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Abstract

The SKA and its pathfinders will enable studies of H I emission at higher redshifts than ever before. In moving beyond the
local Universe, this will require the use of cosmologically appropriate formulae that have traditionally been simplified to
their low-redshift approximations. In this paper, we summarise some of the most important relations for tracing H I emission
in the SKA era, and present an online calculator to assist in the planning and analysis of observations (http://hifi.icrar.org).
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1 INTRODUCTION

Neutral atomic hydrogen (H I) is one of the most impor-
tant tracers for studying the assembly of mass, angular mo-
mentum, and structure in the Universe (Staveley-Smith &
Oosterloo 2015; Blyth et al. 2015; Kim et al. 2015, 2017;
Obreschkow et al. 2016). However, the difficulty of observ-
ing emission from this material has meant that most stud-
ies have been restricted to the local Universe, with only a
small fraction of detections occurring beyond redshift z ∼0.1
(Jaffé et al. 2013; Giovanelli & Haynes 2016). As power-
ful new radio telescopes come online (ASKAP, MeerKAT,
WRST-Apertif, FAST, SKA), such observations will become
commonplace (Duffy et al. 2012; Holwerda, Blyth, & Baker
2012; Staveley-Smith & Oosterloo 2015), necessitating the
use of formulae that allow for an evolving Universe. A ba-
sic summary of the cosmologically appropriate formulae for a
variety of standard H I quantities is given in the following sec-
tions, with the aim of providing a reference document for up-
coming pathfinder studies. In the final section, we introduce
an accompanying online calculator based on the provided
formulae. Useful references for work underpinning the ma-
terial here include Hogg (1999), Abdalla & Rawlings (2005),
Obreschkow et al. (2009), Ned Wright’s online tutorial1, and
CosmoCalc2.

1 www.astro.ucla.edu/∼wright/cosmo_01.htm
2 http://cosmocalc.icrar.org

2 REDSHIFT

For observational H I studies, the redshift of a source is simply
defined as

zobs = νH I

νobs
− 1 = λobs

λH I

− 1, (1)

where νH I and λH I are the emitted frequency and wavelength
of the H I line, and νobs and λobs are the corresponding fre-
quency and wavelength at which it is observed. This redshift
is the combined result of a number of potentially contribut-
ing effects, including the cosmological redshift due to the
expansion of the Universe, local motions in either the source
or observer rest frames, and gravitational redshifts caused
by (evolving) potential wells along the line of sight. Con-
sidering just the cosmological redshift (zcos) and the peculiar
motions of the source (zsource

pec ) and observer (zobserver
pec ) (Davis

& Scrimgeour 2014):

1 + zobs = (1 + zcos )(1 + zsource
pec )(1 + zobserver

pec ). (2)

Different standards of rest or flow models are often used to
minimise peculiar velocity effects, particularly in the nearby
Universe. At higher redshifts (e.g. z � 0.03, Baldry et al.
2012), the cosmic microwave background offers a reference
frame that can be used to remove local peculiar velocity ef-
fects, reducing Equation (2) to

1 + zobs = (1 + zcos )(1 + zsource
pec ). (3)

As a general note, the effects of peculiar velocities are
multiplicative in 1 + z rather than additive in velocity, as
shown in the equations above, and any corrections for peculiar

1
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velocity effects need to be similarly applied, such as when
making doppler corrections to data taken at different epochs.

In this paper, unless otherwise specified, we make the over-
all simplifying assumption that the observed redshift is equal
to the cosmological redshift (zobs = zcos = z, i.e. zobserver

pec =
zsource

pec = 0), but be aware that, particularly in the local Uni-
verse, there can be a non-negligible difference between these
redshifts and you may need to adjust for this assumption.

3 PARAMETERISATIONS OF COSMIC
EXPANSION

The relationship between proper (physical) distance and the
recessional velocity of galaxies due to the expansion of the
Universe at a given epoch is parameterised through the Hub-
ble parameter H(z), with Hubble’s Constant H0 = H(0) its
value at the present time. If we divide the energy density of
the Universe, normalised by the critical energy density, into
its fractional components of matter (�M), radiation (�R),
vacuum energy (��), and also include a term for spatial cur-
vature (�K = 1 − � = 1 − �M − �R − ��), then we can
express H(z) (Weinberg 2008):

H (z) = H0E (z), (4)

where

E (z) =
√

�R(1 + z)4 + �M(1 + z)3 + �K(1 + z)2 + ��. (5)

Note that the �i values here correspond to those at z = 0,
and that the above expression does not include any redshift-
dependent factors alongside ��. If desired, a model can also
be included for a varying vacuum energy density, as discussed
in Section 20.

The dependence of a given quantity on the Hubble constant
is often explicitly stated alongside the physical units of a
measurement through the use of the dimensionless Hubble
constant (‘little h’):

h ≡ H0

100 km s−1Mpc−1
. (6)

The various uses of this quantity and its pitfalls are well
described in Croton (2013). In this paper, and to further aid
the comparison of values contained in the historical literature,
we give all Hubble constant dependencies in terms of hC,
allowing for the practice sometimes used of specifying the
precise value of H0 used in the little h nomenclature:

hC ≡ H0

C km s−1Mpc−1
. (7)

An explanation of how to convert values from one value of the
Hubble constant to another with a specified hC dependence
is given in Appendix A.

