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Examples of Non-finitely Generated
Cox Rings

José Luis González and Kalle Karu

Abstract. We bring examples of toric varieties blown up at a point in the torus that do not have
ûnitely generated Cox rings. _ese examples are generalizations of our earlier work, where toric
surfaces of Picard number 1 were studied. In this article we consider toric varieties of higher Picard
number and higher dimension. In particular, we bring examples of weighted projective 3-spaces
blown up at a point that do not have ûnitely generated Cox rings.

1 Introduction

We work over an algebraically closed ûeld k of characteristic 0.
Our aim in this article is to bring examples of varieties X that do not have ûnitely

generated Cox rings. Our varieties X are toric varieties X∆ blown up at a point t0 in
the torus. In [6]we constructed examples of such toric surfaces X∆ of Picard number
1. In this article we generalize this construction to toric varieties of higher Picard
number and higher dimension.

Let us recall the deûnition byHu andKeel [9] of theCox ring of anormal projective
variety X:

Cox(X) = ⊕

[D]∈Cl(X)
H0

(X ,OX(D)).

Giving a ring structure to this space involves some choices, but ûnite generation of the
resulting k-algebra doesnot depend on these choices. Anormal projectiveQ-factorial
variety X is called aMori Dream Space (MDS) if Cox(X) is a ûnitely generated k-al-
gebra.

_e construction in [6]wasbasedon the examplesof blowups at apointofweighted
projective planes by Goto, Nishida, andWatanabe [7] and the geometric description
of these examples by Castravet and Tevelev [3]. A basic fact about Cox rings is that
on an MDS X every nef divisor is semiample (i.e., there exists a positive multiple of
the divisor that has no base locus and deûnes amorphism X → Pn). To prove that X
is not an MDS, it suõces to ûnd a nef divisor D that is not semiample. _e examples
in [6] have Picard number 2 and there is essentially a unique choice for D. _e class
of D necessarily has to lie on the boundary of the (2-dimensional) nef cone. One of
the boundary rays is generated by the class H of the pullback of an ample divisor on
X∆ , which is clearly semiample. It follows that D must lie on the other boundary ray.
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In the case where X is a surface, this other boundary ray is determined if we can ûnd
a curve C of negative self-intersection on X, diòerent from the exceptional curve.

In general, the existence of a nef divisor D on X that is not semiample is only a
suõcient condition for X being a non-MDS.When X∆ is a weighted projective plane
P(a, b, c), Cutkosky [4] has shown that X is an MDS if and only if the divisor D as
above is semiample.

_ere are two essential diòerences in the proof ofnon-ûnite generationwhen going
to higher Picard number or higher dimension. In the case of surfaces X with Picard
number p > 2, we still look for a curve C ⊂ X of negative self-intersection. _is curve
now deûnes a (p− 1)-dimensional face of the nef cone and there is no obvious choice
for the non-semiample divisor D. We show that a general divisor on this face is not
semiample.

In dimension greater than 2, we will encounter normal projective varieties X that
are notQ-factorial. For such varieties, the Cox ring andMDS are deûned in the same
way as above. (_is generalizes slightly the deûnition ofHu andKeel [9]who required
an MDS to beQ-factorial.) In this greater generality, if X has a free class group and a
ûnitely generated Cox ring, then its cones of eòective,moving, semiample, and nef di-
visors are polyhedral [1,_eorem 4.2,_eorem 7.3, Remark 7.6]. Moreover, the cones
of nef Cartier divisors and semiample Cartier divisors coincide [1, Corollary 7.4]. In
our examples we ûnd nef Cartier divisors D that are not semiample and hence X is
not an MDS.

2 Statement of the Main Results

We use the terminology of toric varieties from [5]. Let X∆ be the toric variety deûned
by a rational convex polytope ∆ and let X be the blowup of X∆ at a general point,
which we can assume to be the identity point t0 = (1, 1, . . . , 1) in the torus. We are
interested in the Cox ring of X.
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Figure 1: Polygon ∆.
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2.1 The Case of Surfaces

Let ∆ be a convex plane 4-gon with rational vertices (0, 0), (0, 1), PL = (xL , yL),
PR = (xR , yR), where xL < 0 and xR > 0 (see Figure 1). _e polygon can equivalently
be deûned by the slopes of its sides, s1 , s2 , s3 , s4. Wewill assume that the slope s2 of the
side connecting (0, 0) and PR satisûes 0 ≤ s2 < 1. _is can always be achievedwithout
changing the isomorphism class of X∆ by applying an integral shear transformation
(x , y)↦ (x , y + ax) for some a ∈ Z to the polytope.
Choose m > 0 such that m∆ is integral. We study lattice points in m∆. Let us

denote by column c in m∆ the set of lattice points with ûrst coordinate x = c.

_eorem 2.1 Let ∆ be a rational plane 4-gon as above. Assume that 0 ≤ s2 < 1 and let
m > 0 be suõciently large and divisible so that m∆ is integral. _e variety X = Blt0 X∆
is not an MDS if the following two conditions are satisûed.
(i) Let w = xR − xL be the width of ∆. _en w < 1.
(ii) Let the column mxL + 1 in m∆ consist of n points (mxL + 1, b+ i), i = 0, . . . , n− 1.

_en
(a) columns mxR ,mxR−1, . . . ,mxR−n+1 in m∆ have 1, 2, . . . , n lattice points,

respectively;
(b) myL is not equal to b + i, i = 1, . . . , n − 1.

If the width w = 1 or ∆ degenerates to a triangle with slopes s1 = s2, then X is not an
MDS if in addition to (1′) w ≤ 1 and (ii), the following holds.
(iii) Let s =

yR−yL
w be the slope of the line joining the le� and right vertices. _en

myL ≠ b − ns.

Example 2.2 Consider ∆ with (xL , yL) = (−3/4, 1/2) and (xR , yR) = (1/4, 3/4).

4∆
(1,3)

(−3,2)

(−2,−3)
(3,−1)

(−2,3)

(1,1)

Figure 2: Polygon 4∆ and the corresponding (outer) normal fan.

In this case,w = 1 and n = 1. When n = 1, condition (ii) of the theorem is vacuously
true and condition (iii) states that the single lattice point in column mxL + 1 does not
lie on the line joining the le� and right vertices. (_ese conditions still hold a�er
applying an integral shear transformation as above, hence the assumption 0 ≤ s2 < 1
is not necessary in the n = 1 case.) _is gives an example of a surface X of Picard
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number 3 that is not an MDS. Notice that if we move the vertex (xR , yR) to (1/4, 1)
or (1/4, 7/6), but not (1/4, 1/2), the theorem applies, and again we get an example of
a non-MDS.

