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EXTENSIONS OF THEOREMS OF
GAGLIARDO AND MARCUS AND MIZEL

TO ORLICZ SPACES

GRAHAME HARDY

In 1958, Gag Iiardo showed that if u is a locally integrable

function on a domain fi satisfying the cone condition, with all

weak derivatives belonging to the Lebesgue space L (fl)

(l 5 p < °o) , then u belongs to L (Q) also. We extend this

result to Orlicz spaces, and use it to extend a result of Marcus

and Mizel on Nemitsky operators between Sobolev spaces to Orlicz-

Sobolev spaces.

1. Introduction

Let U be a domain (that is, an open and connected set) in R , and

g a function from ft x R into R . In Marcus and Mizel [S], it is shown

that, under suitable assumptions, g determines a mapping from

X = W (fi) x ... x W (n) into W {SI) . This mapping associates

with every u = [u , ..., u ) € X , a function G € W defined by
j. Til X JP

G o w(x) = g[x, uAx), ..., u (x)) . Two cases are considered separately

in [«]:

(i) p > 1 (Theorem 2.1 of [S] and its consequences); and
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I 22 Grahame Hardy

(ii) p = 1 (Theorem 3.1 of [S] and its consequences).

In both cases, critical use is made of the following theorem, essentially

contained in Gagliardo [5]. (The notations 3' and A' used below will
Xi

be defined fully in the next section. Roughly, /3'(£2) is the class of

functions / almost everywhere equal to a function f on U which is

absolutely continuous on almost all line segments parallel to the axes, and

d' f is a function almost everywhere equal to df/dx. . 3 f denotes a
xi v xi

weak derivative.)

THEOREM 1.1. Let 1 5 p < °° , and suppose SI is a bounded domain in

R with the cone property. Then f : £2 •+ R belongs to W (£2) if and
n ±,p

only if

(i) f I A'(Sl) 3

(ii) 3 ^ / € L Ail) , i = 1, ..., n .
i "

Moreover, if f € W (£2) , then 9' / = 3 / almost everywhere in SI ,
i ,p xi x^

i = 1, ... , n .

(Lemma l.U in [S] gives a slightly more general form of the above.)

We shall show how the case 1 < p < °° of Theorem 1.1 remains true if

the Lebesgue space L (Q) is replaced by an Orlicz space L (£2) , where P

now denotes an A?-function. We shall then show how this result may be used

to generalise Theorem 2.1 of [S] to a class of Orlicz-Sobolev spaces

containing the original Sobolev spaces.

2. Preliminaries

2.1. ORLICZ SPACES. We shall use the properties of ^-functions and

Orlicz spaces as given in Krasnosel'skiT and RutickiT [7]. We shall only

need to consider Orlicz spaces defined on bounded domains £2 cz R . For

our purposes, it is convenient to use the characterisation of Orlicz spaces

given below.

(i) Let M be an N-function. Then a measurable function u : £2 •*• R

belongs to the Orlicz space iw(f2) if and only if there exists a constant
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k > 0 such that M[ku{x)]dx < "> .

Throughout we shall use the Luxemburg norm, denoted here by ll

With this norm, Holder's inequality takes the form

(ii) uv 5 2IIWIL(O)HUIIM(Q) ' where M denotes the /(/-function

complementary to M .

For convenience, a few other properties are given below,

(iii) If M is an N-function and u 6 R , then

(a) M(oai) < aM(u) if 0 £ a 2 1 ; and

(b) M[au) 2 aM{u) if a > 1 .

(iv) Suppose P, Q and Q are N-functions, and there exist

complementary tf-functions B and R such that the inequalities

are satisfied for all u > u , where a, & and u are constants. Then

there exists a constant k such that

I M | p 5 fc||«||c||U|| + .

