u v$ is a quadratic residue (resp. quadratic non-residue) $\bmod p$ if $p \equiv 1(\bmod 4)($ resp. $\equiv 3(\bmod 4)))$ or zero. For any choice of y we can choose $u v$ in $\left(\frac{p-1}{2}\right)$ ways so that $y^{2}+u v$ is a quadratic residue or non-residue. For each non-zero value of $u v$ we can choose the pair (u, v) in $p-1$ ways. Thus if x is nonzero we get $p(p-1)\left(p+\left(\frac{-1}{p}\right)\right)$ solutions. If $x=0$, for each $y \neq 0$, there are $p-1$ pairs (u, v) such that $y^{2}+u v \equiv 0$ $(\bmod p)$. If $y=0$, there are $2(p-1)$ pairs (u, v) such that $u v \equiv 0(\bmod p)$. This implies $A_{p}(S, D)=(p-1)\left(p^{2}-\left(\frac{-1}{p}\right)\right)$.

Now suppose \underline{a}^{e} is a solution of $x^{2}+y^{2}+u v \equiv D \quad\left(\bmod p^{e}\right)$. Put $\underline{a}^{e+1}=\underline{a}^{e}+p^{e} \underline{z}$. Then \underline{a}^{e+1} is a solution $\bmod p^{e+1}$ if and only if $v+2 a z_{1}+2 b z_{2}+c z_{6}+d z_{3} \equiv 0(\bmod p)$ where $\left(\underline{a}^{e}\right)^{t}=(a, b, c, d)$ and $a^{2}+b^{2}+c d-D=p^{e} v$. Thus a solution mod p^{e} extends to p^{3} solutions $\bmod p^{e+1}$ since at least one of $a, b, c, d \not \equiv 0(\bmod p)$. This gives the desired value of $\alpha_{p}(S, D)$

We now consider the terms λ_{i} for $i=1,2, \ldots, n$ defined above. Conjugating the group

$$
\operatorname{Stab}\left(C_{i}, O(f, \mathbb{Z})\right)=\left\{g \in O(f, \mathbb{Z}) \mid g C_{i}=C_{i}\right\}
$$

by K_{i} gives the group $\operatorname{Stab}\left(E_{1}, O\left(f_{i}^{\prime}, \mathbb{Z}\right)\right)$ where $E_{1}^{t}=(1,0,0,0)$ and f_{i}^{\prime} is represented by the matrix

$$
\left[\begin{array}{cc}
-2 D & Q_{i} \\
Q_{i}^{t} & H_{i}+Q_{i}^{t} T^{-1} Q_{i}
\end{array}\right]
$$

If $X \in \operatorname{Stab}\left(E_{1}, O\left(f_{i}^{\prime}, \mathbb{Z}\right)\right)$ then X has the form

$$
\left[\begin{array}{cc}
1 & P \\
0 & Y_{X}
\end{array}\right]
$$

where P and Y_{X} are integral 1×3 and 3×3 matrices respectively. Moreover $Y_{X}^{t} H_{i} Y_{X}=H_{i}$. Thus the mapping θ defined by

$$
\theta(X)=Y_{K_{i} X K_{i}^{-1}}
$$

defines a monomorphism

$$
\begin{equation*}
\theta: \operatorname{Stab}\left(C_{i}, O(f, \mathbb{Z})\right) \rightarrow O\left(h_{i}, \mathbb{Z}\right) \tag{10}
\end{equation*}
$$

LEMMA 5. $\quad \operatorname{vol}\left(\theta\left(\operatorname{Stab}\left(C_{i}, O(f, \mathbb{Z})\right)\right)\right)=\lambda_{i} \operatorname{vol} O\left(h_{i}, \mathbb{Z}\right)$ for $i=1, \ldots, n$.
Proof. Let us determine the image of θ as at (10). If $Y \in O\left(h_{i}, \mathbb{Z}\right)$ there exists $X \in \operatorname{Stab}\left(C_{i}, O(f, \mathbb{Z})\right.$ such that $\theta(X)=Y$ if and only if the matrix $T^{-1} Q_{i}[(\operatorname{det} Y) I-Y]$ is integral. Thus $\left[O\left(h_{i}, \mathbb{Z}\right): \theta\left(\operatorname{Stab}\left(C_{i}, O(f, \mathbb{Z})\right)\right)\right]$ equals the number of matrices $T^{-1} Q_{i} Y$ which are pairwise incongruent $\bmod 1$ as Y runs through the elements of $O\left(h_{i}, \mathbb{Z}\right)$.

Now $\left[O(f, \mathbb{Z}): S O^{o}(f, \mathbb{Z})\right]=4$ and $S O^{o}(f, \mathbb{Z})=\Phi\left(\operatorname{PGL}_{2}\left(O_{1}\right)\right)$. Thus,

$$
\operatorname{vol}(O(f, \mathbb{Z}))=8 \operatorname{vol}\left(\operatorname{PSL}_{2}\left(O_{1}\right)\right)=\frac{2_{\zeta Q}(i)(2)}{\pi^{2}} . \quad([30] \text { Chap. 4) }
$$

Therefore from (7), (9) and Lemma 4 we can simplify the right-hand side of (8) and then re-express Siegel's Theorem as

$$
\begin{equation*}
\sum_{i=1}^{n} \rho\left(S, C_{i}\right)=2^{-7} \zeta(2) \alpha_{2}(S, D) \prod_{\substack{p \mid D \\ p \text { odd }}}\left(1+\left(\frac{-1}{p}\right) p^{-1}\right) \tag{11}
\end{equation*}
$$

where the terms $\alpha_{2}(S, D)$ are defined in Lemma 6.
6. Conjugacy classes of maximal Fuchsian subgroups of $\operatorname{PSL}_{2}\left(O_{1}\right)$. In this section we use the results of $\S 5$ to prove

TheOrem 5. Let n_{D} denote the number of conjugacy classes of maximal Fuchsian subgroups of Γ_{1} of discriminant D. Then

$$
n_{D}= \begin{cases}1 & \text { if } D \equiv 0,3 \quad(\bmod 4) \\ 3 & \text { if } D \equiv 1 \quad(\bmod 4) \\ 2 & \text { if } D \equiv 2 \quad(\bmod 4)\end{cases}
$$

6.1. A key role is played by the circle \mathcal{C}_{D}. Now

$$
F_{D}=\left\{\left.\operatorname{Stab}\left(\mathcal{C}_{D}, \Gamma_{1}\right)=P\left(\begin{array}{cc}
\alpha & D \beta \\
\bar{\beta} & \bar{\alpha}
\end{array}\right) \in S L_{2}\left(O_{1}\right) \right\rvert\, \alpha, \beta \in O_{1}\right\}
$$