4 COSMOLOGICAL DISTANCES

There are a number of cosmological distances relevant to the
calculation and understanding of H I quantities, most notably
including the line-of-sight comoving distance to a galaxy

(DC), the transverse comoving distance (DM), the luminosity
distance to a galaxy (DL), and the angular diameter distance
(DA). Following Hogg (1999), the comoving distance DC is
given by

DC(z) = c

H0

∫ z

0
E−1(z′)dz′, (8)

where E(z) is as expressed in Equation (5). As before, this
can also be modified to include a model for a varying vacuum
energy density if desired. From DC, we can then express the
transverse comoving distance DM:

DM(z) =

⎧⎪⎪⎨
⎪⎪⎩

c
H0

√
�K

sinh
(

H0
√

�K
c DC

)
if �K > 0,

DC if �K = 0,
c

H0
√|�K | sin

(
H0

√|�K |
c DC

)
if �K < 0,

(9)

and finally the luminosity distance DL and angular diameter
distance DA:

DL(z) = (1 + z)DM(z), (10)

DA(z) = DM(z)/(1 + z). (11)

As these distances are all inversely proportional to the chosen
value of the Hubble constant, this dependence can be included
explicitly via little h in the units, e.g. h−1

C Mpc.

5 LINE-OF-SIGHT VELOCITY

The various different definitions of velocity offer a significant
potential source of confusion, particularly given the historical
use of velocity in H I spectral line studies to describe both
rest frame motions (i.e. the motions of objects through space),
Vpec, as well as a proxy for redshift caused by the expansion
of space, Vcos.

Beginning with the full relativistic expressions for these
two velocities, for Vpec, we have the special relativity expres-
sion (Einstein 1905; Davis, Lineweaver, & Webb 2003):

Vpec(zpec) = VSR(zpec), (12)

= c
ν2

rest − ν2
obs

ν2
rest + ν2

obs

, (13)

= c
(1 + zpec)2 − 1

(1 + zpec)2 + 1
, (14)

where these equations assume that motion is purely along
the line of sight relative to the observer (see Einstein for the
relevant equations where the source has a transverse veloc-
ity component), and that the observer is in the same inertial
reference frame as the source.

In comparison, for Vcos, we have the general relativistic
expression (Davis et al. 2003):

Vcos(zcos, zref ) = VGR(zcos, zref ), (15)

= c
H (zref )

1 + zref

∫ zcos

0

dz′
cos

H (z′
cos )

, (16)
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where zref is the redshift at which the velocity is to be evalu-
ated. In practice, as we are observing the object at zcos at the
current epoch, zref = 0. In this situation, the above equation
simplifies to (and as used in CosmoCalc)

Vcos(zcos ) = c
∫ zcos

0
E−1(z′) dz′. (17)

Comparing the above expression with Equation (8), it can be
seen that Vcos then is the velocity that restores a basic Hubble
Law relation Vcos(z) = DC(z)/H0 for all redshifts.

For small redshifts (z < 0.1), both the special relativistic
and general relativistic formulae can be approximated by the
‘optical’ velocity convention (to distinguish this from the now
deprecated ‘radio’ velocity alternative):

Vopt (z) = cz. (18)

As a general rule to avoid confusion, the use of velocities
is best restricted to describe source rest frame motions (e.g.
galaxy rotation, peculiar velocities), and not as a proxy for
observed frame quantities (e.g. cosmological redshift, dis-
tance, or observed frame frequency width). To separate these
two potential uses of velocity in the rest of the paper, we
refer to Vrest (≡ czpec, as in general for H I, Vpec � c and
so this is a good approximation of VSR) and for the non-
recommended observed frame velocity, we refer to Vobs (≡
czobs, which while only an accurate approximation of VGR

at low redshift, has the advantage that it is readily invertible
to obtain the source redshift if desired, and is the form that
has traditionally been used in the literature). For reference,
a comparison plot showing the differences between VSR(z),
VGR(z), and Vopt(z) can be found in Davis & Lineweaver
(2001).

6 EMISSION PROFILE WIDTH

Along with redshift, another key parameter that can be mea-
sured from H I profiles is their frequency width, which pro-
vides a line-of-sight measure of velocity differences in the
source material, predominantly caused by galaxy rotation.
In a similar vein to the discussion of the previous section,
to avoid confusion, it is recommended that widths in the
source rest frame be specified in terms of velocity, �Vrest,
while those in the observed frame be given in frequency,
�νobs. The relation between the two can be derived from
Equation (3). Using the non-relativistic approximation for
rest frame velocity width, zpec = ±Vpec/c = ±�Vrest/(2c), this
gives

�νobs = νH I

c(1 + zcos )
(

1 − (
�Vrest

2c

)2
)�Vrest. (19)

Given the non-relativistic assumption �Vrest � c, and again
assuming that any systematic peculiar velocity can be ignored
(zobs = zcos = z), Equation (19) simplifies to the basic relations
used in this paper to convert between �Vrest and �νobs:

�Vrest � c(1 + z)

νH I

�νobs = c

νobs
�νobs. (20)

While discouraged, if you need to convert between observed
frame and rest frame velocities (such as might need to be
done when using some software which by default will mea-
sure observed frame widths in terms of optical velocity), or
similarly between observed frame and rest frame frequency
widths, this can be done using

�Vrest = 1

1 + z
�Vobs, (21)

�νobs = 1

1 + z
�νrest. (22)

As a trivial extension, Equation (20) can also be used to de-
termine the rest frame velocity resolution for a fixed observed
frame channel width (setting �νobs = �νchan).

7 BEAM

For a normalised beam sensitivity response that can be rep-
resented as a 2D elliptical gaussian (and ignoring position
angle),

Pn(x, y) = e
−

(
x2

2σ2
x

+ y2

2σ2
y

)
, (23)

the solid angle covered by the beam, or its field of view, is
given by (e.g. Kraus 1986)

�bm =
∫ ∞

−∞

∫ ∞

−∞
Pn(x, y) dxdy, (24)

= 2πσxσy, (25)

= πab

4 ln(2)
. (26)

where a (= 2
√

2 ln(2)σx) is the beam angular major axis, and
b (= 2

√
2 ln(2)σy) is the angular minor axis, both measured

at the half power point.
Note that the half power points a, b∝λobs∝(1 + z), so for

a synthesised beam with no frequency-dependent weighting,
or a non-compound primary beam, the beam solid angle will
vary as

�bm(z) = (1 + z)2�bm(0). (27)

Note that in practice, the illumination of a telescope is fre-
quency dependent, so the primary beam field of view may
not scale exactly as (1 + z)2 as given above. A broad-
band feed will generally under-illuminate a dish at the high-
est frequencies, making the beam larger (and the efficiency
lower).

