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NOTES ON LOCAL INTEGRAL EXTENSION DOMAINS 

L. J. RATLIFF, JR. 

1. I n t r o d u c t i o n . All rings in this paper are assumed to be commutat ive 
with identi ty, and the undefined terminolog y is the same as t ha t in [3]. 

In 1956, in an impor tant paper [2], M. Nagata constructed an example 
which showed (among other things): (i) a maximal chain of prime ideals in 
an integral extension domain R' of a local domain (R, M) need not contract 
in R to a maximal chain of prime ideals; and, (ii) a prime ideal P in R' may 
be such tha t height P < height P C\ R. In his example, Rf was the integral 
closure of R and had two maximal ideals. In this paper, by using Naga ta ' s 
example, we show tha t there exists a finite local integral extension domain of 
D = R[X]{M>X) for which (i) and (ii) hold (see (2.8.1) and (2.10)). 

The fact tha t these two properties can be transferred from a semi-local 
integral extension domain of R to a local integral extension domain of D is 
because of a construction in the proof of a more general result, (2.4). In (2.4), 
it is shown tha t given an arbi t rary maximal chain of prime ideals of length n 
in an arbi t rary integral extension domain of an arbi t rary local domain (R, M), 
there corresponds a maximal chain of prime ideals of length n + 1 in a quasi-
local integral extension domain of D, and this new chain contracts in D to 
a maximal chain of prime ideals if and only if the original chain contracts in R 
to a maximal chain of prime ideals. From this, the above mentioned (2.8.1) and 
(2.10) readily follows. 

Finally, in (2.13), it is shown tha t the construction can also be used to go in 
the opposite direction (from D to finite integral extension domains of R). 
Specifically, (2.13) shows tha t if D has any one of a number of properties 
concerning chains of prime ideals, then each local domain BP also has this 
property, where B is a finite integral extension domain of R and P is a prime 
ideal in B. 

2. Local in tegra l ex tens ion d o m a i n s . We begin this section with a defini
tion due to I. Kaplansky. 

(2.1) Definition [1, p. 16]. An integral domain B is an S-domain in case 
height QB[X] = 1, for all height one prime ideals Q in B. B is a strong S-domain 
in case B/P is an 5-domain, for all prime ideals P in B. 

For example, all Noetherian domains are strong 5-domains [1, Theorem 148]. 
The following proposition, which is of some importance, is probably known, 
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bu t the author knows of no reference for it. Therefore, since it is needed in the 
proof of (2.4), a proof of the proposition will be given. 

(2.2) PROPOSITION. Let Q be a prime ideal in an integral extension domain B 

of a Noetherian domain A. Then height QB[X] = height Q, depth QB\X] = 

depth Q + 1, QB[X] H A[X] = (Q H A)A[X], and B and BQ are strong 5 -

domains. 

Proof. I t will first be shown tha t B is a strong 5-domain. For this, if P is a 
prime ideal in B, then, with Bi = B/P and Ax = A/(P H A), Ax and By 
satisfy the same conditions as A and B. Therefore it suffices to prove tha t B 
is an 5-domain—that is, if p is a height one prime ideal in B, then height 
pB[X] = 1. Now height pB[X] = 1, if, for each prime ideal m in the integral 
closure B' of B such tha t m C\B = p, B'm is a valuat ion ring [10, Theorem 8]. 
T o see tha t this holds, note t ha t height m = 1 (since height p = 1), so height 
m C\ A' = 1 [3, (10.14)], where A' is the integral closure of A. Let C = 
Bf(A'-{m n A')), so C is the integral closure of the valuat ion ring A\m n A>) in the 
quot ient field of B. Also, mC is a maximal ideal, so CmC is a valuat ion ring 
[11, Corollary 2, p. 27]. Finally, B'm = CmC, so height pB[X] = 1, hence B is 
a strong 5-domain. 