When ∆ degenerates to a triangle, _eorem 2.1 reduces to the case considered in
[6]. In the case of a triangle,He [8] has generalized condition (ii)(a) to a weaker one.
We expect that such a generalization also exists in the case of 4-gons.
By a result of Okawa [10], if Y → X is a surjective morphism of (not necessarily

Q-factorial) normal projective varieties, and X is not an MDS, then Y is also not an
MDS._us, if X = Blt0 X∆ isnot anMDS,we can replace X∆ with any toric blowup X∆̂
to produce non-MDS of higher Picard number. Our methods do not give examples
of surfaces other than the ones obtained from a plane 4-gon. _e proof below shows
that ûnite generation of the Cox ring of X only depends on the singularities at the two
torus ûxed points corresponding to PL , PR and the curve of negative self-intersection
C ⊂ X passing through these points. If X∆ has toric divisors that do not pass through
the two torus ûxed points, then these can be contracted.

2.2 Higher Dimensional Varieties

We ûrst generalize _eorem 2.1 to dimension 3 and then discuss generalizations to
dimension 4 and higher.

Now, let ∆ be a rational convex 3-dimensional polytope with vertices (0, 0, 0),
(0, 1, 0), (0, 0, 1), PL = (xL , yL , zL), PR = (xR , yR , zR), where xL < 0 and xR > 0. We
allow ∆ to degenerate to a tetrahedron,where the points (0, 0, 0), PL , PR are collinear.

We assume that 0 ≤ yR
xR
, zRxR < 1. _is can be achieved by applying an integral shear

transformation to the polytope.

z

x

y

∆

1

1

(xL, yL, zL)

0

(xR, yR, zR)

Figure 3: Polytope ∆.
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Let m∆ be integral. A slice c of m∆ consists of all lattice points in m∆ with ûrst
coordinate x = c. Such a slice forms an isosceles right trianglewith n lattice points on
each side. We say that the slice has size n.

_eorem 2.3 Let ∆ be a 3-dimensional polytope as above. Assume that 0 ≤ yR
xR
, zRxR < 1

and let m > 0 be suõciently large and divisible so that m∆ is integral. _e variety
X = Blt0 X∆ is not an MDS if the following three conditions are satisûed.

(i) Let w = xR − xL be the width of ∆. _en w ≤ 1.
(ii) Let the slicemxL + 1 in m∆ have size n with points (mxL + 1, b + i , c + j), i , j ≥ 0,

i + j < n. _en
(a) the slices mxR ,mxR − 1, . . . ,mxR − n+ 1 in m∆ have size 1, 2, . . . , n, respec-

tively;
(b) (myL ,mzL) is not equal to (b + i , c + j) for any i , j ≥ 1, i + j < n.

(iii) Let sy = yR−yL
w , sz = zR−zL

w be the two slopes of the line joining le� and right vertices.
_en
(a) (myL ,mzL) ≠ (b − nsy , c − nsz);
(b) (b.1) if myL = b − nsy and c < mzL < c + n, then sy ≠ 0;

(b.2) if mzL = c − nsz and b < myL < b + n, then sz ≠ 0;
(b.3) ifmyL+mzL = b−nsy+c−nsz and b < myL < b+n, c < mzL < c+n,

then sy + sz ≠ −1.

_e case n = 1 of the theorem simpliûes considerably as follows.

Corollary 2.4 Let∆ be a 3-dimensional polytope as above and letm > 0 be suõciently
large and divisible so that m∆ is integral. _e variety X = Blt0 X∆ is not an MDS if the
following three conditions are satisûed.

(i) w = xR − xL ≤ 1.
(ii) _e slice mxL + 1 in m∆ consists of a single lattice point P.
(iii) _e point P does not lie on the line joining the le� and right vertices of m∆.

_eorem 2.3 in particular applies to the case where ∆ is a tetrahedron. _e state-
ment also simpliûes in this case.

Corollary 2.5 Let ∆ be a 3-dimensional tetrahedron as above, where the points
(0, 0, 0), PL , PR are collinear. Let m > 0 be suõciently large and divisible so that m∆
is integral. _e variety X = Blt0 X∆ is not an MDS if the following three conditions are
satisûed:

(i) w = xR − xL ≤ 1.
(ii) Let the slice mxL + 1 in m∆ have size n. _en the slice mxR − n + 1 in m∆ has

size n.
(iii) Let sy = yR−yL

w , sz = zR−zL
w be the two slopes of the line joining le� and right vertices.

_en n(sy , sz) ∉ Z2.
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Wewill study the tetrahedron case further to ûnd exampleswhere X∆ is aweighted
projective space P(a, b, c, d). Let (xL , xR , y0 , z0) be such that

(xL , yL , zL) = xL(1, y0 , z0),
(xR , yR , zR) = xR(1, y0 , z0).

_en the 4-tuple of rational numbers (xL , xR , y0 , z0) determines the tetrahedron ∆.
_e normal fan to ∆ has rays generated by

( y0 + z0 −
1
xL
,−1,−1) , ( y0 + z0 −

1
xR
,−1,−1) , (−y0 , 1, 0), (−z0 , 0, 1).

_e slicemxL+1 inm∆ can be identiûedwith lattice points in the trianglewith vertices
(y0 , z0), (y0 − 1

xL
, z0), (y0 , z0 − 1

xL
). It has size

n = 1 + ⌊ y0 + z0 −
1
xL

⌋ − ⌈y0⌉ − ⌈z0⌉.

Similarly, the slicemxR−n+1 inm∆ can be identiûedwith lattice points in the triangle
with vertices (n − 1)(y0 , z0), (n − 1)(y0 − 1

xR
, z0), (n − 1)(y0 , z0 − 1

xR
). It has size

1 − ⌈(n − 1)( y0 + z0 −
1
xR

)⌉ + ⌊(n − 1)y0⌋ + ⌊(n − 1)z0⌋.

We can now state Corollary 2.5 in terms of (xL , xR , y0 , z0).

Corollary 2.6 Let ∆ be a tetrahedron given by the 4-tuple of rational numbers
(xL , xR , y0 , z0), with xL < 0 and xR > 0. _e variety X = Blt0 X∆ is not an MDS if
the following three conditions are satisûed:
(i) w = xR − xL ≤ 1.
(ii) Let

n = 1 + ⌊ y0 + z0 −
1
xL

⌋ − ⌈y0⌉ − ⌈z0⌉.

_en also

n = 1 − ⌈(n − 1)( y0 + z0 −
1
xR

)⌉ + ⌊(n − 1)y0⌋ + ⌊(n − 1)z0⌋.