Another useful metric is the ‘noise-equivalent field of
view’ of a primary beam, or the equivalent solid angle sam-
pled at full sensitivity, which is the integral of the square
of the beam. This is relevant, for instance, when calculat-
ing the number of pointings needed to achieve a given noise
sensitivity over an extended region of sky. For a normalised
beam response represented by a 2D elliptical gaussian,
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this gives

�NE
bm =

∫ ∞

−∞

∫ ∞

−∞
P2

n (x, y) dxdy, (28)

= πσxσy, (29)

= πab

8 ln(2)
. (30)

8 FLUX DENSITY

The observed flux density, Sν , for a source with a rest frame
luminosity density of Lνrest = L(1+z)νobs = L(1+z)ν will be
(Peacock 1999)

Sν = (1 + z)
L(1+z)ν

4πD2
L

. (31)

The preferred unit for Sν is Jy (= 10−26 W m−2 Hz−1). The
maximum of Sν for a given source is often referred to an
object’s ‘peak’ flux density.

As a side note, the intensity scale of H I images is usually
presented in units of ‘Jy per beam’, reflecting the fact that a
telescope will measure any flux within its beam when pointed
a source, i.e. that the specific intensity observed, Iobs

ν , is the
real specific intensity at the location of the observer, Iν , con-
volved with the normalised beam, Pn. The flux density, Sν of
the source is then given by Kraus (1986):

Sν =
∫

�src

Iν (θ, φ) d�, (32)

= 1

�bm

∫
�src

Iν (θ, φ) ∗ Pn(θ, φ) d�, (33)

= 1

�bm

∫
�src

Iobs
ν (θ, φ) d�. (34)

To recover the correct flux for an extended region,∫
�src

Iobs
ν (θ, φ) d� is measured by summing values of the pix-

els in the source region (in Jy per beam) multiplied by the
pixel area, from which Sν can then recovered by dividing by
the area of the beam. Or expressed alternatively, Sν can be
measured by simply converting the specific intensity values
of the image to Jy per pixel, and then summing over the region
of interest.

Note that if the ratio of beam area to pixel area is constant as
a function of frequency (i.e. both pixel area and beam area are
scaling as 1 + z), then the correction factor for the extended
source flux sum will be constant, but if not, e.g. the image
cube has a fixed angular pixel sale, a varying correction will
be required.

For a point source, while this approach could also be taken,
it results in a sub-optimal signal-to-noise measurement com-
pared to either just taking the value of the pixel centred on the
source (although this has the potential to underestimate the

source flux if the pixel is not exactly centred on the source),
or weighting the pixel values by the beam response (which
avoids this problem, but increases the effective angular area
over which the measurement is being made compared to the
single pixel method, and as such can increase the impact of
source confusion).

9 FLUX

For a source at redshift z, with a rest frame total H I luminosity
of L, its observed flux S will be

S =
∫

Sνdνobs, (35)

=
∫

(1 + z)
Lνrest

4πD2
L

dνobs, (36)

=
∫

Lνrest

4πD2
L

dνrest, (37)

⇒ S = L

4πD2
L

. (38)

The preferred unit for this quantity is Jy Hz (= 10−26 W m−2).
In H I studies, reference is often made to a similar,
but dimensionally different quantity defined as the inte-
gral of flux density as a function of velocity rather than
frequency:

SV =
∫

SνdV, (39)

the units for which are Jy km s−1 (=
10−26 W m−2Hz−1 km s−1). This is a poor quantity for
cosmological measurements as it introduces some uncer-
tainty about exactly what velocity (or pseudo-velocity)
has been used in its calculation, as discussed earlier. It is
preferable to use S rather than SV wherever possible, and
particularly so if referring to a measurement of an object’s
observed total flux given the dimensional difference of SV

from that of a natural flux value.
The conversion between S and SV depends on the velocity

convention used. If SV is measured in the optical observed
frame, (

SVobs

Jy km s−1

)
= c(1 + z)2

νH I

(
S

Jy Hz

)
, (40)

� 2.11 × 10−4 (1 + z)2
(

S
Jy Hz

)
. (41)

Alternatively, if the velocity used for the calculation of SV

is a source rest frame velocity (for which Vopt � VSR at the
velocities relevant for galaxy rotation), then(

SVrest

Jy km s−1

)
= c(1 + z)

νH I

(
S

Jy Hz

)
, (42)

� 2.11 × 10−4 (1 + z)
(

S
Jy Hz

)
. (43)
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10 NUMBER OF H I ATOMS

Taking 3
4 of H I atoms to be in the upper hyperfine state, with

a spontaneous emission rate of AH I, an emitted photon energy
of hνH I, and an H I source with luminosity L to be optically
thin, the number of H I atoms, NH I, will be given by

NH I = L
3
4 hνH IAH I

, (44)

= 16πD2
LS

3hνH IAH I

, (45)

⇒
(

NH I

h−2
C

)
� 5.91 × 1058

(
DL

h−1
C Mpc

)2 (
S

Jy Hz

)
. (46)

11 H I MASS

Using the above relation, the H I mass of a source is trivially
given by (caveat corrections that need to be applied if the
source is not optically thin)

MH I = NH ImH, (47)

⇒
(

MH I

h−2
C M�

)
� 49.7

(
DL

h−1
C Mpc

)2 (
S

Jy Hz

)
, (48)

which compares to the relation expressed in terms of tradi-
tional observed frame velocity integrated flux:(