If B_{D} denotes the quaternion algebra $\left(\frac{-1, D}{Q}\right)$ with standard basis $\{1, i, j, i j\}$, consider the order $O=\mathbb{Z}[1, i, j, i j]$. With the representation ρ induced by

$$
\rho(i)=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right) \quad \rho(j)=\left(\begin{array}{cc}
0 & D \\
1 & 0
\end{array}\right)
$$

it follows that $F_{D}=P \rho\left(O^{1}\right)$.
There is a formula, known as Humbert's formula, for the covolumes of these groups given by

$$
\begin{equation*}
\operatorname{vol}\left(F_{D}\right)=\eta \pi D \prod_{\substack{p \mid D \\ p \text { odd }}}\left(1+\left(\frac{-1}{p}\right) p^{-1}\right) \tag{12}
\end{equation*}
$$

where $\eta=\frac{1}{2}$ if $4 \mid D$ and $\eta=1$ otherwise (correcting a small error in [30] p. 120).
The primitive solution of $f(C)=-2 D$ corresponding to the circle \mathcal{C}_{D} is $C=[00 D 1]^{t}$ and we first compute the contribution to Siegel's formula from this class, i.e. $\rho(S, C)$ as given at (6). The indefinite ternary form h (as at (5)) in this case is

$$
h(\underline{x})=\frac{1}{2 D} x_{1}^{2}-2 x_{2}^{2}-2 x_{3}^{2}
$$

and so we obtain

$$
\begin{equation*}
\rho(S, C)=\lambda \operatorname{vol} O(h, \mathbb{Z}) \frac{\pi}{2}(2 D)^{3}\left(16 D^{2}\right)^{-2} \tag{13}
\end{equation*}
$$

By Lemma 5, $\lambda \operatorname{vol} O(h, \mathbb{Z})=\operatorname{vol}\left(\theta\left(\operatorname{Stab}(C, O(f, \mathbb{Z}))\right.\right.$. In addition $\operatorname{vol}\left(F_{D}\right)=$ $\operatorname{vol}\left(\Phi\left(\operatorname{Stab}\left(\mathcal{C}_{D}, \Gamma_{1}\right)\right)=\operatorname{vol}\left(\operatorname{Stab}\left(C, \Phi\left(\Gamma_{1}\right)\right)\right.\right.$ so that we require to compute the index

$$
I_{1}=\left[\operatorname{Stab}\left(C, O\left(f_{1} \mathbb{Z}\right)\right): \operatorname{Stab}\left(C, \Phi\left(\left(\Gamma_{1}\right)\right)\right]\right.
$$

The group $\Phi\left(\Gamma_{1}\right)$ has index 8 in $O(f, \mathbb{Z})$, and g_{1}, g_{2}, g_{3} below are the coset representives of $S O(f, \mathbb{Z})$ in $O(f, \mathbb{Z}), S O^{o}(f, \mathbb{Z})$ in $S O(f, \mathbb{Z})$ and $\Phi\left(\Gamma_{1}\right)$ in $S O^{o}(f, \mathbb{Z})$ respectively.

$$
g_{1}=\left[\begin{array}{cccc}
-1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right] \quad g_{2}=\left[\begin{array}{cccc}
-1 & & & \\
& -1 & & \\
& & -1 & \\
& & & -1
\end{array}\right] \quad g_{3}=\left[\begin{array}{cccc}
0 & -1 & & \\
1 & 0 & & \\
& & 1 & \\
& & & 1
\end{array}\right]
$$

Clearly $g_{1}, g_{3} \in \operatorname{Stab}(C, O(f, \mathbb{Z}))$ while $g_{2}(C)=-C$. Now there exists an element $g \in$ $\Phi\left(\Gamma_{1}\right)$ such that $g(C)=-C$ if and only if there is an element γ of Γ_{1} which leaves C_{D} invariant but interchanges the components of $\mathbb{C} \backslash \mathcal{C}_{D}$. Such an element exists if and only if the Diophantine equation $x^{2}+y^{2}-D\left(z^{2}+w^{2}\right)=-1$ has a solution, which occurs precisely when $4 \mid D$ (e.g. [4] Chap. 9). Thus

$$
I_{1}= \begin{cases}4 & \text { if } 4 \mid D \\ 8 & \text { if } 4 \chi D .\end{cases}
$$

It now follows from (12) and (13) that

$$
\begin{equation*}
\rho(S, C)=\frac{\pi^{2}}{2^{9}} \prod_{\substack{p \mid D \\ p \text { odd }}}\left(1+\left(\frac{-1}{p}\right) p^{-1}\right) \tag{14}
\end{equation*}
$$

6.2.

Proposition 1. If $D \equiv 0,3 \quad(\bmod 4)$ then $n_{D}=1$.
Proof. When $D \equiv 0,3(\bmod 4), \alpha_{2}(S, D)=\frac{3}{2}$ and so from (14) and (11) there is just one $O(f, \mathbb{Z})$ equivalence class of primitive solutions of $f(C)=-2 D$. But the coset representatives g_{1}, g_{2}, g_{3} above map C to C or $-C$. Thus modulo the $\Phi\left(\Gamma_{1}\right)$-equivalence as defined in 5.1 , there is again only one equivalence class and so from Theorem 4 just one conjugacy class of maximal Fuchsian subgroup of discriminant D.
6.3. Since the values of $\alpha_{2}(S, D)$ in the other cases exceed $\frac{3}{2}$, it also follows from Siegel's Theorem, that there is more than one $O(f, \mathbb{Z})$-equivalence class, and hence more than one $\Phi\left(\Gamma_{1}\right)$-equivalence class. However, this can be shown more directly using the following Parity Lemma which we prove following [13].

Lemma 6. Let $\mathcal{C}, \mathcal{C}^{\prime} \in \Sigma_{1}$ be represented by the primitive triples $(a, B, c),\left(a^{\prime}, B^{\prime}, c^{\prime}\right)$ with $B=b_{1}+b_{2} i, B^{\prime}=b_{1}^{\prime}+b_{2}^{\prime}$ i. Let $\mathcal{C}, \mathcal{C}^{\prime}$ be Γ_{1}-equivalent.
Then
(i) if at least one of a, c is odd, then at least one of a^{\prime}, c^{\prime} is odd.
(ii) if both a, c are even, then both a^{\prime}, c^{\prime} are even and $b_{i} \equiv b_{i}^{\prime}(\bmod 2) i=1,2$.

Proof. The group Γ_{1} is generated by the images of the following matrices

$$
s=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad t=\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right) \quad u=\left(\begin{array}{cc}
1 & i \\
0 & 1
\end{array}\right) \quad \ell=\left(\begin{array}{cc}
i & o \\
0 & -i
\end{array}\right)
$$

and has the presentation (c.f. [7])

$$
\begin{equation*}
\left\langle s, t, \ell, u \mid s^{2}=\ell^{2}=(s \ell)^{2}=(t \ell)^{2}=(u \ell)^{2}=(s t)^{3}=(u s \ell)^{3}=1, t u=u t\right\rangle \tag{15}
\end{equation*}
$$

The effect of s, t, l, u on \mathcal{C} can then be given:

$$
\begin{aligned}
& s:(a, B, c) \mapsto\left(c,-b_{1}+b_{2} i, a\right) \\
& t:(a, B, c) \mapsto\left(a, b_{1}-a+b_{2} i, c+a-2 b_{1}\right) \\
& u:(a, B, c) \mapsto\left(a, b_{1}+\left(b_{2}+a\right) i, c+a+2 b_{2}\right) \\
& l:(a, B, c) \mapsto\left(a,-b_{1}-b_{2} i, c\right) .
\end{aligned}
$$

The Parity lemma follows by inspection.
6.4. We now consider the case $D \equiv 1 \bmod 4$.