(iii) n(y0 , z0) ∉ Z2.

Note that the statements of Corollaries 2.4, 2.5, and 2.6 do not depend on the as-
sumption 0 ≤ yR

xR
, zRxR < 1. _e three conditions are the same a�er applying an integral

shear transformation as above.

Example 2.7 Let xL = −3/5, xR = 6/17, y0 = 1/3, z0 = 1/2. _e three conditions
of Corollary 2.6 are satisûed with w = 81/85 and n = 1. _e normal fan has rays
generated by

(5,−2,−2), (−2,−1,−1), (−1, 3, 0), (−1, 0, 2).

_ese vectors generate the lattice Z3, and X∆ is the weighted projective space
P(17, 20, 18, 27).
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Example 2.8 Let xL = −2/3, xR = 1/3, y0 = 1/2, z0 = 1/2. _e three conditions are
again satisûed with w = 1 and n = 1. _e normal fan has rays generated by

(5,−2,−2), (2,−3,−3), (−1, 2, 0), (−1, 0, 2).

_ese vectors generate a sublattice of index 2 in Z3, and X∆ is the quotient of
P(2, 6, 11, 11) by a 2-element subgroup of the torus.

Example 2.9 Let xL = −5/18, xR = 5/7, y0 = 2/5, z0 = 1. Here w = 125/126 < 1 and
n = 4. However,

1 − ⌈(n − 1)( y0 + z0 −
1
xR

)⌉ + ⌊(n − 1)y0⌋ + ⌊(n − 1)z0⌋ = 5,

and hence Corollary 2.6 does not apply to the blowup of X∆ = P(7, 18, 5, 25).

Remark 2.10 Given a polytope ∆, one can project it to the xy-plane or the xz-plane
to get a plane 4-gon. _e slice c in m∆ has size no bigger than the corresponding col-
umn c in the projection. _is implies that if the projection of ∆ satisûes the conditions
of_eorem 2.1 with n = 1, then ∆ satisûes the conditions in Corollary 2.4. _us, one
can construct 3-dimensional polytopes by li�ing 2-dimensional polygons. However,
Examples 2.7 and 2.8 are genuinely new: they can not be reduced to 2-dimensional
cases by projection. _is can be seen as follows. _e projection of the tetrahedron to
the xy-plane is a triangle determined by (xL , xR , y0). _e three conditions of_eo-
rem 2.1 in the case n = 1 are

(i) w = xR − xL ≤ 1;
(ii) 1 = 1 + ⌊y0 − 1

xL
⌋ − ⌈y0⌉;

(iii) y0 ∉ Z.

In Examples 2.7 and 2.8 the second condition is not satisûed. Similarly, projecting to
the xz-plane, the condition 1 = 1 + ⌊z0 − 1

xL
⌋ − ⌈z0⌉ is not satisûed.

In [6] we gave an algorithm for checking when the blowup of a weighted projec-
tive plane satisûes the assumptions of _eorem 2.1. We will state a similar result in
dimension 3.
Consider the weighted projective space P(a, b, c1 , c2). We say that (e , f , g1 , g2) ∈

Z4
>0 is a relation in degree d if

ea + f b = g1c1 = g2c2 = d .

We require for a relation (e , f , g1 , g2) that

gcd(e , f , g1) = gcd(e , f , g2) = gcd(g1 , g2) = 1.

(If x , y, z1 , z2 are variables of degree a, b, c1 , c2, respectively, then x e y f , zg1
1 , z

g2
2 are

threemonomials of degree d. _ey correspond to the three lattice points in ∆.)
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_eorem 2.11 Let P(a, b, c1 , c2) be a weighted projective space with a relation
(e , f , g1 , g2) in degree d. _en Blt0 P(a, b, c1 , c2) is not an MDS if the following three
conditions are satisûed.
(i) Let

w =

d3

abc1c2
.

_en w ≤ 1.
(ii) Consider integers δ1 , δ2 ≤ 0 such that the vector

1
g1g2

(b, a) + (
δ1
g1
+

δ2
g2

)(e ,− f )

has non-negative integer entries. _e set of such (δ1 , δ2) forms a slice of size n.
_en the integers γ1 , γ2 ≥ 0 such that

n − 1
g1g2

(b, a) + (
γ1

g1
+

γ2

g2
)(e ,− f )

has non-negative integer entries must also form a slice of size n.
(iii) With n as above,

n
g1g2

(b, a) ∉ Z2 .

To check if some P(a, b, c1 , c2) satisûes the assumptions of the theorem, we ûrst
determine g1 , g2. _e conditions g1c1 = g2c2 and gcd(g1 , g2) = 1 imply that g1 =

c2/ gcd(c1 , c2), g2 = c1/ gcd(c1 , c2). A�er that we check that w ≤ 1, ûnd e , f , and
compute the two slices.

Table 1 lists examples with a, b, c1 , c2 < 50 that were found using a computer. We
have omitted some isomorphic weighted projective spaces from this table. For exam-
ple, P(a, b, c1 , c2) ≅ P(da, db, dc1 , dc2) for any d > 0. Similarly, if a prime p divides
all numbers a, b, c1 , c2 except one, we can divide the three numbers by p to get iso-
morphic weighted projective spaces. _e table lists only spaces P(a, b, c1 , c2) where
every triple in {a, b, c1 , c2} has no common divisor greater than 1.
Corollaries 2.4, 2.5, and 2.6 have obvious generalizations to higher dimension.

Similarly,_eorem 2.11 canbe generalized todimension r. Wemust considerweighted
projective spacesP(a, b, c1 , c2 , . . . , cr−1)with a relation (e , f , g1 , g2 , . . . , gr−1). Wher-
ever there is a term with c1 and c2 (or g1 , g2) in _eorem 2.11, we need to add terms
with c3 , . . . , cr−1 (or g3 , . . . , gr−1). Table 2 lists weighted projective 4-spaces with a, b,
c i < 65. Again, only normalized numbers are listed.