MH I

h−2
C M�

)
� 2.35 × 105

(1 + z)2

(
DL

h−1
C Mpc

)2 (
SVobs

Jy km s−1

)
, (49)

or rest frame velocity integrated flux:(
MH I

h−2
C M�

)
� 2.35 × 105

1 + z

(
DL

h−1
C Mpc

)2 (
SVrest

Jy km s−1

)
. (50)

12 H I MASS FUNCTION

The H I mass function, �(MH I ), gives the number of sources
per unit volume as a function of H I mass, i.e. the volume
density of sources, n, having masses between M1 and M2
will be given by

n =
∫ M̂2

M̂1
�(M̂H I )dM̂H I, (51)

where for convenience in the equations that follow, we
have expressed this in terms of dimensionless mass M̂H I ≡
MH I/M∗

H I, M∗
H I being one of the Schechter function param-

eters traditionally used to parameterise the mass function.
Clearly, the mass function could also be expressed without
this change of variable. The Schechter function form is given
by (Schechter 1976; Zwaan et al. 2005)

�(M̂H I )dM̂H I = θ∗M̂α
H Ie

−M̂H I dM̂H I, (52)

where θ* provides the overall normalisation, α gives the slope
of the low mass power-law, and M∗

H I gives the characteristic

turnover mass, above which the number of sources exponen-
tially declines. Alternatively, the number of sources is often
expressed as an integral over log(M̂H I ) rather than M̂H I, i.e.

n =
∫ log(M̂2)

log(M̂1)
(M̂H I )d log M̂H I, (53)

which gives (Springob, Haynes, & Giovanelli 2005; Martin
et al. 2010)

(M̂H I )d log M̂H I = φ∗ ln(10)M̂α+1
H I e−M̂H I d log M̂H I. (54)

In practice, the H I mass function is normally presented as
log () vs. log(M̂H I ). In this space, the functional form of the
Schechter function is given by

log  = log(φ∗ ln 10) + (1 + α) log M̂H I − M̂H I log(e). (55)

For evolutionary studies, the mass function is best expressed
in comoving coordinates to remove normalisation changes
caused purely by the expansion of the Universe.

Note also that the Schechter form of the H I mass function
is not consistently defined in the literature, and so you may
need to pay attention to the particular definition used when
comparing results.

13 COSMOLOGICAL MASS DENSITY

The cosmological mass density of H I can be calculated by
carrying out the mass-weighted integral over the H I mass
function:

ρH I =
∫ ∞

0
MH I�(MH I )dMH I. (56)

This can either be simply summed directly from the measured
H I mass function data points (providing a sufficient mass
range is spanned and making sure to correct � values to
those appropriate for the log MH I binwidths actually used),
or through the following analytic solution expressed in terms
of the fitted Schechter parameters and the complete Gamma
function, � (Zwaan et al. 2003):(

ρH I

hC M� Mpc−3

)
=

(
θ∗

h3
C Mpc−3

)
�(2 + α)

(
M∗

H I

h−2
C M�

)
. (57)

For an H I mass function measured using comoving volume,
this will similarly yield a cosmic H I density in comoving
coordinates, and so ρH I should remain constant with red-
shift/lookback time if no evolution is occurring aside from
the expansion of the Universe.

The cosmic mass density of H I can also be expressed as a
fraction of the critical mass density:

�H I (z) = ρH I (z)

ρcrit (z)
, (58)

where in proper (physical) coordinates ρcrit(z) is given by
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ρ
p
crit (z) = 3H 2(z)

8πG
, (59)

or in comoving coordinates:

ρc
crit (z) = 1

(1 + z)3

3H 2(z)

8πG
. (60)

Evaluating these expressions for �H I gives(
�H I (z)

h−1
C

)
=

(
3.60 × 10−8 × H−2(z)

h−2
C M−1

� Mpc3

)

×
(

ρ
p
H I (z)

hCM�Mpc−3

)
, (61)

or (
�H I (z)

h−1
C

)

= 1

(1 + z)3

(
3.60 × 10−8 × H−2(z)

h−2
C M−1

� Mpc3

) (
ρc

H I (z)

hCM�Mpc−3

)
.

(62)

Note that for an expanding Universe, if there exist contrib-
utors to the total energy density other than matter, ρc

crit will
evolve with redshift along with ρ

p
crit . As such, �H I will also

change, even if the comoving density of H I does not. To re-
move this effect, the practice is often used of replacing ρcrit(z)
with ρcrit(z = 0) in the above expressions, i.e.

�H I (z) = ρH I (z)

ρcrit (z = 0)
, (63)

which also offers the convenience of ρ
p
crit (z = 0) = ρc

crit (z =
0), but be aware of the difference between this and the above
derivations, and be sure to specify which definition of �H I(z)
is being used.

14 BRIGHTNESS TEMPERATURE

The brightness temperature corresponding to an observed
flux density Sν , measured within a beam solid angle �bm, is
the blackbody temperature an extended object would need to
have to produce the observed flux in the Rayleigh-Jeans limit
(hν � kT; Wilson, Rohlfs, & Hüttemeister 2009). From the
Rayleigh-Jeans law, the luminosity emitted by a blackbody
per unit area into a unit solid angle, Bν is given by

Bν = 2kν2T

c2
, (64)

where k is Boltzmann’s constant. In a Euclidean geometry, Iν
= Bν (surface brightness conservation; Iν is the received spe-
cific intensity), giving the traditional local-Universe relation
for H I brightness temperature:

Bν = Iν = Sν

�bm
= 2kν2

H IT

c2
, (65)

⇒ TB = c2Sν

2kν2
H I�bm

. (66)

However, in a relativistic Universe, we have (Peacock 1999)

Iν = Bν(1+z)

(1 + z)3
= Bνrest

(1 + z)3
, (67)

giving

Iν = Sν

�bm
= 2kν2

H IT

c2(1 + z)3
, (68)