By the Parity lemma, the circle \mathcal{C}_{D} and the two circles

$$
\begin{array}{ll}
\mathcal{C}_{D, 1}: & 2|z|^{2}+z+\bar{z}-\left(\frac{D-1}{2}\right)=0 \\
\mathcal{C}_{D, 2}: & 2|z|^{2}+i z-i \bar{z}-\left(\frac{D-1}{2}\right)=0
\end{array}
$$

are not pairwise equivalent under Γ_{1}. There are thus at least three Γ_{1}-conjugacy classes in this case. Note however that $C_{D, 1}$ is equivalent to $C_{D, 2}$ under $P\left(\begin{array}{cc}i & 0 \\ 0 & 1\end{array}\right) \in \operatorname{PSL}_{2}\left(O_{1}\right)$.

As described in $\S 3.1$, the element $T=\left(\begin{array}{cc}\sqrt{2} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}}\end{array}\right)$ maps $\mathcal{C}_{D, 1}$ to \mathcal{C}_{D} and from the simple description of $\operatorname{Stab}\left(\mathcal{C}_{D}, \mathrm{PSL}_{2}(\mathbb{C})\right)$ we obtain a simple description of $\operatorname{Stab}\left(\mathcal{C}_{D, 1}, \mathrm{PSL}_{2}(\mathbb{C})\right)$ and hence of $\operatorname{Stab}\left(\mathcal{C}_{D, 1}, \operatorname{PSL}_{2}\left(O_{1}\right)\right)$.

On the other hand, conjugating the representation in ρ in $\S 6.1$ by T gives a representation ρ^{\prime} of B_{D} given by

$$
\rho^{\prime}(i)=\left(\begin{array}{cc}
\sqrt{-1} & \sqrt{-1} \\
0 & -\sqrt{-1}
\end{array}\right) \quad \rho^{\prime}(j)=\left(\begin{array}{cc}
-1 & \frac{1}{2}(D-1) \\
2 & 1
\end{array}\right)
$$

Then taking \mathcal{M} to be the order $\mathcal{M}=\mathbb{Z}\left[1, i, \frac{1+j}{2}, \frac{i+i j}{2}\right]$ in B_{D}

$$
\operatorname{Stab}\left(\mathcal{C}_{D, 1}, \Gamma_{1}\right)=P \rho^{\prime}\left(\mathcal{M}^{1}\right)
$$

follows almost immediately. Now the discriminant of $O=\mathbb{Z}[1, i, j, i j]$ and \mathcal{M} differs only at the prime 2 so that

$$
\left[\mathcal{M}^{1}: O^{1}\right]=\left[\mathcal{M}_{2}^{1}: O_{2}^{1}\right]
$$

where $\mathcal{M}_{2}, \mathcal{O}_{2}$ are the localizations at 2 .
Lemma 7. $\left[\mathcal{M}_{2}^{1}: O_{2}^{1}\right]=3$.
Proof. Since $D \equiv 1 \quad(\bmod 4), B_{D}$ is unramified at 2 , and \mathcal{M}, having discriminant $D \mathbf{Z}$ is maximal at the prime 2 . Let

$$
\sigma(i)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \sigma(j)=\left(\begin{array}{cc}
\zeta & \eta \\
\eta & -\zeta
\end{array}\right)
$$

where $\zeta^{2}+\eta^{2}=D$ in the 2 -adic integers \mathbb{Z}_{2}, with ζ chosen so that $\zeta \equiv 1(\bmod 2)$. This induces an isomorphism between the localization of B_{D} at 2 with $M_{2}\left(\mathbb{Q}_{2}\right)$ under which \mathcal{M}_{2} is mapped isomorphically on $M_{2}\left(\mathbb{Z}_{2}\right)$. Furthermore we obtain the image of O_{2} to be

$$
\left\{\left.\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in M_{2}\left(\mathbb{Z}_{2}\right) \right\rvert\, \alpha \equiv \delta \quad(\bmod 2), \quad \beta \equiv \gamma \quad(\bmod 2)\right\}
$$

By reducing to the residue class field of two elements we see that $\left[\mathcal{M}_{2}^{1}: O_{2}^{1}\right]=3$.
$\operatorname{Corollary} 1 . \quad \operatorname{vol}\left(\operatorname{Stab}\left(\mathcal{C}_{D, i}, \Gamma_{1}\right)=\frac{\pi}{3} D \Pi_{p \mid D}\left(1+\left(\frac{-1}{p}\right) p^{-1}\right), i=1,2\right.$.
Proof. From (12) we obtain the volume of $P \rho\left(O^{1}\right)$, from which the results follow by Lemma 7 and the preceding remarks.

Now $C_{2}={ }^{t}\left[10-\frac{1}{2}(D-1)-2\right]$ is the solution of $f(x)=-2 D$ corresponding to the circle $C_{D, 2}$ (Lemma 3) and we now compute the contribution $\rho\left(S, C_{2}\right)$ to Siegel's formula.

The indefinite ternary form h_{2} in this case is given by the matrix

$$
H_{2}=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 2 / D & -\left(\frac{D+1}{2 D}\right) \\
0 & -\left(\frac{D+1}{2 D}\right) & \frac{(D-1)^{2}}{8 D}
\end{array}\right]
$$

so that

$$
\rho\left(S, C_{2}\right)=\lambda_{2} \operatorname{vol}\left(O\left(h_{2}, \mathbf{Z}\right)\right) \frac{\pi}{2}\left(2 D^{3}\right)\left(16 D^{2}\right)^{-2}
$$

So from Lemma 5 we require to compute

$$
\left[\operatorname{Stab}\left(C_{2}, O(f, \mathbf{Z})\right): \operatorname{Stab}\left(C_{2}, \Phi\left(\Gamma_{1}\right)\right)\right]=I_{2} .
$$

As in $\S 6.1$, one can show that there are coset representatives of $\operatorname{SO}(f, \mathbb{Z})$ in $O(f, \mathbb{Z})$ and $S O^{o}(f, \mathbb{Z})$ in $S O(f, \mathbb{Z})$ which fix C_{2}. Since $\Phi P\left(\begin{array}{ll}i & 0 \\ 0 & 1\end{array}\right) \in S O^{o}(f, \mathbb{Z}) \backslash \Phi\left(\Gamma_{1}\right)$ and $P\left(\begin{array}{ll}i & 0 \\ 0 & 1\end{array}\right)$ maps $\mathcal{C}_{D, 1}$ to $\mathcal{C}_{D, 2}$ it follows from the parity conditions that $I_{2}=4$. From this and the corollary above, we calculate $\rho\left(S, C_{2}\right)$, and with $C={ }^{t}[00 D 1]$ as before we obtain

$$
\rho\left(S, C_{2}\right)+\rho(S, C)=\mu(S) \prod_{p} \alpha_{p}(S, D)
$$

as computed at (11) by Siegel's Theorem. Thus we obtain two $O(f, \mathbb{Z})$-equivalence classes of primitive solutions of $f(x)=-2 D$. Analysing the effects of the coset representatives g_{1}, g_{2}, g_{3} as before, it follows that there are 3 conjugacy classes of maximal Fuchsian subgroups of discriminant $D \equiv 1 \quad(\bmod 4)$.
6.5. It remains to consider the case $D \equiv 2(\bmod 4)$. The techniques are as above and we merely state the salient facts.

