Inverse semigroups and their natural order

H. Mitsch

The natural order of an inverse semigroup defined by $a \leq b \iff a'b = a'a$ has turned out to be of great importance in describing the structure of it. In this paper an ordertheoretical point of view is adopted to characterise inverse semigroups. A complete description is given according to the type of partial order an arbitrary inverse semigroup S can possibly admit: a least element of (S, \leq) is shown to be the zero of (S, \cdot) ; the existence of a greatest element is equivalent to the fact, that (S, \cdot) is a semilattice; (S, \leq) is directed downwards, if and only if S admits only the trivial group-homomorphic image; (S, \leq) is totally ordered, if and only if for all $a, b \in S$, either ab = ba = a or ab = ba = b; a finite inverse semigroup is a lattice, if and only if it admits a greatest element. Finally formulas concerning the inverse of a supremum or an infimum, if it exists, are derived, and rightdistributivity and left-distributivity of multiplication with respect to union and intersection are shown to be equivalent.

Introduction

Let (S, \cdot) be an inverse semigroup, (E, \cdot) the lower semilattice of all idempotent elements of S. Then a partial order " \leq " - the socalled "*natural order*" - can be defined on S by

(1) $a \leq b \Leftrightarrow ab' = aa'$

Received 15 June 1978.

(a' denotes the unique inverse of a in S); the order " \leq " on S restricted to E coincides with the partial order of the lower semilattice $E : e \leq f \iff e = ef = fe$ (e, $f \in E$). Several equivalent formulations of this definition are known (see [2, 3], [6]):

 $(2) a \leq b \Leftrightarrow a'b = a'a ,$

 $(3) a \leq b \Leftrightarrow a = eb , e \in E .$

With respect to this order, (S, \cdot) forms a partially ordered semigroup, that is to say, $a \leq b \Rightarrow ac \leq bc$ and $ca \leq cb$ for all $c \in S$; hence also $a \leq b \Leftrightarrow a' \leq b'$ (see [2, 3], [5]). The natural order on S is even a special "natural" ordering in the sense of partially ordered semigroups (see [5]):

$$(4) a \leq b \iff a = (aa')b = b(a'a)$$

In fact, by (2), $a \le b$ implies a'b = a'a, thus, multiplying by a on the left, (aa')b = a; conversely a = (aa')b = eb with $e \in E$ implies $a \le b$, by (3). Furthermore

$$a \leq b \Leftrightarrow a' \leq b' \Leftrightarrow a' = (a'a)b' \Leftrightarrow a = b(a'a)$$

by taking inverses.

Order-theoretic considerations have turned out to be of great importance in the theory of inverse semigroups. In the following a description of special types of partial orderings which the natural order on an inverse semigroup can possibly assume will be given.

Special natural orders

In every inverse semigroup S we have, with respect to its natural order,

(5) $a \leq e$, $e \in E$, $a \in S \Rightarrow a \in E$ (by (3), a = fe, $f \in E$, thus $a \in E$); (6) $e \leq a$, $e \in E$, $a \in S \Rightarrow ea = ae = e$ (by (4), e = (ee')a = ea, e = a(e'e) = ae).

LEMMA 1. An element a of an inverse semigroup S is the least element of S, if and only if a is the zero of S.

Proof. If c is the zero of S, then c = ca for all $a \in S$ and

 $c \in E$; hence by (3), $c \leq a$ for all $a \in S$. Conversely if $c \leq a$ for all $a \in S$, then, by (4), c = (cc')a = a(c'c). If there is $e \in E$ (that is if $E \neq \emptyset$), then with a = e we obtain $c = (cc')e \in E$ and c = ca = ac for all $a \in S$; if $E = \emptyset$, then S can not be an inverse semigroup, since $a \in S$ implies $aa' \in E$. //

LEMMA 2. An inverse semigroup S possesses a greatest element, if and only if S is an idempotent, commutative semigroup with identity (that is a semilattice).

Proof. If S is a semilattice with identity e, then a = ae for all $a \in S$; since S = E, we conclude from (3) that $a \leq e$ for all $a \in S$.

Conversely assume $a \leq i$ for all $a \in S$ (where i is the greatest element of S); then by (1), ai' = aa' for all $a \in S$. For $e \in E$ we have ei' = e, thus e(i'i) = ei; but $e, i'i \in E$ implies $ei \in E$. Now if $a \in S$ is an arbitrary element, then $a \leq i$ implies, by (4), a = (aa')i with $aa' \in E$; consequently $a \in E$ for all $a \in S$. This means that S is an idempotent, and thus commutative, semigroup (since idempotents commute in an inverse semigroup). Furthermore a' = a for all $a \in S$ and $a \leq i$ implies ai = ia = a for all $a \in S$, and i is the identity of S. //

A partial order " \leq " on a set S is called *directed downwards*, if for all $x, y \in S$ there exists a $z \in S$ with $z \leq x$ and $z \leq y$; the dual concept is *directed upwards*.