⇒ TB = (1 + z)3 c2Sν

2kν2
H I�bm

. (69)

Evaluating the constants gives(
TB

K

)
= 6.86 × 105 (1 + z)3

(
Sν

Jy

) (
�bm

arcsec2

)−1

, (70)

or expressed alternatively as a function of the beam angular
major and minor axes a and b:(

TB

K

)
= 6.06 × 105 (1 + z)3

(
Sν

Jy

) (
ab

arcsec2

)−1

. (71)

15 COLUMN DENSITY

The H I column density gives the number of atoms per unit
area along the line of sight through an astronomical object.
The column density NH I for a flux S measured in solid angle
�bm is given by (using Equation (45) for the number of atoms,
and the small angle approximation to calculate the source
area; material is again assumed to be optically thin)

NH I = NH I

area
=

(
16πD2

LS

3hνH IAH I

)(
1

D2
A�bm

)
, (72)

= 16π

3hνH IAH I

(1 + z)4 S

�bm
, (73)

⇒
(

NH I

cm−2

)
= 2.64 × 1020(1 + z)4

(
S

JyHz

) (
�bm

arcsec2

)−1

,

(74)

or in terms of the beam angular major and minor axes a and
b:

NH I =
(

16πD2
LS

3hνH IAH I

)(
4 ln(2)

D2
Aπab

)
, (75)

⇒
(

NH I

cm−2

)
= 2.33 × 1020(1 + z)4

(
S

JyHz

) (
ab

arcsec2

)−1

.

(76)

For comparison, the expressions in terms of observed frame
velocity integrated flux are(

NH I

cm−2

)
= 1.25 × 1024(1 + z)2

×
(

SVobs

Jy km s−1

) (
�bm

arcsec2

)−1

, (77)

(
NH I

cm−2

)
= 1.10 × 1024(1 + z)2

×
(

SVobs

Jy km s−1

) (
ab

arcsec2

)−1

. (78)
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And for rest frame velocity integrated flux:(
NH I

cm−2

)
= 1.25 × 1024(1 + z)3

×
(

SVrest

Jy km s−1

)(
�bm

arcsec2

)−1

, (79)

(
NH I

cm−2

)
= 1.10 × 1024(1 + z)3

×
(

SVrest

Jy km s−1

) (
ab

arcsec2

)−1

. (80)

The above column density expressions can be readily ex-
pressed as H I surface mass densities by multiplying mH and
converting to the desired units, e.g.(

�H I

M� pc−2

)
= 8.01 × 10−21

(
NH I

cm−2

)
, (81)

= 2.12 (1 + z)4

(
S

JyHz

) (
�bm

arcsec2

)−1

, (82)

= 1.00 × 104(1 + z)2

×
(

SVobs

Jy km s−1

) (
�bm

arcsec2

)−1

, (83)

= 1.00 × 104(1 + z)3

×
(

SVrest

Jy km s−1

) (
�bm

arcsec2

)−1

. (84)

Column density can also be expressed as a function of bright-
ness temperature, TB. Following Wilson et al. (2009), Gio-
vanelli & Haynes (1988), and Brinks (1990), for a cloud with
spin temperature TS and optical depth τ embedded in a radi-
ation field having brightness temperature TR, its brightness
temperature, TB, will be given by

TB = TRe−τν + TS(1 − e−τν ). (85)

If the cloud is optically thin (τ � 1), and assuming that
background radiation field has negligible impact, then

TB = τνTS. (86)

The optical depth per unit frequency can be related to the
density of hydrogen atoms per unit length along the line of
sight:

dτν = − 3c2

32πνH I

AH InH I

h

kTs
φ(ν )dl, (87)

where nH I refers to the volume density of hydrogen atoms,
and φ is the line shape function reflecting the natural line
width (∫φ(ν)dν = 1). Integrating this over ν and s gives∫

nH Idl = 32πkνH I

3AH Ihc2
Ts

∫
τνdν. (88)

The left-hand side of this expression is the desired H I col-
umn density NH I = ∫

nH Idl , while the right-hand side can

now be written as a function of brightness temperature using
Equation (86):

NH I = 32πkνH I

3AH Ihc2

∫
TBdνrest, (89)

⇒
(

NH I

cm−2

)
= 3.85 × 1020

∫ (
TB

K

) (
dνrest

MHz

)
. (90)

Note that the frequency integral here is in the source rest
frame. As both NH I and TB are also rest frame quantities, there
are no (1 + z) factors in the above expression. Alternatively,
Equation (89) can also be expressed as an integral over rest
frame velocity:

NH I = 32πkν2
H I

3AH Ihc3

∫
TBdVrest, (91)

⇒
(

NH I

cm−2

)
= 1.82 × 1018

∫ (
TB

K

)(
dVrest

km s−1

)
. (92)

To recover the previous expression for H I column density
(Equation (73)), Equations (69) and (89) give

NH I = 32πkνH I

3AH Ihc2

∫
(1 + z)3 c2Sν

2kν2
H I�bm

dνrest, (93)

= 16π

3hνH IAH I

(1 + z)4 1

�bm

∫
Sνdνobs, (94)

= 16π

3hνH IAH I

(1 + z)4 S

�bm
, as before. (95)

16 FLUX AND FLUX DENSITY SENSITIVITY

If not known observationally, the flux density sensitivity of
a single-pointing, naturally weighted, Stokes-I, non-primary
beam corrected interferometric image can be estimated using
(Taylor, Carilli, & Perley 2008; Kraus 1986; Obreschkow,
Heywood, & Rawlings 2011)

σSν
= SEFD

ηs
√

2N (N − 1)�t�ν
, (96)

= kTsys

ηsAe

√
2

N (N − 1)�t�ν
, (97)

where SEFD is the System Equivalent Flux Density of an
antenna in the array (=2kTsys/Ae; assumed to be the same for
all elements in the above relation), �ν is the frequency width
of interest, �t is the integration time, Tsys is the system tem-
perature, N is the number of antennas, Ae is the effective area
of each antenna, ηs is the system efficiency, and k is Boltz-
mann’s constant. It should be noted that in practice a number
of factors may reduce the achieved observational sensitivity
from the theoretical value above, such as the application of
weighting and tapering. Evaluating the constants to give the
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sensitivity in Jy:(
σSν

Jy

)
= 1952.5

ηs
√

N (N − 1)

(
Ae/Tsys

m2K−1

)−1 (
�t

s

)− 1
2
(

�ν

Hz

)− 1
2

.