If P and R are N-functions, Q = P o i? and Q = P o R axe

^-functions, and it is evident that R, P, Q and Q satisfy the

conditions in (iv). For use in §5, we note that it is also possible to

choose P and Q such that P K Q and such that both P and Q satisfy

the A2 condition. For example, we can take P(u) = \u\" , p > 1 , and

Q(u) =

2.2. THE CONE PROPERTY, (i) DEFINITION. A domain ftcR is said
n

to have the cone -property if there exists a finite cone C such that each

point x € Q is 1

congruent to C .

point x € Q is the vertex of a finite cone C contained in fl and
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I 24 Grahame Hardy

The following may be proved (see Adams [?], Theorem lt.8):

(ii) Let ft be a bounded domain in R having the cone property.

For each p > 0 there exists a finite collection {ft , Q-, ..., ft } of

m

open subsets of ft such that ft = U ft. , and such that to each ft.
3=1 3 3

there corresponds a subset A . of ft. having diameter not exceeding p ,
3 3

and an open parallelepiped P. with one vertex at 0 , such that
3

a. = u [X+P ) .3 iA. °
3

a.
3 xiA.

3

The parallelepipeds P • are determined by C , and not by p .
3

2.3. THE CLASS A (ft) . Let ft be a domain in R . <4(£2) denotes

the class of real measurable functions on ft such that, for almost every

line T parallel to any coordinate axis, u is locally absolutely

continuous on T n ft (that i s , u is absolutely continuous on each

compact subinterval of T n ft ). A'(ti) denotes the class of functions u

such that u coincides almost everywhere in . ft with a function u in

4(ft) . For u i. .4'(ft) , 9' u , the strong approximate derivative of u
1

with respect to x. , denotes any member of the equivalence class of

functions measurable on ft which contains 9M/3X. .
Is

2.4. ORLICZ-SOBOLEV SPACES, (i) We shall use the notation 9 u(x)
•C >

to denote the ith distribution derivative of u : ft •+ R , for ft c R

If M is an tf-function, f^L^n) and ^^(ft) denote the classes of

functions u for which u and 8 u € ̂ M(^) an(i ̂ M^^ respectively.

(ii) We shall use the norm

The following density theorem holds (see [3], Theorem 2.2).
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( i i i ) If Q i s a bounded domain in R , then C (fi) i s dense in

3. Extension of Gagliardo's Theorem

The statement of the theorem of Gagliardo (contained in Theorem l.l),

still holds true if the Lebesgue space L (fi) is replaced by an Orlicz

space £p(fi) .

THEOREM 3.1. Let Q be a bounded domain in R with the cone

property, and let P be an N-function. Then if u € A '(SI) and

3' u € £p(n) , u (. L_(fi) also,
i

The proof follows from the sequence of lemmas below.

LEMMA 3.2. Let $ be a one-to-one transformation of a domain ft in

R onto a domain G in R , having inverse ¥ . Suppose $ and ¥

have continuous derivatives on ft and G respectively, and let

0 < c = min{l, inf |det $'(x)|} , C = maxfl, sup |det $'(a;)|} .

Suppose u : Q •*• R is measurable, and that the function Au : G -* R is

defined by

Au(y) = u{V(y)) .

Then if P is an N-function,

e\\u\\p{a) < \\Au\\p(G) < C||«||p(n) .

Proof. For X > 0 , 2.1 (iii) (a) gives

P[u(x)/\]dx S [ cP[u(x)/c\]dx S [ P[u(.x)/c\]\&et *>(x)\dx

P[Au{y)/cX)dy ;
G

whence, from 2.1 (iii) (a),

Uu/c\\HG) 5 ||M|

which gives the first inequality.
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126 Grahame Hardy

A similar proof, using 2.1 (iii) (b), gives the second inequality.