I t is clear tha t if C is a strong 5-domain, then so is Cs, for all m.c. sets 5 in C, 
so BQ is a strong 5-domain. Also, by [1, Theorem 39], height QB[X] = height Q 
and height Q* = height Q + 1, for all prime ideals Q* in B such tha t QB[X] C 
<2* and Q* r\B = Q. Therefore al t i tude B[X] = a l t i tude 5 + 1, so depth 
QB[X] = a l t i tude £[AT]/()£[X] - a l t i tude (B/Q)[X] = depth £) + 1 (since 
B/Q is a strong 5-domain) . 

Finally, ( £ / ( ) ) [X] ^ B[X]/QB[X] is integral over 

A = A[X]/(QB[X]nA[X]) 

and (£ / (? ) [X] is integral over (A/(Q H A))[X] ^ A\X]/(Q H A)A[X] = 
D2 (say). Therefore, since D\ is a homomorphic image of D2, QB[X] P\ ^4[AT] = 
(Q H ^4)T[A], completing the proof. 

T h e following definition is needed in order to avoid continual repetit ions in 
the remainder of this paper. 

(2.3) Definition. I t will be said t h a t an integral domain A has a mcpil n 
in case there exists a maximal chain of £>rime ideals of length n in A ( that is, 
a chain of prime ideals (0) = p0 C p\ C . . . C pn such tha t pn is maximal and 
height pi/pi-i = 1, for i = 1, . . . , n ) . 

T h e next result is the main theorem in this paper. Before s ta t ing it, it should 
be mentioned tha t the same conclusions hold for any of the rings R[X]y, where 
N is a maximal ideal in R\X] such tha t N Pi R = M, as is readily seen by the 
proof of (2.4). 

(2.4) T H E O R E M . Let B be an integral extension domain of a local domain 
(R, M), and let (0) C Qi C . • . C Qn be a mcpil n in B. Then there exists a 
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quasi-local integral extension domain L of D = R[X]{MiX) which has a mcpil 
n + 1, say (0) C Pi C . • . C Pn+u such that height P t = height Qu depth 
Pi = depth Qi + 1, and P t r\ D = (@< H P)P>, /or i = 1, . . . , ». Therefore 
(0) C Pi r\D C-.-C Pn+i C\D is a mcpil n + I if and only if (0) C 
Qi C\ R C • • • C Qn ^ R is a mcpil n. 

Proof. Let S = B[X] (R[X]-(M,X)), and let L = D + J, where / is the Jacobson 
radical of 5. Let Pt = QtS C\ L (i = 1, . . . , »), and let P n + i = (Qn, X ) 5 H L 
(= J ) . Then 5 is integral over D, so L is a quasi-local integral extension domain 
of D. Moreover, (0) C QiB[X] C . . . C QnB[X] C (Qn, X)B[X] is a mcpil 
» + 1 in B[X] (since 5 is a strong 5-domain (2.2)), so (0) C QiS C • . . C 
QnS C (&> -X")5 is a mcpil w + 1 in 5. Therefore, since depth Pn — depth 
QnS = 1 (since 5 is integral over L and depth QnB[X] = 1 (2.2)) and since 
Lpn = S QnS (since J is the conductor of L in 5), (0) C Pi C • • . C Pn+i is a 
mcpil n + 1 in L and height P* = height QtS = height Qi (2.2), for i = 1 , . . . , n. 
Also, by integral dependence and (2.2), for i = 1, . . . , n, depth P7- = depth 
QiS è depth QiB[X] = depth Qt + 1, and if depth Q< = d and Qt C Qi+i C 
. . . C (?<+/ is a saturated chain of prime ideals in B of length d, then Qx5 C 
Qt+i'S C • . . C 0 ^ 5 C ( ( W , X)S, so depth Q,5 ^ depth Qt + 1, hence 
depth Pt = depth Qf + 1. Moreover, since Q*B[X] C\ R[X] = {Qt C\ R)R[X] 
(2.2), it readily follows that Ptr\D = (0, H P ) A for i = 1, . . . , n. The last 
statement now follows, since (0) C Qi (~^ R C . • . C Qn ^ R is a mcpil n if 
and only if (0) C ((?i H P)P> C . . . C ((?» ^ R)D = MD C (M, X)D is a 
mcpil n + 1. 