For $D \equiv 2(\bmod 4)$ define the circle

$$
\mathcal{C}_{D, 3}: \quad 2|z|^{2}+(1+i) z+(1-i) \bar{z}-\left(\frac{D-2}{2}\right)=0
$$

From the Parity Lemma $\mathcal{C}_{D, 3}$ is not equivalent to \mathcal{C}_{D}. By conjugating by the relevant element we obtain a representation of B_{D} given by

$$
p^{\prime \prime}(i)=\left(\begin{array}{cc}
\sqrt{-1} & 1+\sqrt{-1} \\
0 & -\sqrt{-1}
\end{array}\right) \quad p^{\prime \prime}(j)=\left(\begin{array}{cc}
-1+\sqrt{-1} & \frac{D}{2}+\sqrt{-1} \\
2 & 1-\sqrt{-1}
\end{array}\right)
$$

Then if \mathcal{N} is the order of B_{D} defined by $\mathcal{N}=\mathbb{Z}\left[1, i, \frac{1+i+j}{2}, \frac{1-i+i j}{2}\right]$ it follows as in $\S 6.4$ that

$$
P \rho^{\prime \prime}\left(\mathcal{N}^{1}\right)=\operatorname{Stab}\left(\mathcal{C}_{D, 3}, \Gamma_{1}\right)
$$

With, as before $O=\mathbb{Z}[1, i, j, i j]$, we obtain

$$
\left[\mathcal{N}^{1}: O^{1}\right]=\left\{\begin{array}{lll}
6 & \text { if } D \equiv 6 & (\bmod 8) \\
2 & \text { if } D \equiv 2 & (\bmod 8)
\end{array}\right.
$$

Now $C_{3}={ }^{t}\left[11-\left(\frac{D-2}{2}\right)-2\right]$ and $\left[\operatorname{Stab}\left(C_{3}, O(f, \mathbb{Z})\right): \operatorname{Stab}\left(C_{3}: \Phi\left(\Gamma_{1}\right)\right)\right]=8$. Hence $\rho\left(S, C_{3}\right)=\varepsilon 2^{-7} \pi^{2} \Pi_{\substack{p \mid D \\ p \text { odd }}}\left(1+\left(\frac{-1}{p}\right) p^{-1}\right)$ where $\varepsilon=\frac{1}{2}$ if $D \equiv 2(\bmod 8)$ and $\varepsilon=$ $\frac{1}{6}$ if $D \equiv 6(\bmod 8)$. Thus from (11) there are two $O(f, \mathbb{Z})$ equivalence classes of solutions and analyzing the coset representatives gives two $\Phi\left(\Gamma_{1}\right)$-equivalence classes.

This concludes the proof of Theorem'5. The results of $\S 6.1-5$ yield the following classification of maximal Fuchsian subgroups of Γ_{1}.

COROLLARY 2. Every maximal Fuchsian subgroup of Γ_{1} of discriminant D is conjugate in Γ_{1} to one of $\operatorname{Stab}\left(\mathcal{C}_{D}, \Gamma_{1}\right)$ or $\operatorname{Stab}\left(\mathcal{C}_{D, i}, \Gamma_{1}\right) i=1,2,3$.
6.6. The fact that Γ_{1} is a free product amalgamated over the subgroup $M=\operatorname{PSL}_{2}(\mathbb{Z})$ enabled Fine in [9] to investigate the relationship of Fuchsian subgroups of Γ_{1} to M. In particular he proved the following two results.

Theorem F1. Let F be a torsion-free Fuchsian subgroup of Γ_{1}. Then F is free unless
(a) F has a most cyclic intersection with all conjugates of M in Γ_{1} and
(b) F has non-trivial intersection with at least one conjugate of M.

Theorem F2. Let F be a finitely-generated Fuchsian subgroup of Γ_{1}.
(a) If F has trivial intersection with all conjugates of M then either F is finite or a free product of cyclics.
(b) If F has non-cyclic intersection with some conjugates of M, then F is a non-trivial free product of cyclics.

In these statements F is a geometric Fuchsian group in the sense of this paper, but is not necessarily non-elementary or of finite covolume. However, as we shall see, we can quickly reduce to that case. Using Corollary 2 we will expand on and clarify these results, showing in particular that the conditions of Theorem F1 fall short of giving a classification of free subgroups as both free and non-free groups satisfy (a) and (b). We also show that case (a) of Theorem F2 can arise for finite covolume groups.

Let F be a Fuchsian subgroup of Γ_{1}. If F is elementary, it is either cyclic generated by an elliptic, parabolic or hyperbolic element or is infinite dihedral generated by an elliptic element of order 2 and a hyperbolic element. If additionally it is a subgroup of M, it must be cyclic. Thus the terms "cyclic intersection" and "non-cyclic intersection" can be replaced by "elementary intersection" and "non-elementary intersection" in the theorems above.

The theorems are trivial if F is elementary so assume that F is non-elementary. It then has an invariant circle $\mathcal{C} \in \Sigma_{1}$ and is a subgroup of the maximal Fuchsian group $\operatorname{Stab}\left(C, \Gamma_{1}\right)$ which has finite covolume. If F is of infinite index in $\operatorname{Stab}\left(\mathcal{C}, \Gamma_{1}\right)$ then it is a free product of cyclics [15]. We therefore assume, as before, that F has finite covolume.

Lemma 8. Let $\mathcal{C} \in \Sigma_{1}$ have discriminant D. Then $\operatorname{Stab}\left(C, \Gamma_{1}\right)$ is non-cocompact and so a free product of cyclics if and only if D is not divisible by an odd power of a prime $\equiv 3 \quad(\bmod 4)$.

Proof. Recall that $\operatorname{Stab}\left(\mathcal{C}, \Gamma_{1}\right)$ is an arithmetic Fuchsian group whose associated quaternion algebra is isomorphic to $\left(\frac{-1, D}{Q}\right)$, so that $\operatorname{Stab}\left(\mathcal{C}, \Gamma_{1}\right)$ is non-cocompact if and only if $\left(\frac{-1, D}{\mathbf{Q}}\right) \cong M_{2}(\mathbb{Q})$. But $\left(\frac{-1, D}{\mathbf{Q}}\right)$ has no finite ramification if and only if $D=n^{2} D_{0}$ where D_{0} is square free and for every prime $p, p \mid D_{0}$ then $p=2$ or $p \equiv 1(\bmod 4)$. When $\operatorname{Stab}\left(\mathcal{C}, \Gamma_{1}\right)$ is non-cocompact it is conjugate to a subgroup commensurable with $\mathrm{PSL}_{2}(\mathbb{Z})$ and so a free product of cyclics.

DEFInItion 6.1. Two Fuchsian subgroups F, F^{\prime} of Γ_{1} are commensurable in the wide sense if F and some conjugate of F^{\prime} in Γ_{1} are commensurable.

Lemma 9. Let F_{0}, F be Fuchsian subgroups of Γ_{1}. Then F has non-elementary intersection with a conjugate of F_{0} if and only if F is in the wide commensurability class of F_{0}.

Proof. If F and $\gamma F_{0} \gamma^{-1}$ have non-elementary intersection then their invariant circles coincide and the groups are commensurable.

In the case we are interested in $F_{0}=\mathrm{PSL}_{2}(\mathbb{Z})$, and parts (a) of Theorem F1 and (b) of Theorem F2 follow.

Using the notation adopted in the previous sections, we let $F_{D}=\operatorname{Stab}\left(\mathcal{C}_{D}, \Gamma_{1}\right)$ and $F_{D, i}=\operatorname{Stab}\left(\mathcal{C}_{D, i}, \Gamma_{1}\right) i=1,2,3$. The rest of this section is devoted to proving the following result:

THEOREM 6. Let F be a (finite covolume) Fuchsian subgroup of Γ_{1}. Then either:
(i) a conjugate of F is commensurable with M or
(ii) every conugate of F has trivial intersection with M or
(iii) every conjugate of F has at most finite cyclic intersection with M or
(iv) some conjugate of F has infinite cyclic intersection with M.