LEMMA 3.3. Let $ be a non-singular linear transformation of a
domain ft c R onto a domain G c R . Then if u has weak derivatives

3 u(x) , i = 1, . . . , n , for x € ft , u ° 4>~ has weak derivatives
xi

8 [M(*"1(«/))J * 1 - * - n , for y € G .
yi

More general versions of the above are well-known; see, for example,

Gilbarg and Trudinger ([6], page lUU), or MihaTlov ([9], page 12lt, para.

5).

Lemma 3.3 can also be easily proved directly, using the definition of

a weak derivative and the change of variable formula for integrals.

LEMMA 3.4. Suppose ft is a bounded domain in R having the cone

property. Let $ and G be as in Lemma 3.3. Then if u € A '(ft) and

u 6 L (ft) , l £ i < w , u o <p € A'(G) .
X

d
xi

Proof. The lemma is an immediate consequence of Lemma 3.3, and the

p = 1 case of Theorem 1.1.

We shall use the notation C7(e) to denote a cube in R with side

L n

of length I , having centre at a . If e is the point

(1/2, 1/2, ..., 1/2) , so that one vertex is at the origin, we shall denote

Cz(a) by Cz .

LEMMA 3.5. Let ft he a bounded domain in R having the cone

property. Then

m
n = u ft.

J=l °
where each ft. is an open subset of R having the property (*) stated

J n

below:

(*) there exists a non-singular linear transformation T. such
0

that
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where diam B. < 1/8 .
3

Proof. Let P. , 1 £ j £ k , be the parallelepipeds which occur in
3

2.2 (ii). Let T. , 1 £ j £ fe , be linear transformations which map P.
3 3

onto C, , and let TT . = T. [C. lo/—) . Let d. be the minimum distance
1 3 3 l/ovnJ j

between opposite faces of TT . , and let p = min{d , ..., d,\ .

3 ± K

By 2.2 (ii), we may write

k

fi = U fi. ,
3=1 °

fi. = U (a+P.)
3 3

where

and diam A . < p . Thus
0

Each A. may be enclosed in a translate of TT . , and T. [A .) is a subset
<7 3 3 3

of a cube of side 1/8V>T , so that

e€S.
3

where diam B. < 1/8 .
3

LEMMA 3.6. Let fi c R , and suppose fi = U fi. . Let P ie an

^-function, and let u : fi •+ R fee measurable. Then if ||M||D(-O I < °° ^

1 £ i £ » , ||«||p(n) < -

Lemma 3.6 is easily proved from 2.1 (i).

Lemmas 3-^, 3.5 and 3.6 show that it is sufficient to prove Theorem
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3.1 under the assumption that fi is of the form

« = U CAo)

where diam B < 1/8 .

LEMMA 3.7. Suppose SI is a domain in R of the form (*), that is,

a = u cAo)

where B c R , and diam B < 1/8 . Then ft has the property (**) below:

(**) there exists an open set D of positive measure, where

D c Q , such that if a = (a , ..., a ) € V and if

x = [x , ..., x ) is any point of Q , a and x can be

joined by a path consisting of n or less straight line

segments S , S , ..., S , parallel to the axes, joining

the points (o^, a2, ..., o^) to [x±, a^, ..., a^) ,

[x±, a2, a3, ..., an) to (a^, x^, a^, ..., a j , ... , and

(xl5 ..., xn_x, a j to [xv ..., xn_±, xj respectively,

where each line segment S. lies in Q and has length

less than 1 .

Proof. Let y (. B . Since diam B < 1/8 , it follows that

C,(y) C n CAc) . Let a € CAy) , and let x € Q . Since x belongs

to some cube C (6) , where 6 6 B , and a € C (6) also, a and x may-

be joined by a path of the form required. Hence we may take D = CAy) .
H

Thus we need only prove Theorem 3-1 for domains having the property

(**). We do this in the final lemma.