(98)

The corresponding flux sensitivity scaling is

σS = �ν σSν
, (99)

= SEFD

ηs

√
�ν

2N (N − 1)�t
, (100)

= kTsys

ηsAe

√
2�ν

N (N − 1)�t
, (101)

or(
σS

JyHz

)
= 1952.5

ηs
√

N (N − 1)

(
Ae/Tsys

m2K−1

)−1 (
�t

s

)− 1
2
(

�ν

Hz

) 1
2

.

(102)

Observationally, if the flux density sensitivity averaged over
channel interval �νchan is known, σSνchan

, the flux and flux
density sensitivities over interval �ν can be simply calculated
using

σSν
= σSνchan

√
�νchan

�ν
, (103)

σS = σSνchan

√
�νchan�ν. (104)

As observed frame quantities, these have no inherent scal-
ing as a function of redshift, however telescope performance
may be varying significantly as a function of frequency,
often encoded as variations in the Ae/Tsys term of Equa-
tions (97) and (101) (and system efficiency ηs if desired),
introducing a redshift scaling of

σSν
(z) = f (z)σSν

(0), (105)

σS (z) = f (z)σS (0), (106)

where

f (z) =
ηsAe
Tsys

(z = 0)
ηsAe
Tsys

(z)
. (107)

As will become apparent in the next sections concerning
brightness temperature and column density sensitivity, it can
also be useful to understand how these relations vary as a
function of rest frame velocity interval �Vrest. Substituting
Equation (20) into Equations (103) and (104) gives

σSν
= σSνchan

√
c(1 + z)�νchan

νH I�Vrest
, (108)

σS = σSνchan

√
νH I�Vrest�νchan

c(1 + z)
, (109)

and a redshift scaling of (with Ae/Tsys variations):

σ
�V const

rest
Sν

(z) = f (z)(1 + z)
1
2 σ

�V const
rest

Sν
(0), (110)

σ
�V const

rest
S (z) = f (z)(1 + z)−

1
2 σ

�V const
rest

S (0). (111)

Widefield single-beam mosaic:
For a widefield mosaic in which many overlapping primary

beam pointings have been used to image a large area, an
additional factor needs to be considered. For a fixed pointing
pattern, the primary beam field of view for each pointing will
also increase as �bm∝(1 + z)2, which will in turn lead to
the noise decreasing in the mosaic as (1 + z)−1 (Abdalla &
Rawlings 2005), giving

σ̄Sν
(z) = f (z)(1 + z)−1σ̄Sν

(0), (112)

σ̄S (z) = f (z)(1 + z)−1σ̄S (0), (113)

σ̄
�V const

rest
Sν

(z) = f (z)(1 + z)−
1
2 σ̄

�Vrest
S (0), (114)

σ̄
�V const

rest
S (z) = f (z)(1 + z)−

3
2 σ̄

�Vrest
S (0). (115)

Phased array feed observations:
For a phased array feed (PAF), the field of view will

not necessarily increase as (1 + z)2 as in the single beam
case above, due to correlated noise effects between adja-
cent formed beams. Indeed, once the central part of the field
is fully sampled, �PAF will not continue to rise with red-
shift apart from some growth at the edges. Instead, we can
redefine the generic scaling factor to include field-of-view
effects, applying the same inverse square root scaling of
this to derive the impact on observed noise in a surveyed
area:

fPAF(z) =
ηsAe�PAF

1
2

Tsys
(z = 0)

ηsAe�PAF
1
2

Tsys
(z)

, (116)

to give

σ̄Sν
(z) = fPAF(z)σ̄Sν

(0), (117)

σ̄S (z) = fPAF(z)σ̄S (0), (118)

σ̄
�V const

rest
Sν

(z) = fPAF(z)(1 + z)
1
2 σ̄

�Vrest
S (0), (119)

σ̄
�V const

rest
S (z) = fPAF(z)(1 + z)−

1
2 σ̄

�Vrest
S (0). (120)

17 BRIGHTNESS TEMPERATURE SENSITIVITY

The relativistically derived relation between brightness
temperature and flux density (Equation (69)), gives a
corresponding sensitivity relation of

σTB = (1 + z)3 c2

2kν2
H I�bm

σSν
, (121)
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⇒
(σTB

K

)
=6.86 × 105 (1 + z)3

(
�bm

arcsec2

)−1 (
σSν

Jy

)
, (122)

which combining with the previous expression for flux den-
sity sensitivity (Equation (97)) yields

σTB = (1 + z)3 c2Tsys

ν2
H IAe�bm

1

ηs
√

2N (N − 1)�t�ν
,(123)

⇒
(σTB

K

)
=1.34 × 109 (1 + z)3

ηs
√

N (N − 1)

×
(

�bm

arcsec2

)−1 (
Ae/Tsys

m2K−1

)−1 (
�t

s

)− 1
2
(

�ν

Hz

)− 1
2

. (124)

Using Equation (103), this can also be expressed as a func-
tion of the flux density sensitivity per channel σνchan (width
�νchan):

σTB = (1 + z)3 c2

2kν2
H I�bm

√
�νchan

�ν
σSνchan

, (125)