Case (i) occurs if F belongs to the wide commensurability class of $F_{1,2}$. Case (ii) occurs if F belongs to the wide commensurability class of $F_{2,3}$ or $F_{10,3}$. Case (iii) occurs if F belongs to the wide commensurability class of $F_{1,1}$ or $F_{5,2}$ and case (iv) occurs in all other situations.

Proof. Note that $M=\gamma F_{1,2} \gamma^{-1}$ where $\gamma(z)=\frac{i z}{z-i}$ so that (i) follows. Now for (iv); note that every group in the commensurability class of some maximal group F_{0} will have non-trivial intersection with a conjugate of M if and only if a conjugate of F_{0} intersects M in a hyperbolic or parabolic subgroup. In that case, the intersection of the circle corresponding to the conjugate of F_{0} and the real axis will be the fixed points (resp. fixed point) of a hyperbolic (resp. parabolic) element of M. Conversely if the circle meets the real axis in a pair of points (resp. a single point) which are (resp. is) the fixed points (resp. point) of a hyperbolic (resp. parabolic) element of M, then that circle is also invariant under the element and we have infinite cyclic intersection.

If \mathcal{C}, given by a primitive triple (a, B, c) with discriminant D, meets the real axis, then it does so in the points $\frac{-b_{1} \pm \sqrt{D-b_{2}^{2}}}{a}$ or $\left\{\infty, \frac{-c \sqrt{D-b_{2}^{2}}}{2 b_{1}^{2}}\right\}$ or the single point $\frac{-b_{1}}{a}$ or ∞.

Recall that Pell's equation $x_{0}^{2}-D y_{0}^{2}=1$ has a solution for which $y_{0} \neq 0$ when D is not a perfect square. We use this in each of the cases described by Corollary 2 to construct hyperbolic or parabolic elements of M with the required intersection with the real axis.
(A) F_{D}, D not a perfect square. The hyperbolic element $P\left(\begin{array}{cc}x_{0} & D y_{0} \\ y_{0} & x_{0}\end{array}\right) \in M$ has fixed points $\{ \pm \sqrt{D}\}=\mathcal{C}_{D} \cap \mathbb{R}$.
(B) $F_{D}, D=D_{1}^{2}$. The parabolic element $P\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right) \in M$ has fixed point $\{0\}=\gamma \mathcal{C}_{D} \cap \mathbb{R}$ where $\gamma(z)=z+D_{1} i$.
(C) $F_{D, 1}, D$ not a perfect square. The hyperbolic element

$$
P\left(\begin{array}{cc}
x_{0}-y_{0} & \frac{D-1}{2} y_{0} \\
2 y_{0} & x_{0}+y_{0}
\end{array}\right) \in M \text { has fixed points }\left\{\frac{1}{2}(-1 \pm \sqrt{D})\right\}=\mathcal{C}_{D, 1} \cap \mathbb{R} .
$$

(D) $F_{D, 1}, D-4$ not a perfect square and positive. The element $P\left(\begin{array}{cc}x_{0}-y_{0} & \frac{D-5}{2} y_{0} \\ 2 y_{0} & x_{0}+y_{0}\end{array}\right) \in M$ has fixed points $\left\{\frac{1}{2}(-1 \pm \sqrt{D-4})\right\}=\gamma \mathcal{C}_{D, 1} \cap \mathbb{R}$ where $\gamma(z)=z+i$.
(E) $F_{D, 2}, D-1$ not a perfect square. The element $P\left(\begin{array}{cc}x_{0} & \frac{D-1}{2} y_{0} \\ 2 y_{0} & x_{0}\end{array}\right) \in M$ has fixed points $\left\{ \pm \frac{\sqrt{D-1}}{2}\right\}=\mathcal{C}_{D, 2} \cap \mathbb{R}$.
(F) $F_{D, 2}, D-9$ not a perfect square and positive. Then $P\left(\begin{array}{cc}x_{0} & \frac{D-9}{2} y_{0} \\ 2 y_{0} & x_{0}\end{array}\right) \in M$ has fixed points $\left\{ \pm \frac{\sqrt{D-9}}{2}\right\}=\gamma \mathcal{C}_{D, 2} \cap \mathbb{R}$ where $\gamma(z)=z+i$.
(G) $F_{D, 3}, D-1$ not a perfect square. The element $P\left(\begin{array}{cc}x_{0}-y_{0} & \frac{D-2}{2} y_{0} \\ 2 y_{0} & x_{0}-y_{0}\end{array}\right) \in M$ has fixed points $\left\{\frac{1}{2}(-1 \pm \sqrt{D-1})\right\}=\mathcal{C}_{D, 3} \cap \mathbb{R}$.
(H) $F_{D, 3}, D-9$ not a perfect square and positive. Then $P\left(\begin{array}{cc}x_{0}-y_{0} & \frac{D-10}{2} y_{0} \\ 2 y_{0} & x_{0}-y_{0}\end{array}\right) \in M$ has fixed points $\left\{\frac{1}{2}(-1 \pm \sqrt{D-9})\right\}=\gamma \mathcal{C}_{D, 3} \cap \mathbb{R}$ with $\gamma(z)=z+i$.

To complete the proof of Theorem 6 we need to consider the cases not covered by any of (A)-(H) i.e. $F_{1,1}, F_{5,2}, F_{2,3}, F_{10,3}$. We first show that no conjugate of these has hyperbolic or parabolic intersection with M. The argument is the same in each case so we give it only for the first group.

From the Parity lemma any image of $\mathcal{C}_{1,1}$ is represented by a primitive triple $\left(a, b_{1}+\right.$ $\left.b_{2} i, c\right)$ with a, c even, $b_{1} \equiv 1(\bmod 2)$ and $b_{2} \equiv 0 \quad(\bmod 2)$, and $b_{1}^{2}+b_{2}^{2}-a c=1$. If $a \neq 0$, this meets the real axis in the points $\frac{-b_{1} \pm \sqrt{1-b_{2}^{2}}}{a}$ whose only solution occurs for $b_{2}=0$. But no hyperbolic element of M fixes the pair $\frac{-b_{1} \pm 1}{a}$. When $a=0$, the points of intersection are $\frac{c}{2}, \infty$ and the same remark applies.

This completes (iv) of the Theorem and so there only remains the possibility of finite cyclic intersection between a conjugate of the group and M. If that were so then the invariant circle of the conjugate would necessarily be an invariant circle of either $\omega_{1}=$ $P\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ or $\omega_{2}=P\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$. The element ω_{1} has invariant circles with primitive triples $(a, b i, a)$ and discriminant $b^{2}-a^{2}$ while ω_{2} has invariant circles with primitive triples $\left(2 b_{i}, b_{1}+b_{2} i, 2 b_{1}\right)$ and discriminant $b_{2}^{2}-3 b_{1}^{2}$. From this it follows that the conjugate of $F_{1,1}$ with circle given by $(2,1+2 i, 2)$ intersects M in a subgroup of order 3 , while the conjugate of $F_{5,2}$ with circle ($2,3 i, 2$) intersects M in a subgroup of order 2 . Thus (ii) follows immediately and also (iii) since the parity conditions show that all conjugates of $F_{2,3}$ and $F_{10,3}$ intersect M trivially.

