D.G. MABEY

18	Havener, A.G. and Radley, R.J.	Supersonic wind tunnel investigation using pulsed laser holography. ARL 73-0148 (1973)
19	Mabey, D.G. and Gaudet, L.	Some applications of small skin friction balances at supersonic speeds. <i>AIAA Journal of Aircraft</i> , Vol. 12, No. 10, pp 819-825 (1975)
20	Lee, R.E., Yanta, W.J. and A.C. Leonas	Velocity profile, skin friction balance and heat transfer measurements of the turbulent boundary layer at Mach 5 and zero pressure gradient. NOL TR69 106, June 1969
21	Voisinet, R.L.P. and Lee, R.E.	Measurements of a Mach 4.9 zero pressure gradient turbulent boundary layer with heat transfer Part I - Data compilation. NOL TR72-232 (1972)
22	Lee, R.E. and Voisinet, R.L.P.	Contribution to Euromech 43 Colloquium. Gottingen, May 1973
23	Bushnell, D.M., Cary, A.M. and Holley, B.B.	Mixing length in low Reynolds number compressible turbulent boundary layers. AIAA Journal, Vol. 13, 8 p 1119 to 1121, August 1975

CORRIGENDUM

Pressure Gradient and Leading-Edge Effects on the Corner Bounday Layer

by

M. Zamir and A.D. Young

August 1979 pp.471-484

The identifying symbols are missing from the keys below Figs. 2 and 3. The key for Fig. 3 also applies to subsequent Figures.

They should read as follows:-

Fig. 2
$$\alpha \approx 6^{\circ}$$
 sharp nosed L.E. $\alpha \approx 0^{\circ}$ round nosed L.E. $\alpha \approx 0.2^{\circ}$ $\alpha \approx 0$