For Q c R , we shall use the notation ft(x., ..., x J to denote the

set of points (x , ..., x. ) such that x = (x , ..., x ) € fi , and

SI. - . t o denote the projection of £2 on the hyperplane
±,<i,. .. ,i

x = 0, ..., x. = 0 . Note that
.L If

https://doi.org/10.1017/S0004972700006948 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006948


Extensions of theorems to Orlicz spaces 129

LEMMA 3.8. Suppose SI is a domain in R having the property (**)

stated in Lemma 3.7. Suppose u € A'{SI) , and that P is an N-function.

Then if 3' u € L (ft) , 1 5 i 5 n , u (. L (ft) also,
i

Proof. By 2.1 (i), for each i , 1 5 i 5 n , there exists a k. > 0

such that

(i) [ p[(n+l)k.3' u] < °° .
Jft % Xi

Since P is an increasing function, (i) still holds if we replace k. by
Is

k = min(k±, ..., kj .

Let u € 4(J2) be such that ii = w almost everywhere in 0, and

9££/8x. = 3' u almost everywhere in SI , so that
C •
^

(ii)

also. Since u £ A(Si) , there exists a null subset N of ft such that

u{a) is finite for all a = (a, ..., a ) € ft - N . Further, since

P t 0 , we may write (ii) in the form

(iii)

for each i , 1 £ i 5 n . (iii) shows that there exists a null subset N.

of each ft . such that

L, . . . ,1

(iv) f
J ift fa. ,... ,a )v t+i' ' n'

provided (a. , ..., a ) € ft .-fl?. . We may then choose a null set
T-+J_ W J. , . . . ^"V t-

W. c ft such that (iv) holds for a £ Si - N. . Finally we choose a null
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set N~ such that u is locally absolutely continuous on line segments in

f I
Q - N~ parallel to each axis. Put N = N- u U N.. Let a t D - N ,

where 0 is as in Lemma 3.7- For any x € Q , we may connect a to a;

by straight line segments joining the points

and since M is absolutely continuous on these line segments,

{x1, ..., x^^, t, ai+1, ...,w(x) = u(a) -
n

i=X

x.

r %
'a.

Let J. denote the closed interval with end points a., x, , and let

|J.| denote its length. From the convexity of P ,

(v) P[feu(x)] S

n

For a. # x. , Jensen's inequality shows that

i

i w / 3 x J ( x 1 , . . . , a:i_1, t , a ^ , . . . . a

< f
on using 2.1 ( i i i ) ( a ) . Since the case a. = x . i s t r i v i a l , we have

I 1

f i ( x 1 , ..., x . _ l 5 t , a . + 1 , ...,
i
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(vi) P { J [(»i+i)fc(3a/toi)(x1, . . . , x ^ , t, ai+1, . . . , <xB}]dt}
Is

i

i ( x 1 , ..., xUl, t, ai+1, ..., an

Substituting (vi) and (v) and then integrating over Q , we obtain

f n

(vii) P[Mx)]dx s [l/(w+l)]P[(M+l)kM(a)]|n| + [l/(n+l)] X

dr. , ..., d*. . dr.,..., dx

„ x ^W,.....^) i

2/9xi)(x1, ..., x ^ , t, ai+1, ..., a j

The first term on the right-hand side of (vii) is less than » , because £2

is bounded. Moreover, there exists K. < °° such that

dx., ..., dx S K. for any fa, , ..., a;. ,) € $2. ,
Jfi(x1,...,xi_1) *' * « * l l ' *"lJ * "'

again because ft is bounded. Now consider the ith term, T. say,
If

innide the summation sign in (vii). We may write

\ = I ^ 1 ' ••••> dxi,\\

x P[(n+l)k(du/dx.) [x , . . . , x. , £, a. , . . . , a )]dt

x dx.9 . . . , dx
j Q ^ ^ V Yi

< K. \ dx. , . . . , dx. .
V j Q 1 V-.

v,... ,n
x P[(n+l)k(3£i/8x.)(x . . . , x . t , a . , . . . , a )
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= K. dr , . . . , dx. ,

where we have used the fact that Qj(o. , ..., a )] (a; ..., a;. ) = 0 if

(xv ...,xUl) tait^mtn- [n(ai+1, •••,*)];,._„• From (iv),

T. < °° , 1 5 i S n , so that we have shown that there exists k > 0 such
Is

t h a t P [ fcw(x) ]dx < °° , whence IMIp/jj) < 00 , t y 2 . 1 ( i ) .