REMARKS. (1) If an inverse semigroup S is directed upwards with respect to its natural order, then it is also directed downwards. In fact: if for all $x, y \in S$ there is $z \in S$ such that $x \leq z$ and $y \leq z$, then, by (3), x = ez and y = fz, with $e, f \in E$; hence $fx = fez = efz = ey = u \in S$, which means, again by (3), $u \leq x$ and $u \leq y$, and S is directed downwards.

(2) If S is directed downwards, then S is a reversible semigroup ([2, 3]). In fact, if for all $x, y \in S$ there is $z \in S$ with $z \leq x$ and $z \leq y$, then, by (4), z = ex = fy with $e, f \in E \subseteq S$, and z = xg = yh with $g, h \in S$, which means $(Sx) \cap (Sy) \neq \emptyset$ and $(xS) \cap (yS) \neq \emptyset$.

LEMMA 3. An inverse semigroup S is directed downwards with respect

to its natural order, if and only if the right-reversible equivalence P_E of Dubreil, defined by $a \equiv b(P_E) \iff ea = fb$ for some $e, f \in E$, is the universal relation.

Proof. S is directed downwards if and only if for all $x, y \in S$, there exists a $z \in S$ with $z \leq x$ and $z \leq y$, or equivalently z = ex = fy with $e, f \in E$, or equivalently again, for all $x, y \in S$, there exist $e, f \in E$ with ex = fy, or finally equivalently P_E is the universal relation on S (see [2, 3], [4]). //

THEOREM 4. An inverse semigroup S is directed downwards with respect to its natural order, if and only if the only group-homomorphic image of S is the trivial one.

Proof. By [7] the least group-congruence on an arbitrary inverse semigroup S (that is to say, a congruence ρ such that S/ρ is a group) is defined by $a \equiv b(\rho)$ if and only if ea = eb for some $e \in E$. If S is directed downwards, then this is equivalent to the existence of $z \in S$, given $x, y \in S$, such that z = (zz')x = (zz')y (by (4)), which means that ex = ey for $e = zz' \in E$. But this is equivalent to the fact that the least group-congruence on S is the universal relation, which means that the maximal group-homomorphic image of S is the trivial group; in other words there is no other group homomorphic to S except the trivial one. //

REMARK. As a consequence we note that inverse semigroups the natural order of which is an upper-semilattice, a lower-semilattice, or a latticeorder, necessarily have only the trivial group-homomorphic image.

One order-theoretical extreme is the case where the natural order of S is a total order; we prove:

THEOREM 5. An inverse semigroup S is totally ordered with respect to its natural ordering, if and only if ab = ba = a or ab = ba = b for all $a, b \in S$.

Proof. If ab = ba = a or ab = ba = b for all $a, b \in S$, then for b = a we get $a^2 = a$, a' = a for all $a \in S$ and E = S. Thus for arbitrary $a, b \in S$ we have: if a = ab then $a \leq b$, and if b = ab = ba, then $b \leq a$ by (3), and (S, \leq) is totally ordered.

Conversely if the natural order of S is total, then we have $a \leq a'$ or $a' \leq a$ for all $a \in S$. By taking inverses we obtain $a' \leq a$ or $a \leq a'$; thus a' = a for all $a \in S$ and $a = aa'a = a^3$ for all $a \in S$. Since $a^2 \leq a$ or $a \leq a^2$ for all $a \in S$, we get, multiplying by a, $a = a^3 \leq a^2$ or $a^2 \leq a^3 = a$; hence $a^2 = a$ for all $a \in S$, and E = S. But idempotents of an inverse semigroup commute, so that ab = ba for all $a, b \in S$. Furthermore $a \leq b$ or $b \leq a$ for all $a, b \in S$, and we conclude that ab = ba = a or ab = ba = b for all $a, b \in S$. //

REMARK. If an inverse semigroup S possesses an identity e, then e is maximal with respect to the natural order of S. In fact suppose e < a for an $a \in S$; then, by (1), $ea' = ee' = e^2 = e$; thus a' = e and a = (a')' = e, a contradiction. Furthermore if e is the least element of S, then $S = \{e\}$.

Concerning semilattice-orders, Lemma 2 solves the problem on the assumption that there is a greatest element. Equivalently we state

LEMMA 6. Let S be an inverse semigroup with identity e. Then S is a lower semilattice with respect to its natural order, if e is the greatest element of S.