A few comments on (2.4) will now be made. 

(2.5) Remark. With the notation of (2.4), the following statements hold: 

(2.5.1) If B is quasi-local, then 5 (in the proof of (2.4)) is quasi-local, so 
5 and (0) C QiS C • . • C QnS C (Qn, X)S could be used in place of L and 
(0) C Pi C • • . C Pn + i . 

(2.5.2) If P , instead of being local, is semi-local with exactly h maximal 
ideals, then the same conclusions in (2.4) hold, except that L is quasi-semi-
local with exactly h maximal ideals. 

(2.5.3) If B is a finite integral extension domain of P, then L is a finite local 
(Noetherian) integral extension domain of D. 

(2.5.4) It is an open problem if there exists a finite integral extension domain 
A Ç B of P such that (0) C Qi H 4 C . . . C Qn ^ A is a mcpil » and height 
QtC\ A = height Q, (and depth Ç< H A = depth ()<), for i = 1, . . . , n. 
However, this is easily shown to hold if, for each i, Qi $£ U {Q/ G Spec B; 
Qi C\ R = Qi C\ R and Ç/ ^ CM- (This holds, for example, if B is contained 
in the integral closure of a finite integral extension domain of P.) If such A 
exists, then it may be assumed that L is a finite local integral extension domain 
of D i n (2.4). 
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(2.5.5) Let P / = XSr\L and Pi+1' = ((?,, X)SH L, for i = ! , . . . , w. 
Then (0) C Pi C • • • C Pn' is a sa turated chain of prime ideals of length n in L 
such that , for i = 0, 1, . . . , n - 1 and Q0 = P 0 = (0), height P m ' = height 
Qt + 1, depth Pi+1' = depth Q f, and Pi+1

f f\ D = (<2* H P , X)D = (Pt H D, 
X)P>. Moreover, (0) C Pi C . . . C i Y C P»+i' is a mcpil w + 1 in L if and 
only if depth Qn-i = 1, and in this case, this chain contracts in D to a mcpil 
n + 1 if and only if the P tr\ D form a mcpil n + 1 in D. 

Proof of (2.5.5). For i = 0, 1, . . . , n and Ço = (0), height ((?,, Z ) 5 = 
height Qz + 1, by [1, Theorem 39]. Also, LPn' = S{Qn_liX)s (since / is the 
conductor of L in 5 ) , so height Pf+i ' = height (Ci, X ) 5 = height Qf + 1, 
for i = 0, 1, . . . , n — 1, and (0) C Pi C • . . C i Y is a sa tura ted chain of 
prime ideals (since clearly (0) C XS C (Qu X)S C • . . C (Qn-u X)S is a 
sa tura ted chain of prime ideals). Fur ther , it is clear tha t depth Pi+i = depth 
(Qi, X)S = depth Qu for i = 0, 1, . . . , n, so depth Pn' = depth Qn-i, hence 
(0) C Pi C . • . C Pn C Pn+i is a mcpil n + 1 if and only if depth Qn-i = 1 
(since L is quasi-local). Moreover, since QtS C\ D = (QiC\ R)D, it readily 
follows tha t Pi+1' r\D = (Qtr\ R, X)D = (Pt H D, X)D, for i = 0, 1, . . . , 
n (and with Ço = Po = (0)) , so the last s ta tement is clear from this and the 
fact t ha t (0) C Qi H R C . • . C Qn H R is a mcpil » if and only if (0) C 
XD C (Ci O R, X)D C . . . C ( G „ n i ? , X)^> is a mcpil w + 1. 