3 Proof of Theorem 2.1

We use standard notation from birational geometry. Let N 1
(X) (resp. N1(X)) be

the group of numerical equivalence classes of Cartier divisors (resp. 1-cycles). Let
NE(X) ⊂ N1(X)R be the closed Kleiman–Mori cone of curves, and let Nef(X) ⊂

N 1
(X)R be the dual cone of nef divisors.
We prove_eorem 2.1 by contradiction. We assume that X is anMDS and produce

a nef divisor D that is not semiample. Note that X being an MDS implies that its nef
cone is polyhedral, generated by a ûnite number of semiample divisor classes.
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P(a, b, c1 , c2) (e , f , g1 , g2) n
P(47, 13, 12, 30) (1, 1, 5, 2) 1
P(19, 41, 15, 20) (1, 1, 4, 3) 3
P(43, 17, 15, 20) (1, 1, 4, 3) 1
P(26, 49, 15, 25) (1, 1, 5, 3) 3
P(11, 32, 18, 27) (2, 1, 3, 2) 2
P(13, 28, 18, 27) (2, 1, 3, 2) 2
P(17, 20, 18, 27) (2, 1, 3, 2) 1
P(47, 7, 18, 27) (1, 1, 3, 2) 1
P(23, 44, 18, 45) (2, 1, 5, 2) 2
P(29, 32, 18, 45) (2, 1, 5, 2) 1
P(23, 20, 22, 33) (2, 1, 3, 2) 1
P(25, 16, 22, 33) (2, 1, 3, 2) 1
P(29, 20, 26, 39) (2, 1, 3, 2) 1

P(a, b, c1 , c2) (e , f , g1 , g2) n
P(31, 16, 26, 39) (2, 1, 3, 2) 1
P(29, 50, 27, 36) (2, 1, 4, 3) 2
P(31, 46, 27, 36) (2, 1, 4, 3) 1
P(35, 38, 27, 36) (2, 1, 4, 3) 1
P(43, 49, 27, 45) (2, 1, 5, 3) 1
P(44, 47, 27, 45) (2, 1, 5, 3) 1
P(17, 33, 28, 42) (3, 1, 3, 2) 1
P(19, 27, 28, 42) (3, 1, 3, 2) 1
P(37, 16, 30, 45) (2, 1, 3, 2) 1
P(23, 27, 32, 48) (3, 1, 3, 2) 1
P(43, 46, 33, 44) (2, 1, 4, 3) 1
P(47, 38, 33, 44) (2, 1, 4, 3) 1
P(49, 34, 33, 44) (2, 1, 4, 3) 1

Table 1: Weighted projective spaces P(a, b, c1 , c2), a, b, c1 , c2 < 50, with relation
(e , f , g1 , g2), that satisfy the conditions of_eorem 2.11.

P(a, b, c1 , c2 , c3) (e , f , g1 , g2 , g3) n
P(47, 13, 12, 30, 60) (1, 1, 5, 2, 1) 1
P(19, 11, 13, 52, 52) (1, 3, 4, 1, 1) 3
P(21, 10, 13, 52, 52) (2, 1, 4, 1, 1) 1
P(19, 41, 15, 20, 60) (1, 1, 4, 3, 1) 3
P(43, 17, 15, 20, 60) (1, 1, 4, 3, 1) 1
P(22, 7, 17, 51, 51) (2, 1, 3, 1, 1) 1
P(11, 32, 18, 27, 54) (2, 1, 3, 2, 1) 2
P(13, 28, 18, 27, 54) (2, 1, 3, 2, 1) 2
P(17, 20, 18, 27, 54) (2, 1, 3, 2, 1) 1
P(47, 7, 18, 27, 54) (1, 1, 3, 2, 1) 1
P(25, 7, 19, 57, 57) (2, 1, 3, 1, 1) 1
P(53, 7, 20, 30, 60) (1, 1, 3, 2, 1) 1
P(15, 7, 26, 52, 52) (3, 1, 2, 1, 1) 1
P(9, 13, 29, 58, 58) (5, 1, 2, 1, 1) 1
P(17, 7, 29, 58, 58) (3, 1, 2, 1, 1) 1
P(19, 7, 32, 64, 64) (3, 1, 2, 1, 1) 1

Table 2:Weightedprojective spacesP(a, b, c1 , c2 , c3), a, b, c1 , c2 , c3 < 65,with relation
(e , f , g1 , g2 , g3) that satisfy the conditions of_eorem 2.11 in dimension 4.
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Let ∆ be a plane 4-gon as in the theorem. _e toric variety X∆ is Q-factorial and
has Picard number 2. _e blowup X has Picard number 3. (We will deal with the
case where ∆ is a triangle or w = 1 later.) _e 4-gon contains two lattice points, (0, 0)
and (0, 1). Consider the irreducible curve in the torus T deûned by the vanishing of
the binomial

χ(0,0) − χ(0,1) = 1 − y,
and let C ⊂ X∆ be its closure. Considering C as aQ-Cartier divisor in X∆ , it has class
corresponding to the polygon ∆. _is implies that its self-intersection number is

C2
= 2Area(∆) = w .

Now, if C is the strict transform of C in X, then C has divisor class π∗C − E, where
π ∶ X → X∆ is the blowup map and E is the exceptional divisor. Hence, C2

= w − 1 <
0. _is implies that C deûnes an extremal ray in the cone NE(X) and C⊥ deûnes a
2-dimensional face in the 3-dimensional nef cone of X. We will show that a general
divisor D ∈ C⊥ ∩Nef(X) is not semiample.

Let us start by describing the face of the nef cone deûned by C⊥. A nef divisor in
X has the form H − aE, where a ≥ 0 and H is the pullback of a nef divisor in X∆ .
We can assume that a ≠ 0, and even more speciûcally that a = 1. Indeed, if a = 0
and (H − aE) ⋅ C = 0, then also H = 0, because C is ample on X∆ . _e divisor H
corresponds to a convex polygon with sides parallel to the sides of ∆. (_e polygon
can be degenerate if some side has length 0). Let us deûne thewidth ofH as thewidth
of the corresponding polygon.

Lemma 3.1 A nef divisor H − E lies in C⊥ if and only if the width of H is equal to 1.

Proof Let ∆′ be the polygon corresponding to H and let m > 0 be such that m∆′ is
integral. Denote byQL andQR the le� and right vertices ofm∆′ (which arenecessarily
distinct). Consider the divisor in T deûned by the vanishing of

χQL
− χQR .

Let D be its closure in X∆ and let D = π∗D −mE in X. _en D has class m(H − E).
Let us compute the intersection number D ⋅ C. _e two curves intersect only in

the torus T . We can multiply the equation χQL
− χQR with χ−QL to put it in the form

1 − x i y j . Here i/m is the width of the polygon ∆′. Now the intersection

V(1 − x i y j
) ∩ V(1 − y)

has i points with multiplicity 1. _is implies that

D ⋅ C = D ⋅ C +mE ⋅ E = i −m,

which is zero if and only if i = m.