⇒ ( σTB
K

) = 6.86 × 105 (1 + z)3

×
√

�νchan

�ν

(
�bm

arcsec2

)−1 (
σSνchan

Jy

)
. (126)

Or alternatively expressed per desired rest frame velocity in-
terval �Vrest rather than per observed frame frequency width
using Equation (108):

σTB = (1 + z)7/2 c5/2

2kν
5/2
H I �bm

√
�νchan

�Vrest
σSνchan

, (127)

⇒ ( σTB
K

) = 9 971 (1 + z)
7
2

× (
�bm

arcsec2

)−1 (
�νchan

Hz

) 1
2
(

�Vrest
km s−1

)− 1
2
(

σSνchan
Jy

)
. (128)

In the instance of a comparison being made for observa-
tions with a given telescope at different redshifts, but where
the configuration has been changed between observations to
yield the same synthesised beam solid angle, this will give a
redshift scaling relation of

σTB (z) = f (z)(1 + z)3σTB (0), (129)

σ
�V const

rest
TB

(z) = f (z)(1 + z)7/2σ
�V const

rest
TB

(0), (130)

where f(z) captures redshift variations in ηsAe/Tsys as be-
fore (Equation (107)). If instead we now consider how the
brightness temperature sensitivity will change for a fixed
configuration observation across a range of frequencies,
the synthesised beam solid angle will increase as �bm∝(1
+ z)2 (ignoring frequency-dependent illumination effects)
giving

σTB (z) = f (z)(1 + z)σTB (0), (131)

σ
�V const

rest
TB

(z) = f (z)(1 + z)3/2σ
�V const

rest
TB

(0). (132)

Taking these last equations as a starting point, we can also de-
rive the redshift scaling equations for a widefield mosaic and
for a PAF as per the previous section allowing for overlapping
primary (formed-) beam effects:

Widefield single-beam mosaic:

σ̄TB (z) = f (z)σ̄TB (0), (133)

σ̄
�V const

rest
TB

(z) = f (z)(1 + z)1/2σ̄
�V const

rest
TB

(0). (134)

Phased array feed observations:

σ̄TB (z) = fPAF(z)(1 + z)σ̄TB (0), (135)

σ̄
�V const

rest
TB

(z) = fPAF(z)(1 + z)3/2σ̄
�V const

rest
TB

(0). (136)

18 COLUMN DENSITY SENSITIVITY

Taking the previous expression for column density in terms
of flux and beam size (Equation (73)) gives the corresponding
sensitivity relation of

σNH I
= (1 + z)4 16π

3hνH IAH I�bm
σS, (137)

⇒
( σNH I

cm−2

)
= 2.64 × 1020 (1 + z)4 (138)

×
(

σS

JyHz

)(
�bm

arcsec2

)
,

and substituting in Equation (101) for a theoretical sensitivity
estimates:

σNH I
= (1 + z)4 16πkTsys

3hνH IAH I�bmηsAe
(139)

×
√

2�ν

N (N − 1)�t
,

⇒
( σNH I

cm−2

)
= 5.15 × 1023 (1 + z)4

ηs
√

N (N − 1)

×
(

�bm

arcsec2

)−1 (
Ae/Tsys

m2K−1

)−1 (
�t

s

)− 1
2
(

�ν

Hz

) 1
2

.

(140)

Or from Equation (104), scaling from known channel noise:

σNH I
= (1 + z)4 16π

√
�νchan�ν

3hνH IAH I�bm
σSνchan

, (141)

⇒
( σNH I

cm−2

)
=2.64×1020 (1 + z)4

×
(

�bm

arcsec2

)−1 (
�ν

Hz

) 1
2
(

�νchan

Hz

) 1
2
(

σSνchan

Jy

)
. (142)

And finally as a function of rest frame velocity interval using
Equation (109):

σNH I
= (1 + z)7/2 16π

√
�Vrest�νchan

3hν
1/2
H I AH I�bmc1/2

σSνchan
, (143)
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⇒
( σNH I

cm−2

)
=1.82×1022 (1 + z)

7
2

×
(

�bm

arcsec2

)−1 (
�Vrest

km s−1

) 1
2
(

�νchan

Hz

) 1
2
(

σSνchan

Jy

)
.

(144)

Looking at the redshift scaling relations as before, we have for
a changing configuration with fixed synthesised beam solid
angle (with f(z) defined as before in Equation (107)):

σNH I
(z) = f (z)(1 + z)4 σNH I

(0), (145)

σ
�V const

rest
NH I

(z) = f (z)(1 + z)7/2 σ
�V const

rest
NH I

(0). (146)

For a fixed configuration with synthesised beam solid angle
increasing as (1 + z)2:

σNH I
(z) = f (z)(1 + z)2 σNH I

(0), (147)

σ
�V const

rest
NH I

(z) = f (z)(1 + z)3/2 σ
�V const

rest
NH I

(0). (148)

And finally for the widefield mosaic and PAF cases:

Widefield single-beam mosaic:

σ̄NH I
(z) = f (z)(1 + z) σ̄NH I

(0), (149)

σ̄
�V const

rest
NH I

(z) = f (z)(1 + z)1/2 σ̄
�V const

rest
NH I

(0). (150)

Phased array feeds observations:

σ̄NH I
(z) = fPAF(z)(1 + z)2 σ̄NH I

(0), (151)

σ̄
�V const

rest
NH I

(z) = fPAF(z)(1 + z)3/2 σ̄
�V const

rest
NH I

(0). (152)

19 SIGNAL-TO-NOISE

The significance of a measurement can be determined by
simply taking the ratio of the observed quantity to the mea-
sured noise in that quantity over the same region. As such, the
equations of the previous sections trivially lend themselves
to predicting the likely outcomes of observations. A few of
the most important are detailed below.