Finally we give an answer to the question: which are the finite inverse semigroups whose natural order is a lattice-order?

THEOREM 7. Let S be a finite inverse semigroup. Then S is a lattice with respect to its natural order, if and only if S possesses a greatest element.

Proof. If S has a greatest element, then, by Lemma 2, (S, \leq) is a lower semilattice with respect to the operation "A" defined by $a \land b = ab$ for all $a, b \in S$ (see Theorem 1.12 of [2]). Since (S, \leq) is bounded from above, and since every non-void subset T of S has an infimum, $\inf T = a_1 \ldots a_n$ with $a_i \in T$, by a well-known result of lattice-theory every non-void subset of S has also a supremum; in particular $\sup\{a, b\} = a \lor b = c_1 \ldots c_k$ where c_i runs through all elements of S, which are upper bounds for $\{a, b\}$. The converse is trivial, since a finite lattice has a greatest element. // COROLLARY 8. Let S be a finite inverse semigroup with identity e. Then S is a lattice with respect to its natural order, if and only if e is the greatest element of S.

Concerning possibly existing infima and suprema in inverse semigroups we show:

LEMMA 9. Let S be an inverse semigroup. If a, b are elements of S for which $\sup\{a, b\} = a \lor b$ ($\inf\{a, b\} = a \land b$) exists, then $a' \lor b'$ exists, too, and $(a \lor b)' = a' \lor b'$ ($a' \land b'$ exists, too, and $(a \land b)' = a' \land b'$).

Proof. If $a \lor b$ exists for $a, b \in S$, then $a, b \leq a \lor b$ and $a', b' \leq (a \lor b)'$; if $x \in S$ is any upper bound for $\{a', b'\}$, then $a', b' \leq x$ implies $a, b \leq x'$; thus $a \lor b \leq x'$ and $(a \lor b)' \leq x$, that is $(a \lor b)'$ is the least upper bound for $\{a', b'\}$, and $(a \lor b)' = a' \lor b'$. //

LEMMA 10. Let S be an inverse semigroup which is a lattice with respect to its natural order. Then multiplication is left-distributive with respect to union (intersection), if and only if it is right-distributive with respect to union (intersection).

Proof. Suppose $a(b \lor c) = ab \lor ac$ for all $a, b, c \in S$. Since $a, b \leq a \lor b$ implies $ac, bc \leq (a \lor b)c$, we have that $ac \lor bc \leq (a \lor b)c$ for all $a, b, c \in S$. Consequently in order to prove right-distributivity we have to show the converse inequality

 $[(a \lor b)c](ac \lor bc)' = [(a \lor b)c][(ac)' \lor (bc)'] \text{ by Lemma 9}$ $= [(a \lor b)c](c'a' \lor c'b')$ $= [(a \lor b)c][c'(a' \lor b')] \text{ by assumption}$ $= [(a \lor b)c][(a \lor b)c]' .$

By (1) this means $(a \lor b)c \leq ac \lor bc$ for all $a, b, c \in S$. The proof of the converse statement is similar. //

References

 [1] Garrett Birkhoff, Lattice theory, Third edition (American Mathematical Society Colloquium Publications, 25. American Mathematical Society, Providence, Rhode Island, 1967).

- [2] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups, Volume I (Mathematical Surveys, 7. American Mathematical Society, Providence, Rhode Island, 1961; reprinted 1964).
- [3] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups, Volume II (Mathematical Surveys, 7. American Mathematical Society, Providence, Rhode Island, 1967; reprinted 1971).
- [4] Paul Dubreil, Contribution à la théorie des semi-groupes (Mém. Acad. Sci. Inst. France (2) 63, no. 3, 52 pp (1941)).
- [5] L. Fuchs, Partially ordered algebraic systems (Pure and Applied Mathematics, 28. Akadémiai Kiadó, Budapest; Pergamon Press, Oxford, London, New York, Paris, 1963).
- [6] J.M. Howie, An introduction to semigroup theory (London Mathematical Society Monographs, 7. Academic Press [Harcourt Brace Jovanovich], London, New York, San Francisco, 1976).
- [7] W.D. Munn, "A class of irreducible matrix representations of an arbitrary inverse semigroup", Proc. Glasgow Math. Assoc. 5 (1961-62), 41-48.
- [8] В.В. Вагнер [V.V. Vagner], "Обобщенные группы" [Generalized groups], Dokl. Akad. Nauk SSSR (N.S.) 84 (1952), 1119-1122.

Mathematisches Institut der Universität Wien, Wien, Austria.