Now let D be a general nef Q-divisor on X in the class H − E, where H is deûned
by a polygon ∆′ of width 1. Since D is a general divisor on the 2-dimensional face of
Nef(X), we can assume that ∆′ is a 4-gon. We wish to show that D is not semiample.
More precisely, we show that for any m suõciently large and divisible, all global sec-
tions of OX(mD) vanish at the T-ûxed point corresponding to the le� vertex PL .
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Let m > 0 be an integer such that m∆′ is integral. Let QL ,QR be the le� and right
vertices of ∆′. Global sections of OX(mD) have the form

f = ∑
q∈m∆′

aq χq

where aq ∈ k and f vanishes to order at least m at t0. Such a global section f vanishes
at the T-ûxed point corresponding to PL if and only if amQL = 0. _e condition
that f vanishes to order at least m at t0 can be expressed by saying that all partial
derivatives of f up to order m− 1 vanish at the point t0 = (1, 1). Now the vanishing of
the coeõcient amQL is equivalent to the existence of a partial derivativeD of order at
most m − 1 such that for q ∈ m∆′

D(χq)∣t0 =
⎧
⎪⎪
⎨
⎪⎪
⎩

0 if q ≠ mQL ,
c ≠ 0 if q = mQL .

As in [6], it is enough to ûnd such a derivative D a�er an integral translation of
m∆′ (which corresponds to multiplication of f with amonomial). We translate m∆′
so that its right vertex mQR has coordinates (m − 2, 0). _en its le� vertex mQL has
coordinates (−2, β) for some β ∈ Z. We chooseD of the form

D = ∂m−n−1
x

̃D,

where ̃D has order at most n. Note that ∂m−n−1
x vanishes when applied to monomials

χq = x i y j , 0 ≤ i < m − n − 1. A�er applying ∂m−n−1
x to the monomials χq , q ∈ m∆′,

the results with nonzero coeõcients can be divided into three sets:

S1 = {x−A−1 yβ},

S2 = {x−AyB+ j
} j=0, . . . ,n−1 ,

S3 = {x i y j
}i , j≥0, i+ j<n .

Here β is as above, A = m − n, and B ∈ Z. We used conditions 0 ≤ s2 < 1 and
_eorem 2.1(ii)(a) to describe the set S3. It is shown in Lemma 4.1 below that up to
a nonzero constant factor there is a unique nonzero partial derivative ̃D of degree n
that vanishes on monomials in S2 and S3 when evaluated at t0. When applied to the
monomial in S1, its value at t0 is

(β − B − 1)(β − B − 2) ⋅ ⋅ ⋅ (β − B − n + 1)(β − B − nB
A ) .

We need to check when this expression is nonzero. _e condition β ≠ B + j, j =
1, . . . , n − 1 is precisely _eorem 2.1(ii)(b). (Notice that _eorem 2.1(ii) only depends
on the conûguration of lattice points near the vertices mPl ,mPR . _e condition does
not change ifwe replacem∆with m∆′ or its translation.) We claim that the condition
β − B − nB

A ≠ 0 can always be satisûed by choosing the divisor D general. Indeed,
ûrst notice that replacing m by any of its positive multiples preserves the hypothesis
of the theorem. We can vary D in the 2-dimensional face of the nef cone by moving
the le� vertex of ∆′ up or down. For m ûxed, this deformation changes both β and B
by the same amount and leaves A ûxed. We can then choose m suõciently divisible
and a new D in the 2-dimensional face of the nef cone such that m∆′ is integral and
β − B − nB

A ≠ 0. _is ûnishes the proof of the ûrst half of_eorem 2.1.
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Consider now the second half of _eorem 2.1, where w = 1 or ∆ is a triangle. If
w = 1, then the curve C as above has C2

= 0. _is implies that C lies on the boundary
of the cone NE(X), but may not deûne an extremal ray. If C spans an extremal ray
of NE(X), we obtain the desired conclusion proceeding as before. Hence we assume
that C⊥ ∩ Nef(X) is a 1-dimensional face of the nef cone. Since C itself is nef, this
1-dimensional face must be generated by C, hence D = C. _is means that in the
proof above we need to use ∆′ = ∆ and we can not deform it. _at gives us the extra
condition β − B − nB

A ≠ 0. _is condition with A = m − n, β = myL − myR and
B = b −myR is precisely _eorem 2.1(iii).

In the case of a triangle, X has Picard number two. For any w ≤ 1, C spans an
extremal ray of NE(X) and D =

1
w π∗C − E spans an extremal ray of Nef(X). _us,

we use ∆′ = 1
w∆, and condition (iii) of the theorem again gives non-vanishing of

β − B − nB
A .

4 Non-vanishing Derivatives

In this sectionwe prove the claim about the existence of the derivative ̃Dmade in the
last section and then generalize this result to dimension 3.

Lemma 4.1 Let A, B, β, n ∈ Z, A > 0, n > 0. Consider three sets ofmonomials

S1 = {x−A−1 yβ},

S2 = {x−AyB+ j
} j=0, . . . ,n−1 ,

S3 = {x i y j
}i , j≥0, i+ j<n .

_ere exists a nonzero partial derivative ̃D of degree n such that ̃D applied tomonomials
in S2 and S3 vanishes at t0 = (1, 1). _is derivative is unique up to a constant factor.
_e derivative ̃D applied to themonomial in S1 and evaluated at t0 is

(β − B − 1)(β − B − 2) ⋅ ⋅ ⋅ (β − B − n + 1)(β − B − nB
A

) .

Proof Itwas noted byCastravet [2] that the existence of such a partial derivative ̃D is
equivalent to the existence of a plane curve of degree n that passes through the lattice
points (a, b) for xa yb ∈ S2 ∪S3. Indeed,we can replace partial derivatives ∂x , ∂y with
logarithmic partial derivatives x∂x , y∂y . Now if p(X ,Y) is a polynomial, then

p(x∂x , y∂y)(xa yb)∣t0 = p(a, b).

Instead of the derivative ̃D we will construct such a polynomial p(X ,Y).
We use the notation

[X]i = X(X − 1) ⋅ ⋅ ⋅ (X − i + 1).

_e general degree n polynomial that vanishes at (a, b) for all xa yb ∈ S3 has the form

p(X ,Y) =

n

∑

i=0
c i[X]n−i[Y]i
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for c i ∈ k. We need that p(a, b) also vanishes when xa yb ∈ S2. _is means that, up to
a constant factor

p(−A,Y) = [Y − B]n .
Note that [−A]n−i[Y]i for i = 0, . . . , n form a basis for the space of all polynomials in
Y of degree at most n. It follows that we can solve for c i uniquely from this equation.
However, we can ûnd p(−A− 1,Y) without solving for c i .