Peak signal-to-noise:

S/Npeak = Sν,peak

σSνchan

. (153)

Integrated signal-to-noise for a point source:

S/Nint = S

σSνchan

√
�νchan�ν

, (154)

= S

σchan�νchan
√

Nchan
, (155)

where the width of the profile is specified as either a frequency
units (�ν) or the number of channels (Nchan). It is worth

noting in the above equations that the product σchan
√

�νchan is
independent of the particular choice of channel width used,
and as such S/Nint is independent of channel choice. To predict
the S/N for a point source of known mass and rest frame
velocity width, the above can also be alternatively expressed:

S/Nint = S

σSνchan

√
c(1 + z)

νH I�νchan�Vrest
, (156)

which substituting for S using Equation (48) gives

S/Nint = 2.92 × 10−4(1 + z)
1
2

(
DL

Mpc

)−2

×
(

MH I

M�

)(
�Vrest

km s−1

)− 1
2
(

�νchan

Hz

)− 1
2
(

σSνchan

Jy

)−1

.

(157)

If the source is extended, a further correction of S/Nint ∝
1/

√
(1 + Agalaxy/Abeam is required to allow for the fact that

source flux is distributed over multiple beams, increasing the
observed noise (Duffy et al. 2012). Note that this correction
factor only disappears if the source is a true point source,
rather than just being smaller than the (synthesised) beam.
The estimation of signal-to-noise using this correction factor
also assumes the optimal extraction of the source signal in
both spatial and frequency coordinates, which for low signal-
to-noise sources may not be possible.

For an extended source, a generally more appropriate cal-
culation is to determine the expected signal-to-noise from the
desired column density sensitivity. For instance, considering
the case of single pointing with beam �bm at redshift z, the
signal-to-noise in the centre of the primary beam will be given
by (using Equation (143))

S/NNH I
= NH Idesired

σ
�Vrest
NH I

,

� 5.50 × 10−23 (1 + z)
2
7

(
NH Idesired

cm−2

)

×
(

�bm

arcsec2

) (
�Vrest

km s−1

)− 1
2
(

�νchan

Hz

)− 1
2
(

σSνchan

Jy

)−1

.

(158)

20 H I FIDELITY CALCULATOR

As a complementary online tool, the H I Fidelity (HiFi) cal-
culator makes available many of the central formulae iden-
tified in this paper for ready application to the analysis of,
or planning for, H I observations (http://hifi.icrar.org). These
include the conversion of observed frame quantities to rest
frame equivalents and vice versa, including frequency width
and velocity width, flux and mass, flux density and brightness
temperature, and flux and column density. Also included are
calculators for the estimation of observed noise and signal-
to-noise, combining observed frame measurement character-
istics with rest frame source properties.
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The calculator makes use of the Celestial R package3 for
the calculation of cosmological distances. In addition to the
non-evolving vacuum energy density calculation outlined in
Section 4, this package, and the HiFi calculator, also allow
for an evolving vacuum energy model through the use of the
w and w′ parameters, replacing �� in Equation (5) with

�� → ��

(
1

1 + z

)−(3+3w0+6w′ )
e−6w′

(
1− 1

1+z

)
, (159)

where w0 = −1 and w′ = 0 return the default non-evolving
vacuum energy density.
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APPENDIX A: LITTE H CONVERSIONS

If you need to determine the value of some quantity for a different
Hubble constant, and the hC dependencies are given, this can be
done by simply calculating the value of hC for your new Hubble
constant and then evaluating the expression given for the quantity.
For example, to calculate the value of an H I mass given as MH I =
109.7h−2

73 M� for a Hubble constant of H0 = 100:

h73 = H0

73 km s−1Mpc−1
, (A1)

= 100 km s−1Mpc−1

73 km s−1Mpc−1
, (A2)

= 1.37, (A3)

then

MH I = 109.7h−2
73 M�, (A4)

= 109.71.37−2h−2
100M�, (A5)

= 109.4h−2
100M�. (A6)

Alternatively running this in reverse, and this time using the abbre-
viation h = h100:

MH I = 109.4h−2M�, (A7)

= 109.40.73−2h−2
73 M�, (A8)

= 109.7h−2
73 M�. (A9)

A final point to note is that the little h dependencies for a quantity
can be different, depending on how it was determined. A classic
example being the differences that often arise in little h exponents
between observed and simulated quantities. The important thing to
do if you are wanting to compare two such quantities is to just make
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sure both values are valid for the same Hubble constant, rather than
worrying about the exponents of hC, which are inherently different.

APPENDIX B: SYMBOLS, UNITS, CONSTANTS,
AND GLOSSARY

Units:

1 Jy = 1−26 W m−2 Hz−1, (B1)

M� = 1.98855 × 1030 kg. (B2)

H I constants used in this work:

νH I = 1.420405751786 × 109 Hz, (B3)

AH I = 2.86888 × 10−15 s−1, (B4)

mH = 1.673533 × 10−27 kg. (B5)

Glossary of quantities used in this paper and their units:

ν = frequency

(Hz),

V = velocity

(km s−1),

Sν = Sνobs = received flux density

(10−26 W m−2 Hz−1 = Jy),

S = Sobs = received flux

(10−26 W m−2 = Jy Hz),

SV = SV
obs = received velocity integrated flux

(10−26 W m−2 Hz−1 km s−1 = Jy km s−1),

Lν = Lνrest = emitted luminosity density

(W Hz−1),

L = Lrest = emitted luminosity

(W),

Iν = Iνobs = received specific intensity density

(W m−2 sr−1 Hz−1),

I = Iobs = received specific intensity

(W m−2 sr−1),

Bν = Bνrest = emitted surface brightness density

(W m−2 sr−1 Hz−1),

B = Brest = emitted surface brightness

(W m−2 sr−1),

NH I = number of H I atoms,

NH I = column density of H I atoms (cm−2),

nH I = volume density of H I atoms (cm−3).
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