Remarks. 1. Note that we obtain free groups which satisfy (a) and (b) of Theorem F1 by taking torsion-free subgroups of finite index in any of the maximal groups with discriminant $D \neq 1,2,5,10$ and D not divisible by a prime $\equiv 3(\bmod 4)$.
2. Groups in the wide commensurability classes of $F_{2,3}$ and $F_{10,3}$ and torsion-free groups in the wide commensurability classes of $F_{1,1}$ and $F_{5,2}$ give the only finite covolume examples of groups satisfying (a) of Theorem F2.

7. Signatures of maximal Fuchsian subgroups of Γ_{1}.

7.1. From Corollary 2 and the observation in $\S 6.4$ that $F_{D, 1}$ and $F_{D, 2}$ are conjugate by an element of $\mathrm{PGL}_{2}\left(O_{1}\right)$, the signatures of the groups F_{D} for all $D, F_{D, 1}$ for $D \equiv 1$ $(\bmod 4)$, and $F_{D, 3}$ for $D \equiv 2(\bmod 4)$ give the signatures of all maximal Fuchsian subgroups of Γ_{1}.

From § 6 we know the covolumes of these groups, so that to determine the signature we need to know in particular if the group is cocompact and its periods. Cocompactness depends only on the discriminant and necessary and sufficient criteria are given in Lemma 8. Since the traces of elements in any $\operatorname{Stab}\left(\mathcal{C}, \Gamma_{1}\right)$ are rational, elliptic elements will have order 2 or 3 .

Lemma 10. Every maximal Fuchsian subgroup of Γ_{1} contains elliptic elements.
Proof. Clearly $P\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right) \in F_{D}$ for every D and $P\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$ has order 2. It follows from the results in $\S 6.4$ and $\S 6.5$ that F_{D} is conjugate in $\mathrm{PSL}_{2}(\mathbb{C})$ to a subgroup of $F_{D, 1}$ or $F_{D, 3}$ when these are defined.

Note that in [8] it is shown that any normal subgroup of Γ_{1} containing elliptic elements has finite index in Γ_{1}. Thus

Corollary 3. If $\mathcal{C} \in \Sigma_{1}$ then the normal closure of $\operatorname{Stab}\left(\mathcal{C}, \Gamma_{1}\right)$ in Γ_{1} is an arithmetic Kleinian group.

REMARK. Although elliptic elements of $\operatorname{Stab}\left(\mathcal{C}, \Gamma_{d}\right)$ for any d will also necessarily have order 2 or 3, the corresponding result in Lemma 10 is not true in this generality. For example, if $d \not \equiv-1 \quad(\bmod 4) d \neq 1$ then the group $\operatorname{Stab}\left(\mathcal{C}_{p}, \Gamma_{d}\right)$ where p is a prime such that $\left(\frac{d}{p}\right)=-1$ is torsion-free.
7.2. We will not compute the signatures of all maximal Fuchsian subgroups of Γ_{1} as many of these are conjugates in $\mathrm{PSL}_{2}(\mathbb{C})$ to subgroups of finite index in others as we will show in this section. The signatures of the finite index subgroups may then be deduced by methods stemming from the structure theorem for Fuchsian groups [26].

Recall that $F_{D}=P \rho\left(O^{1}\right)$ where O is the order $\mathbb{Z}[1, i, j, i j]$ in B_{D}. Thus

$$
F_{D}=P\left\{\left.\left(\begin{array}{cc}
\alpha & D \beta \\
\bar{\beta} & \bar{\alpha}
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{C}) \right\rvert\, \alpha, \beta \in O_{1}\right\}
$$

From $\S 6.4$ and $\S 6.5$, the groups $F_{D, 1}$ and $F_{D, 3}$ can be conjugated in $\mathrm{PSL}_{2}(\mathbb{C})$ to give supergroups of F_{D} which we denote by G_{D}, H_{D} respectively. Thus $G_{D}=P \rho\left(\mathcal{M}^{1}\right)$ and $H_{D}=P \rho\left(\mathcal{N}^{1}\right)$ where \mathcal{M}, \mathcal{N} are the orders defined in $\S 6.4$ and $\S 6.5$.

$$
\begin{aligned}
& G_{D}=P\left\{\left.\left(\begin{array}{cc}
\frac{\alpha}{2} & \frac{D \beta}{2} \\
\frac{\beta}{2} & \frac{\alpha}{2}
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{C}) \right\rvert\, \alpha, \beta \in O_{1}, \alpha \equiv \beta \quad(\bmod 2)\right\} \\
& \left.\left.H_{D}=P\left\{\begin{array}{cc}
\frac{\alpha}{2} & \frac{D \beta}{2} \\
\frac{\bar{\beta}}{2} & \frac{\bar{\alpha}}{2}
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{C}) \right\rvert\, \alpha, \beta \in O_{1}, \alpha \equiv(1+i) \beta \quad(\bmod 2)\right\}
\end{aligned}
$$

Of course G_{D}, H_{D} are only defined in the cases $D \equiv 1 \quad(\bmod 4)$ and $D \equiv 2(\bmod 4)$ respectively, but in these cases F_{D} is a subgroup fo G_{D} or H_{D}. We can reduce still further.

Let $D=n^{2} D_{0} D_{1}$ where $D_{0} D_{1}$ is square-free and if p is a prime such that $p \mid D_{0}$ (resp. $\left.p \mid D_{1}\right)$ then $p=2$ or $p \equiv 1 \quad(\bmod 4)(\operatorname{resp} . p \equiv 3 \quad(\bmod 4))$.

THEOREM 7. The group F_{D} (resp. G_{D}) is conjugate in $\mathrm{PSL}_{2}(\mathbb{C})$ to a subgroup of finite index in $F_{D_{1}}\left(\right.$ resp. $\left.G_{D_{1}}\right)$, while for $D \equiv 6(\bmod 8), H_{D}$ is conjugate to a subgroup of finite index in $H_{2 D_{1}}$. Finally if $D \equiv 3(\bmod 4), F_{D}$ is conjugate to a subgroup of finite index in $H_{2 D_{1}}$.

Proof. By the definition of D_{0} we can find integers a, b such that $a^{2}+b^{2}=D_{0}$ where if D_{0} is odd, a is chosen to be odd and b even. Then

$$
\left(\begin{array}{cc}
\frac{1}{n(a+b i)} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\alpha & D \beta \\
\bar{\beta} & \bar{\alpha}
\end{array}\right)\left(\begin{array}{cc}
n(a+b i) & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\alpha & D_{1}[n(a-b i) \beta \\
n(a+b i) \bar{\beta} & \bar{\alpha}
\end{array}\right)
$$

which proves the first part in the case of F_{D}. A similar argument works for G_{D} and in the case of H_{D}, using $\frac{D_{0}}{2}$, yields a subgroup of $H_{2 D_{1}}$. In the case where $D \equiv 2(\bmod 8)$, then $D_{1} \equiv 1 \quad(\bmod 4)$ and a further conjugation of $H_{2 D_{1}}$ by $\left(\begin{array}{cc}(1+i)^{-1} & 0 \\ 0 & 1\end{array}\right)$ gives a subgroup of $G_{D_{1}}$. Likewise when $D \equiv 3 \quad(\bmod 4)$, then $D_{1} \equiv 3(\bmod 4)$ and a further conjugation of $F_{D_{1}}$ by $\left(\begin{array}{cc}1+i & 0 \\ 0 & 1\end{array}\right)$ gives a subgroup of $H_{2 D_{1}}$.