Let us evaluate p(X ,Y) at X = −A− 1:

p(−A−1,Y) =∑

i
c i[−A]n−i

A+ n − i
A

[Y]i =
A+ n
A

p(−A,Y)−

1
A∑i

ic i[−A]n−i[Y]i .

Similarly, we ûnd

p(−A,Y − 1) =∑
i
c i[−A]n−i[Y]i

Y − i
Y

= p(−A,Y) −

1
Y ∑i

ic i[−A]n−i[Y]i .

We can eliminate the sums in the two expressions to get

Ap(−A− 1,Y) = (A+ n − Y)p(−A,Y) + Yp(−A,Y − 1)
= (A+ n − Y)[Y − B]n + Y[Y − B − 1]n
= [Y − B − 1]n−1(YA− AB − nB).

Dividing both sides by A and substituting Y = β gives the result.

Let us now generalize the previous lemma to dimension 3. Consider three sets of
lattice points

T1 = {(−A− 1, β, γ)},
T2 = {(−A, B + i ,C + j)}i , j≥0, i+ j<n ,
T3 = {(l , i , j)}l , i , j≥0, l+i+ j<n ,

for some A, B,C , β, γ, n ∈ Z, A > 0, n > 0. We want to ûnd a degree n polynomial
p(X ,Y , Z) that vanishes on T2 and T3, but not on T1.

_e general degree n polynomial that vanishes on T3 has the form

(4.1) p(X ,Y , Z) = ∑

i , j≥0;i+ j≤n
c i j[X]n−i− j[Y]i[Z] j .

As before, we ûnd

p(−A− 1,Y , Z)∗ = A+ n
A

p(−A,Y , Z) − 1
A∑i , j

ic i j[−A]n−i− j[Y]i[Z] j

−

1
A∑i , j

jc i j[−A]n−i− j[Y]i[Z] j ,

p(−A,Y − 1, Z) = p(−A,Y , Z) − 1
Y ∑i , j

ic i j[−A]n−i− j[Y]i[Z] j ,

p(−A,Y , Z − 1) = p(−A,Y , Z) − 1
Z ∑i , j

jc i j[−A]n−i− j[Y]i[Z] j .

Eliminating the sums from the three equations, we get

Ap(−A−1,Y , Z) = (A+n−Y−Z)p(−A,Y , Z)+Yp(−A,Y−1, Z)+Zp(−A,Y , Z−1).
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_e polynomial p(X ,Y , Z) must vanish at points (−A,Y , Z) ∈ T2. _ere is an
(n+1)-dimensional space of degree n polynomials in Y , Z that vanish at these points.
A basis for this space is given by [Y − B]d[Z − C]n−d , d = 0, . . . , n. Let p = pd be a
polynomial as in (4.1) with the coeõcients c i j chosen such that

pd(−A,Y , Z) = [Y − B]d[Z − C]n−d .

When d = n, we get the polynomial from the 2-dimensional case pn(−A,Y , Z) =

[Y − B]n , which at X = −A− 1 is

pn(−A− 1,Y , Z) = [Y − B − 1]n−1(Y − B − nB
A ) .

Similarly, the polynomial p0 satisûes

p0(−A− 1,Y , Z) = [Z − C − 1]n−1(Z − C − nC
A ) .

For 0 < d < n we can express

Apd(−A− 1,Y , Z)
= (A+ n − Y − Z)pd(−A,Y , Z) + Ypd(−A,Y − 1, Z) + Zpd(−A,Y , Z − 1)
= (A+ n − Y − Z)[Y − B]d[Z − C]n−d + Y[Y − B − 1]d[Z − C]n−d
+ Z[Y − B]d[Z − C − 1]n−d

= [Y − B − 1]d−1[Z − C − 1]n−d−1((A+ n − Y − Z)(Y − B)(Z − C)

+ Y(Y − B − d)(Z − C) + Z(Y − B)(Z − C − (n − d))) .

Let us change variables to Y = Y − B, Z = Z − C. _e polynomials pd(−A− 1,Y , Z)
can then be simpliûed to

p0(−A− 1,Y , Z) = [Z − 1]n−1(Z −
nC
A

) ,

pn(−A− 1,Y , Z) = [Y − 1]n−1(Y −

nB
A

) ,

pd(−A− 1,Y , Z) = [Y − 1]d−1[Z − 1]n−d−1(YZ −
dB
A

Z − (n − d)C
A

Y)

= [Y − 1]d−1[Z − 1]n−d−1(
d
n
Z(Y −

nB
A

) +

n − d
n

Y(Z − nC
A

)) ,

0 < d < n.

Let β = β−B, γ = γ−C, where (−A− 1, β, γ) is the point in T1. We need to determine
when pd(−A− 1, β, γ) does not vanish for some d.

Lemma 4.2 _ere exists 0 ≤ d ≤ n such that pd(−A− 1, β, γ) does not vanish if and
only if the following conditions hold
(i) (β, γ) ≠ (i , j) for any i , j ≥ 1, i + j < n.
(ii) (β, γ) ≠ (

nB
A ,

nC
A ).

(iii) (a) If β = 0 and 0 < γ < n, then B ≠ 0.
(b) If γ = 0 and 0 < β < n, then C ≠ 0.
(c) If β + γ = n and 0 < β, γ < n, then B + C ≠ A.
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Proof Let us call [Y − 1]d−1[Z − 1]n−d−1 the ûrst part of pd and the remainder the
last part. Similarly for p0 and pn .
Consider the following cases:

● 0 < β, γ, β + γ < n. _en the ûrst part of every pd vanishes at (β, γ).
● (β, γ) = (

nB
A ,

nC
A ). _en the last part of every pd vanishes at (β, γ).

● β = 0 and 0 < γ < n. If every pd vanishes at (β, γ), then in particular pn
vanishes, which implies B = 0. Conversely, if B = 0, then every pd vanishes.
Similar argument applies to the case γ = 0 and 0 < β < n.

● β + γ = n and 0 < β, γ < n. Let β = d > 0, γ = n − d > 0. _en pd is the
only polynomial whose ûrst part does not vanish at (β, γ). _e last part of pd
vanishes if and only if B + C = A.

● All other (β, γ). _ere exist two diòerent d such that the ûrst part of pd does not
vanish at (β, γ). If both last parts vanish at (β, γ) then (β, γ) = (

nB
A ,

nC
A ).