4. Two theorems on Oriicz-Sobolev spaces

The following two theorems will be needed in §5. For the

corresponding results in Sobolev spaces, see Lemmas 1.5 and 1.6 in' Marcus

and Mizel [S]. We shall use the following notation.

(i) If fi is a domain in R , fi denotes the translate of SI by

the vector v 6 R ; and for fi' c R , SI' cc JJ means that Q' is a

compact subset of f! . 3fi denotes the boundary of fi .

(ii) For h > 0 , e. , l £ i S n , the standard basis for R , and
1* Yl

6*M(z) = (u(x+hei)-u(x

THEOREM 4.1. Suppose that Q is a bounded domain in R , that W

is an open set such that il' en Q , and that P is an N-function. Then

if 0 < h < dist(nr, 9ft) , and if u <

8 U
xi

Proof. For u €
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5 \{ydx)u{x+he.t)\
Jo

Sru(
n

and so for X > 0 , an application of Jensen's inequality gives

f p[6^(i)/^|dr S f [ P([d/dx.)u[x+he.t)/\)dtdx

= [ dt [ P((3/3s:.)u(aH-7ie.-fc)/A)<£»;
J 0 Jfi' % t

= [ dt [ P((3/3a:.')wU)/X')c£r
Jn Jo' n--hej

-L
dt

Taking the infinium of all X > 0 such that the right-hand side is less

than or equal to 1 gives

6JJ 2 ||3u/3x || ( } .n llp(nr) v PW)

By 2.1* (iii) for any w £ (/̂ .(fi) , there exists a sequence u of C°°(£2)

f n

functions such that u •*• u in w L (fi) . Replacing M by u in the

last inequality and letting n -*•<*> gives the result.

THEOREM 4.2. Suppose that Q is a domain in R , and u (. Lp(ti) ,

where P is an N-function. Then if there exists a number C such that

- c

for every open fi' or fi and \h\ sufficiently small, 3 u (. LV(Q) and
xi e

~ c •

We omit the proof, as it is almost identical to that for the Lebesgue

L spaces, as given in, say, Agmon [2] and Friedmann [4],
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5. A theorem on Nemitsky operators

We now have all the material necessary to extend Theorem 2.1 in Marcus

and Mizel [S] from Lebesgue to Orlicz spaces. For convenience, we shall

repeat some of the definitions from [8]. As before, Q is a domain in

R .
n

DEFINITIONS AND NOTATION 5 .1 . A function a : Q x R + R i s said to
m

be a generalised locally absolutely continuous Caratheodory function i f

(i) there exists a null subset N of fl such that if
9

x 6 Q - ng ,

(a) <?(x, •) is continuous in each variable separately in

m '

(b) for every line x parallel to one of the axes in

R » S?(x» * ) | is locally absolutely continuous;

(ii) for every fixed t I R^ , g{'t) € A'(tt) .

If "continuous in each variable separately" in (a) is replaced by

"continuous", the above then defines a locally absolutely continuous

Caratheodory function.

An operator G on vector valued functions u = [u , ..., u ]

measurable on H , defined by

Gu(x) = g{x, u(x)) = (g ° M)(X)

is called a Nemitsky operator.

Given u = [u , ..., u ) : SI •*• R , and tf-functions Q , ..., Q , we

shall use the notation

u € ^ ( )

to mean that u. € Jv̂ L (ft) , l < i < m .

THEOREM 5.2. Let SI be a bounded domain in R having the cone

property, and let g be a generalised locally absolutely continuous
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j .