The outcome is that we restrict ourselves to computing the signatures of the following collection of groups as all others are conjugate to subgroups of these.
(A) $G_{D}=P \rho\left(\mathcal{M}^{1}\right)$ where $D=p_{1} p_{2} \ldots p_{2 r} \quad p_{i} \equiv 3(\bmod 4)$.
(B) $H_{D}=P \rho\left(\mathcal{N}^{1}\right)$ where $D=2 p_{2} \ldots p_{2 r} \quad p_{i} \equiv 3(\bmod 4)$.

Note that this collection cannot be reduced any further as the wide commensurability classes of these groups are in one-to-one correspondence with the isomorphism classes of the corresponding quaterion algebras [28] and distinct values of D as described at (A) and (B) give non-isomorphic quaternion algebras B_{D}. In particular, only the value $D=1$ gives rise to a non-cocompact group.
7.3. The number of conjugacy classes of cyclic subgroups of order 2 and 3 in the arithmetic groups described at (A) and (B) above can be measured in terms of embeddings of the maximal order O_{1}, O_{3} of $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-3})$ in B_{D}. Details of these measurements can be found in [30] pp. 92-98 (cf. [5] where an error in [30], not affecting computations here, is corrected.). Let m_{2}, m_{3} denote the number of periods of orders 2 and 3 respectively. Note that for $p \equiv 3(\bmod 4)$ we have $\left(\frac{o_{1}}{p}\right)=\left(\frac{-1}{p}\right)=-1$ for the computation of elements of order 2 and $\left(\frac{O_{3}}{p}\right)=\left(\frac{-3}{p}\right)$ for the computation of order 3 periods (see [30] p. 94).
(A) $D \equiv 1 \quad(\bmod 4) \quad D=p_{1} p_{2} \ldots p_{2 r} \quad D>1$

In this case B_{D} is ramified at these $2 r$ primes and since \mathcal{M} has discriminant $D \mathbb{Z}$ it is maximal. Thus immediately $m_{2}=2^{2 r}$ and

$$
m_{3}= \begin{cases}0 & \text { if some } p_{i} \equiv 1 \quad(\bmod 3) \\ 2^{2 r} & \text { if all } p_{i} \equiv-1 \quad(\bmod 3) \\ 2^{2 r-1} & \text { if } p_{1}=3 \text { and all other } p_{i} \equiv-1 \quad(\bmod 3)\end{cases}
$$

Of course, when $D=1, P \rho\left(\mathcal{M}^{1}\right) \cong \operatorname{PSL}_{2}(\mathbb{Z})$ with signature $(0 ; 2,3 ; 1)$
(B) $D \equiv 6 \quad(\bmod 8) \quad D=2 p_{2} \ldots p_{2 r}$.

Again \mathcal{N} is a maximal order in B_{D} and $m_{2}=2^{2 r-1}$ while m_{3} is as above in case (A).
From the covolumes obtained for these groups in (6), the complete signature can now be deduced. To express our result we introduce some notation.

Let $W=\left\{n \in \mathbb{Z} \mid n>1, n=2^{\varepsilon} 3^{\eta} p_{1} p_{2} \ldots p_{k}\right.$ where the p_{i} are distinct primes with $\left.p_{i} \equiv 3(\bmod 4), \varepsilon, \eta \in\{0,1\}, \varepsilon+\eta+k \equiv 0 \quad(\bmod 2)\right\}$

For $n \in W$, define $m_{2}(n)=2^{\eta+k}$

$$
\begin{aligned}
m_{3}(n) & = \begin{cases}0 & \text { if some } p_{i} \equiv 1 \quad(\bmod 3) \\
2^{\epsilon+k} & \text { otherwise }\end{cases} \\
g(n) & =\left(\frac{2^{\eta}}{12} \prod_{i=1}^{k}\left(p_{i}-1\right)\right)-\frac{m_{2}(n)}{4}-\frac{m_{3}(n)}{3}+1
\end{aligned}
$$

Theorem 8. Every (finite covolume) Fuchsian subgroup of Γ_{1} is a subgroup of finite index in a group with signature $(0 ; 2,3 ; 1)$ if it is non-cocompact or $\left(g(n) ; 2^{\left(m_{2}(n)\right)}, 3^{m_{3}(n)} ; 0\right)$ for some $n \in W$ if it is cocompact. (Where in the signature $2^{(N)}$ or $3^{(N)}$ means that there are N periods of order 2 or 3 .)
8. Totally geodesic surfaces immersed in arithmetic link complements obtained from torsion-free subgroups of $\mathrm{PSL}_{2}\left(O_{1}\right)$.

Let Γ be a torsion-free subgroup of finite index in Γ_{d} so that H^{3} / Γ is a complete orientable hyperbolic 3-manifold of finite volume with a finite number of toral ends. If F is a Fuchsian subgroup of Γ_{d} stabilizing $\mathcal{C} \in \Sigma_{d}$, then we obtain a totallly geodesic immersion of the surface $H(C) /(F \cap \Gamma)$ in H^{3} / Γ. There is a plentiful supply of such immersions since there are infinitely many commensurability classes of cocompact Fuchsian subgroups in Γ_{d} and for one particular example we address the problem of determining the minimal genus of a closed immersed totally geodesic surface in such manifolds.

The example we consider is the complement of the Borromean rings B in S^{3}. It is wellknown that $S^{3} \backslash B$ admits a unique hyperbolic structure as H^{3} / Γ where Γ is a subgroup of index 24 in Γ_{1} ([29] Chap. 6, 7 and [31]).

THEOREM 9. The minimal genus of a closed immersed totally geodesic surface in $S^{3} \backslash B$ is three. This surface corresponds to a subgroup of index 12 in the stabilizer of the circle $C_{6,3}$, i.e. $2|z|^{2}+(1+i) z+(1-i) \bar{z}-2=0$.

Proof. Let $F=F_{6,3}$ so that F has signature $(0 ; 2,2,3,3 ; 0)$ by Theorem 8 . We again make use of the presentation of Γ_{1} given in [7] which we now recall. The group Γ_{1} is
generated by s, ℓ, t, u where

$$
s(z)=\frac{-1}{z} \quad t(z)=z+1 \quad u(z)=z+i \quad \ell(z)=-z
$$

and has defining relations:

$$
s^{2}=\ell^{2}=(s \ell)^{2}=(t \ell)^{2}=(u \ell)^{2}=(s t)^{3}=(u s \ell)^{3}=[t, u]=1
$$

The fundamental group of the Borromean rings complement is isomorphic to Γ, the normal closure of $\left\{t^{4}, t u^{-1}\right\}$ in Γ_{1} which has index 24 in $\Gamma_{1}[11]$. The quotient is isomorphic to S_{4}, the symmetric group on 4 letters, with Γ being the kernel of the homomorphism π defined by $\pi(s)=(12), \pi(t)=\pi(u)=(1234)$ and $\pi(\ell)=(12)(34)$.

Now $F=P \rho^{\prime \prime}\left(\mathcal{N}^{1}\right)$ where $\mathcal{N}=\mathbb{Z}\left[1, i, \frac{1+i+j}{2}, \frac{1-i+i j}{2}\right]$ is maximal order in B_{6}. Note that $i \in \mathcal{N}^{1}$ and from the definition of $\rho^{\prime \prime}, P \rho^{\prime \prime}(i)=\ell t u^{-1}$. Thus the image of one of the generators of order 2 in F under π is a conjugate of (12)(34) in S_{4}. Since the kernel of π is torsion-free, the image of the elements of order 3 in F under π must be non-trivial even permutations and hence $\pi(F)=A_{4}$. Thus from the volume formula $F \cap \Gamma$ has genus 3 .