5 Proofs in Dimension 3

We start with the proof of_eorem 2.3.
Let ∆ be the polytope in _eorem 2.3. _e variety X∆ is not Q-factorial and has

Picard number 1. (To see the Picard number, consider deformations of the polytope
by moving facets in the normal direction. We can keep one vertex, say the origin,
ûxed and move the remaining two facets. _ere is a one parameter family of such
deformations, given by moving the vertex (0, 1, 0) along the y-axis.) Let H be the
class of the Q-Cartier divisor corresponding to the polytope ∆. _en H generates
Pic(X∆)R. _e space Pic(X)R = N 1

(X) is generated by (the pullback of) H and the
class E of the exceptional divisor.

We construct a curveC ⊂ X that is analogous to a curveofnegative self-intersection
on a surface. _e polytope ∆ contains 3 lattice points (0, 0, 0), (0, 1, 0), and (0, 0, 1).
Consider two surfaces in the torus T deûned by the vanishing of

χ(0,0,0) − χ(0,1,0) = 1 − y,

χ(0,0,0) − χ(0,0,1) = 1 − z,

and let S1 , S2 be their closures in X∆ . _en S1 and S2 are both Q-Cartier divisors in
the class H. Let C be their intersection.

Lemma 5.1 C is an irreducible curve.

Proof We consider the intersection of C with T-orbits of X∆ . For any T-orbit of
dimension 1 or 2, the restriction of at least one S i to the orbit is deûned by amonomial
equation, hence that S i does not intersect the T-orbit. _is implies that C does not
contain any component in X∆∖T and hence is irreducible.

Let S1, S2, C be the strict transforms of S1, S2, C in X. _en S1 and S2 both have
class H − E and C = S1 ∩ S2.
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Lemma 5.2 _e class of C generates an extremal ray in NE(X). _e dual face of
Nef(X) is generated by the class 1

w H − E.

Proof We can compute the intersection number

S
3
i = H3

= 6Vol(∆) = w .

Hence, S3
i = w − 1 ≤ 0. Now S i ⋅ C = S3

i ≤ 0. Any other irreducible curve C′ in X
satisûes C′ ⊈ S1 or C′ ⊈ S2, hence S i ⋅ C′ ≥ 0. It follows that the class of C lies on the
boundary of NE(X), and since this cone is 2-dimensional, C generates an extremal
ray.

_e class 1
w H − E is orthogonal to C:

(
1
w H − E) ⋅ C = (

1
w H − E)(H − E)(H − E) = 1

w H3
− 1 = 0,

hence it generates a boundary ray of Nef(X).

It now remains to show that a divisor in the class 1
w H − E is not semiample. Let

m be as in the theorem, with m∆ integral, and let M = mw ∈ Z. Notice that any
positive integer multiple of m also satisûes the hypotheses of the theorem. Consider
the divisor class M(

1
w H − E) = mH −ME. We show that any

f (x , y, z) = ∑

q∈m∆∩Z3

cq χq

that vanishes to order at least M at t0 = (1, 1, 1) must have cmPL = 0. _is implies that
the T-ûxed point corresponding to PL is a base point for M(

1
w H−E). _is argument

run with m replaced by any of its positive integer multiples, allows us to deduce that
1
w H − E is not semiample.
As in the 2-dimensional case, we need to produce a partial derivative D of order

M− 1 such that,when applied to anymonomial χq for q ∈ m∆∩Z3, it vanishes at t0 if
and only if q ≠ mPL . To ûnd suchD,we ûrst translatem∆ so that mPR becomes equal
to (M−2, 0, 0). _enmPL moves to (−2, β, γ),where β = myL−myR , γ = mzL−mzR .
We look for D of the form

D = ∂M−n−1
x

̃D,

where ̃D has order n. When applying ∂M−n−1
x to monomials χq for q ∈ m∆ ∩ Z3, the

resulting nonzero terms ap χp correspond to lattice points p that can be divided into
three sets:

T1 = {(−A− 1, β, γ)},
T2 = {(−A, B + i ,C + j)}i , j≥0, i+ j<n ,
T3 = {(l , i , j)}l , i , j≥0, l+i+ j<n ,

where A = M − n, B = b − myR , C = c − mzR . Here we used the assumptions
0 ≤ yR

xR
, zRxR < 1 and_eorem 2.3(ii)(a) to describe the set T3.

Finding a derivative D̃ as above is equivalent to ûnding a degree n polynomial
p(X ,Y , Z) that vanishes on T2 and T3, but not on T1. _e necessary and suõcient
conditions for the existence of such polynomial are given in Lemma 4.2. We need to
check that the assumptions of_eorem 2.3 imply the assumptions of the lemma.
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In the notation of Lemma 4.2,

β = β − B = myL − b and γ = γ − C = mzL − c.

Now condition (i) in the lemma is the same as (ii)(b) in the theorem. For the re-
maining conditions, one can compute that the equality β = nB

A is equivalent to myL =

b−nsy and γ = nC
A is equivalent to mzL = c−nsz . _is implies that (iii)(a) and (iii)(b)

in the theorem are the same conditions as (ii) and (iii) in the lemma, ûnishing the
proof of_eorem 2.3.
Corollary 2.4 follows directly from _eorem 2.3. Corollary 2.5 is also obtained

from this theorem as follows. Recall that the polytopes we are considering intersect
the yz-plane on an isosceles right triangle, and then the lattice points in the polytope
with a ûxed ûrst coordinate value form a right trianglewith necessarily the same num-
ber of lattice points on each side. Given a tetrahedron as in Corollary 2.5, we apply a
shear transformation to arrange 0 ≤

yR
xR
, zRxR < 1. For a tetrahedron these inequalities

imply that myL ≤ b andmzL ≤ c. Hence conditions (ii)(b) and (iii)(b) of_eorem 2.3
hold trivially. _e other conditions of the theorem follow from the three conditions of
Corollary 2.5. In Corollary 2.5(ii) we only required that the slice mxR − n + 1 has size
n instead of requiring that slices mxR ,mxR − 1, . . . ,mxR − n + 1 have size 1, 2, . . . , n.
_e stronger condition can fail if the slice mxR − 1 has size 1 instead of the required
2. However, by then re�ecting the tetrahedron across the yz-plane, we are in the case
n = 1, which automatically gives a non-MDS. If the slice mxR − 1 has size 2, since
Minkowski sum of the slices mxR − i and mxR − j must lie in the slice mxR − i − j,
every next slice must be strictly bigger than the previous one, implying that slices
mxR ,mxR − 1, . . . ,mxR − n+ 1 have the correct sizes 1, 2, . . . , n to apply_eorem 2.3.
Corollary 2.6 is a direct translation of Corollary 2.5 in terms of (xL , xR , y0 , z0).

Let us now prove _eorem 2.11. _e proof is similar to the proof in dimension
2 [6].