Caratheodory function in fl x R . Let P, Q. and Q'. , 1 £ i 5 m , be

N-functions having the following properties:

(i) P and Q. , 1 2 is m , satisfy the A~ condition;

(ii) P <<?. , 1 S i <m ;
If

(Hi) there exist complementary N-functions R. and R. such

that the inequalities

and

~RAu) S

are satisfied for u - u. , where a.., B., u. ,

1 £ i £ m , are constants.

Suppose a, b, a,, b, . are functions such that

I. for every fixed t € R ,

13' g{x, t)\ - a(x) + bit) almost everywhere in fi s i = 1, — , n ;
i

II. t?ie inequality

m

"" j=l ^ ^

holds at every point (x, t) € (fi-/V ) x R at which the

derivative exists in the classical sense.

Furthermore, a, b, a, and b, . have the properties (iv)-(viii)

listed below:

(iv) 0 £ a € Lpiil) ;

(v) b is non-negative and separately continuous in R ;

(vi) 0 < a. € i_,(«) , 1 < fc < m ;
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(vii) 0 £ bv . is an extended real valued Borel function

on R , k, 3 = 1, . . . , m ;

Cviii) bk k €
k

^ O C ( R ) , k = 1 , . . . , m .

Let u = [u , . . . , u ) € w Z>x(fi) , and suppose
-L Til VQ

that

(ix) b ° u € Lp(ft) ,

(x) b, . o u. € L n (ft) > fc, j = 1, ..., m , k + 3 ,
K,3 3 ^

teij [&, , ° M , ] 8 M. € £ (ft) j fe = 1, ..., m j
' xi

i = 1, ..., n ,

where the produat is to be interpreted as zero whenever 8 M. = 0 .

Then v = g ° u belongs to w~L(Q.) .

Proof. We first observe that, using Theorem 3.1, we can obtain the

following version of Lemma 1.1* in [8]:

(i) Let P be an ^-function, and let ft be a bounded domain in R̂

having the cone property. Then a function / : ft -*• R belongs to W Lp(ft)

if and only if

(a) f € A'(il) ,

(b) 8^/ € Lp(fi) , i = 1, ..., n .

Moreover, i f / € iv^ip(ft) , 8^ / = 8^ / almost everywhere in ft ,
i i

i = 1, ..., n .

Using the above instead of Lemma, l.U in [8], the proof of Corollary

1.3 in [8] yields

(ii) Let g : R -»- R be a locally absolutely continuous function and

let ft be a bounded domain in R having the cone property. Suppose

u € W (0) , and let v = g ° u . Then V € fc^LpW if and only if
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(•) vi = [<?' ° u]tx u € Lp(fi) , i = 1, . . . . n ,
•i

the product being interpreted as zero wherever 9 u = 0 . Moreover, if
1

(*) holds, V . = 9 V almost everywhere in Q , i = X, ... , n .
t- CC •

If we now repeat the proof of Theorem 2.1 in LSI, using Theorem 5-2

(i), Theorem 5.2 (ii), 2.1 (iv), Theorem l*.l and Theorem k.2 instead of

Lemma l.k, Corollary 1.3, ||MW|| 5 ||u|| ||u|| , (for suitable u and W ),

Lemma 1.5, and Lemma 1.6 of [£] respectively, we obtain Theorem 5-2 above.

5.3. A PARTICULAR CASE. Suppose we choose p > 1 , q, > p , and q'

such that

XIq^ + X/qk = X/p , 1 5 fc 5 m ,

and let

P(u) = |u|P ,

Qr
kM = \u\k

RAu) =

and

RAu) -

Then P, Q,, Q,, R, and R, satisfy conditions (i), (ii) and (ii-ij

in Theorem 5-2. It follows that Theorem 5.2 contains Theorem 2.1 in [S] as

a special case.
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