To complete the proof of Theorem 9 we need to prove that there is no closed totally geodesic surface of genus 2 immersed in $S^{3} \backslash B$. Suppose that such a surface exists and let F^{\prime} be the corresponding surface group so that $F^{\prime}=\operatorname{Stab}\left(\mathcal{C}, \Gamma_{1}\right) \cap \Gamma$ for some $\mathcal{C} \in \Sigma_{1}$. Since F^{\prime} is torsion-free $\left[\operatorname{Stab}\left(C, \Gamma_{1}\right): F^{\prime}\right] \geq 2$, by Lemma 10 . Thus by Theorem 7 we have $\operatorname{vol}\left(G_{D}\right) \leq 2 \pi$ or $\operatorname{vol} H_{D} \leq 2 \pi$ for D as defined at (A) and (B) in (7.2). But from the colvolumes of these groups there are only two possibilities, namely $D=6$ or 14 .

From Theorem $8, H_{14} \cong F_{14,3}$ has signature $(1 ; 2,2 ; 0)$ and $F_{14,3}=P \rho^{\prime \prime}\left(\mathcal{N}^{1}\right)$ where \mathcal{N} is defined as above but in B_{14}. Now $\frac{1}{2}(3+3 i+j) \in \mathcal{N}^{1}$ and $P \rho^{\prime \prime}\left(\frac{1}{2}(3+3 i+j)\right)=$ $u^{2} t s t^{2} u^{-2}$. But $\pi\left(u^{2} t s t^{2} u^{-2}\right)=(143)$ so $\left[F_{14,3}: F_{14,3} \cap \Gamma\right] \geq 3$ and $F_{14,3} \cap \Gamma$ then cannot have genus 2 , and since Γ is normal in Γ_{1}, the same will hold for a conjugate of $F_{14,3}$. The case of $D=6$ was dealt with above and the theorem follows.

Remarks. 1. By results of Lozano [17], $S^{3} \backslash B$ does not contain a closed embedded incompressible surface, so in particular none of the closed totally geodesic surfaces in $S^{3} \backslash B$ are embedded. However results of Scott [24] imply that every totally geodesic surface in $S^{3} \backslash B$ will embed in a finite cover.
2. In comparison with these arithmetic examples, the second author [22] exhibits (necessarily non-arithmetic) knot complements in S^{3} with hyperbolic structures which contain no closed totally geodesic surfaces but do contain one commensurability class of non-compact totally geodesic surfaces.

References

1. A. F. Beardon, The Geometry of discrete groups, Graduate texts in Math 91, Springer Verlag (1983).
2. A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Sc. Norm. Sup. Pisa 8(1981), 1-33.
3. A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann of Math. 75(1962), 485-535.
4. J. W. S. Cassels,Rational Quadratic Forms. Academic Press, London (1978).
5. T. Chinburg and E. Friedman, Torsion in arithmetic subgroups of forms of PGL_{2}. (Preprint).
6. J. Elstrodt, F. Grunewald and J. Mennicke, A Survey of some aspects of Siegel's theory, Manuscript, Bielefeld (1985).
7. B. Fine, The structure of $\mathrm{PSL}_{2}(R)$, Ann. of Math. Studies 79(1974), 145-170.
8. - Fuchsian subgroups of the Picard group, Can. J. Math 28(1976), 481-486.
9. -_, Fuchsian embeddings in the Bianchi groups, Can. J. Math. 39(1987), 1434-1445.
10. B. Fine and C. Frohman, Some amalgam structures for Bianchi groups, Proc. A.M.S. 102(1988), 221-229.
11. B. Fine and M. Newman, Normal subgroup structure of the Picard group, Trans. A.M.S. 302(1987), 769786.
12. L. Greenberg, On a theorem of Ahlfors and conjugate subgroups of Kleinian groups, Amer.J. Math. 89(1967), 56-68.
13. S. Harding, Ph.D. thesis. Univ. of Southampton, 1985.
14. H. Helling, Bestimmung der Kommersurabilitätsklasse der Hilbertschen Modulgruppe, Math. Zeit. 92(1966), 269-280.
15. A. H. M. Hoare, A. Karass and D. Solitar, Subgroups of infinite index in Fuchsian groups, Math. Zeit 125(1972), 59-69.
16. P. Humbert, Reduction de formes quadratiques dans un corps algèbrique fini, Comment. Math. Helv. 23(1949), 50-63.
17. M. T. Lozano, Arcbodies, Math. Proc. Camb. Phil. Soc. 94(1983), 253-260.
18. C. Maclachlan, Fuchsian subgroups of the groups $\operatorname{PSL}_{2}\left(O_{d}\right)$. In Low-Dimensional Topology and Kleinian groups, ed. D. B. A. Epstein. L.M.S. Lecture note series 112(1986), 305-311.
19. C. Maclachlan and A. W. Reid, Commensurability classes of arithmetic Kleinian groups and their Fuchsian subgroups, Math. Proc. Camb. Phil. Soc. 102(1987), 251-258.
20. - The arithmetic structure of tetrahedral groups of hyperbolic isometries, Mathematika 36(1989).
21. A. W. Reid, Ph.D. thesis, Univ. of Aberdeen, 1987.
22. \quad Totally geodesic surfaces in hyperbolic 3-manifolds, to appear in Proc. Edinburgh Math. Soc.
23. J. Rohlfs, On the cuspidal cohomology of the Bianchi modular groups, Math. Zeit. 188(1985), 253-269.
24. G. P. Scott, Subgroups of surface groups are almost geometric, J. Lond. Math. Soc. (2) 17(1978), 555-565.
25. C. L. Siegel, Über die analytische theorie der quadratischen formen I, II, III, Ann. of Math. 36(1935),527606. Ibid. 37(1936), 230-267. Ibid. 38(1937), 212-291.
26. D. Singerman, Subgroups of Fuchsian groups and finite permutation groups, Bull. London Math. Soc. 2(1970), 319-323.
27. K. Takeuchi, On some discrete subgroups of $\mathrm{SL}_{2}(\mathbb{R})$, J. Fac. Sci. Univ. Tokyo Sec. I 16(1969), 97-100.
28. - Commensurability classes of arithmetic triangle groups, J. Fac. Sci. Univ. Tokyo Sec. I 24(1977), 201-212.
29. W. P. Thurston, The geometry and topology of 3-manifolds, Lecture notes, Princeton Univ., 1978.
30. M.-F. Vignéras, Arithmétique des Algèbres de Quaternions, L.N.M. 800, Springer-Verlag, 1980.
31. N. J. Wielenberg, The structure of certain subgroups of the Picard group, Math. Proc. Camb. Phil. Soc. 84(1978), 427-436.
32. R. Zimmert, Zür $S L_{2}$ der ganzen Zahlen eines imaginar-quadratischen Zahlkorpers, Invent. Math. 19(1973), 73-82.

Department of Mathematics,

University of Aberdeen,
Dunbar Street,
Aberdeen AB9 2TY,
Scotland, U.K.

Department of Mathematics,
The Ohio State University,
231 West 18th Avenue,
Columbus, OH 43210 ,
U.S.A.