Let P(a, b, c1 , c2) = Proj k[x , y, z1 , z2], where the variables x , y, z1 , z2 have degree
a, b, c1 , c2, respectively. _e relation (e , f , g1 , g2) gives three monomials x e y f , zg1

1
and zg2

2 of degree d = ae + b f = c i g i .
Consider the degree map deg ∶ R4

→ R that maps (u, v ,w1 ,w2) ↦ au + bv +
c1w1 + c2w2. _e tetrahedron ∆ is then deg−1

(d) ∩ R4
≥0 in the space deg−1

(d) ≅ R3

with lattice deg−1
(d) ∩ Z4

≅ Z3. We identify points in ∆ with points in deg−1
(d) as

follows:

(0, 0, 0)z→ (e , f , 0, 0), (0, 1, 0)z→ (0, 0, g1 , 0), (0, 0, 1)z→ (0, 0, 0, g2),

PR z→ (
d
a , 0, 0, 0) , PL z→ (0, db , 0, 0) .

_e gcd conditions on the relation (e , f , g1 , g2) imply that this identiûcation is com-
patible with the isomorphism of lattices. A homogeneous polynomial of degree d
deûnes a divisor D on P(a, b, c1 , c2) with self-intersection number

D3
=

d3

abc1c2
.

_is identiûes condition (i) in _eorem 2.11 and Corollary 2.5.
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To count lattice points in slices ofm∆, consider the linear function h(u, v ,w1 ,w2)

deûned by dot product with
d
c1c2

( f ,−e , 0, 0).

We claim that the function h takes value c on slice c. _is can be proved by checking
that h vanishes on slice 0 and when evaluated at the vertices PL and PR , it gives the
correct width w.
Considernow lattice pointsQ in slicemxL+1 inm∆. We replace these lattice points

Q with Q − mPL . _e new points are of the form (u, v ,w1 ,w2) ∈ Z4, u,w1 ,w2 ≥ 0,
v ≤ 0, satisfying the equations

h(u, v ,w1 ,w2) = 1 ⇐⇒

d
c1c2

( f u − ev) = 1

deg(u, v ,w1 ,w2) = 0 ⇐⇒ au + bv + c1w1 + c2w2 = 0.

_ere is a rational point
1

g1g2
(b,−a, 0, 0)

satisfying these equations. To get integral pointswe subtract from this a rational linear
combination of (e , f ,−g1 , 0) and (e , f , 0,−g2):

(u, v ,w1 ,w2) =
1

g1g2
(b,−a, 0, 0) + δ1

g1
(e , f ,−g1 , 0) +

δ2
g2

(e , f , 0,−g2), δ1 , δ2 ≤ 0.

Replacing v with −v, the slice mxL + 1 in m∆ can be identiûed with pairs of integers
δ1 , δ2 ≤ 0 such that

(u,−v) = 1
g1g2

(b, a) + (

δ1
g1
+

δ2
g2

)(e ,− f )

has non-negative integer components.
By a similar argument, the slice mxR − n + 1 in m∆ can be identiûed with pairs of

integers γ1 , γ2 ≥ 0 such that

n − 1
g1g2

(b, a) + (

γ1

g1
+

γ2

g2
)(e ,− f )

has non-negative integer components.
Finally, the condition n(sy , sz) ∈ Z2 inCorollary 2.5 is equivalent to the slicemxR−

n in m∆ having a lattice point on the edge joining mPL andmPR . Similarly to the slice
mxR − n + 1, this happens if and only if

n
g1g2

(b, a)

has integer components.
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284

https://doi.org/10.4153/CMB-2018-029-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2018-029-6


Examples of Non-ûnitely Generated Cox Rings

References

[1] F. Berchtold and J. Hausen, Cox rings and combinatorics. Trans. Amer. Math. Soc. 359(2007),
no. 3, 1205–1252. http://dx.doi.org/10.1090/S0002-9947-06-03904-3

[2] A.-M. Castravet,Mori dream spaces and blow-ups. In: Algebraic Geometry: Salt Lake City 2015.
Proceedings of Symposia in PureMathematics, 97(1), American Mathematical Society,
Providence, RI, 2018, pp. 143–168.

[3] A.-M. Castravet and J. Tevelev, M0,n is not aMori dream space. DukeMath. J. 164(2015),
1641–1667. http://dx.doi.org/10.1215/00127094-3119846

[4] S. D. Cutkosky, Symbolic algebras ofmonomial primes. J. Reine Angew. Math. 416(1991), 71–89.
http://dx.doi.org/10.1515/crll.1991.416.71

[5] W. Fulton, Introduction to toric varieties. Annals ofMathematics Studies, 131, Princeton
University Press, Princeton, NJ, 1993. http://dx.doi.org/10.1515/9781400882526

[6] J. L. González and K. Karu, Some non-ûnitely generated Cox rings. Compos. Math. 152(2016),
984–996. http://dx.doi.org/10.1112/S0010437X15007745

[7] S. Goto, K. Nishida, and K. Watanabe, Non-Cohen-Macaulay symbolic blow-ups for space
monomial curves and counterexamples to Cowsik’s question. Proc. Amer. Math. Soc. 120(1994),
383–392. http://dx.doi.org/10.2307/2159873

[8] Z. He, New examples and non-examples ofMori dream spaces when blowing up toric surfaces.
2017. arxiv:1703.00819

[9] Y. Hu and S. Keel,Mori dream spaces and GIT. Michigan Math. J. 48(2000), 331–348.
http://dx.doi.org/10.1307/mmj/1030132722

[10] S. Okawa, On images ofMori dream spaces. Math. Ann. 364(2016), 1315–1342.
http://dx.doi.org/10.1007/s00208-015-1245-5

Department ofMathematics, University of California, Riverside, Riverside, CA 92521, USA
Email : jose.gonzalez@ucr.edu

Department ofMathematics, University of British Columbia, Vancouver, BC V6T 1Z2
Email : karu@math.ubc.ca

285

https://doi.org/10.4153/CMB-2018-029-6 Published online by Cambridge University Press

http://dx.doi.org/10.1090/S0002-9947-06-03904-3
http://dx.doi.org/10.1215/00127094-3119846
http://dx.doi.org/10.1515/crll.1991.416.71
http://dx.doi.org/10.1515/9781400882526
http://dx.doi.org/10.1112/S0010437X15007745
http://dx.doi.org/10.2307/2159873
http://arxiv.org/abs/1703.00819
http://dx.doi.org/10.1307/mmj/1030132722
http://dx.doi.org/10.1007/s00208-015-1245-5
mailto:jose.gonzalez@ucr.edu
mailto:karu@math.ubc.ca
https://doi.org/10.4153/CMB-2018-029-6