(2.6) Remark. In (2.5.5). use was made of the fact t ha t if g is a prime ideal 
in a strong 5-domain A, then P = (q, X)A [X] is a prime ideal such tha t height 
P = height g + 1 and depth P = depth q. Note , on the other hand, if X (? <2 
is a given prime ideal in A[X] and Q' = (Q, X)A[X] is a prime ideal, then 
height Q' > height Q + 1 is possible, even if A is Noetherian. For example, 
let (R, M) be a local domain and let p be a prime ideal in P such tha t height 
M/p = 1, height M > height £ + 1, and M = (p, y)R, for some y G M. 
(Such P , M, and £ exist, as can be seen using [3, Example 2, pp. 203-205] in 
the case m > 0.) Let Q = (p, X — y)R[X], so Q is a prime ideal and Q O P = 
£. Also, ()' = (Q, X ) P [ X ] ( = (M, X)R[X]) is prime and Q' C\ R = M. 
Therefore height Q = height/? + 1 < height M < height M + 1 = height Q'. 

As mentioned in (2.5.4), I do not know if, in general , L can be chosen to be 
a finite local integral extension domain of D in (2.4). However, if jus t one prime 
ideal in B is given (instead of a chain of prime ideals), then L can be so chosen, 
as will now be shown. 

(2.7) COROLLARY. With P , B, and D as in (2.4), let Q be a prime ideal in B, 
let height Q = h, and let depth Q = d. Then there exists a finite local integral 
extension domain L of D which has a prime ideal P such that height P = h, 
depth P = d + l,andP r\ D = (Q C\ R)D, so height P C\ D = height QC\ R. 

Proof. By [5, (2.9)], there exists a simple integral extension domain R[c] of P 
which has a prime ideal p such tha t p C\ R = Q C\ P , height p = h, and depth 

https://doi.org/10.4153/CJM-1978-008-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-008-4


INTEGRAL EXTENSION DOMAINS 99 

p = d. Therefore, by (2.5.3), there exists a local integral extension domain L 
of D which has a mcpil ft + d + 1, say (0) C P i C • . . C -FVM+I» such tha t 
height Ph = ft, depth P , = d + 1, and Ph H P> = (p C\ R)D = (Q C\ R)D, 
so height P C\ D = height Q C\ R. 

(2.8) Remark. Wi th the notat ion of (2.7), the following s ta tements hold: 

(2.8.1) In [3, Example 2, pp. 203-205], it is shown that , for all m ^ 0 and 
r ^ 1, there exists a local domain R whose integral closure has a maximal ideal 
N such tha t height N = m + 1 and height NC\R = r + m-\-\. Therefore, 
by (2.7), there exists a finite local integral extension domain L of D such tha t 
L has a prime ideal P such tha t height P = m + 1 and height P C\ D = 
m + r + 1. 

(2.8.2) I t is readily seen, much as in (2.5.5), t ha t there exists a minimal 
prime divisor P' of (P, X ) L such tha t height P' = ft + 1, depth P ' = d, and 
P' r\D = (Qr\R, X)D, so height P' H D = height (Q H P ) + 1. 

For the next corollary, the following definition is needed. 

(2.9) Definition [7, Section 4]. Let ^ be the class of local domains R such 
tha t there exists a mcpil n in some integral extension domain of P if and only if 
there exists a mcpil n in P . 

A number of facts concerning ^f and the rings which are in ^ are given in 
[7, Section 4]. In particular, it is known tha t for all local domains (P , M), 
R[X] e V[7, (4.1.2)]. 

T h e following corollary shows tha t [6, Question 3.15)] has a negative answer. 

(2.10) COROLLARY. There exist local domains R C S such that S is a finite 
integral extension of P , P £ fé7, and there exists a mcpil n in S which doesn't 
contract in R to a maximal chain of prime ideals. 

Proof. By [3, Example 2, pp. 203-205], there exists a local domain (P 0 , M0) 
whose integral closure is a finite P0-algebra and which has a mcpil m which 
doesn' t contract in P 0 to a maximal chain of prime ideals. Therefore, by 
(2.5.3), there exists a finite local integral extension domain .S of R = 

RQ[X](MOJX) which has a mcpil m + 1 which doesn' t contract in P to a maximal 
chain of prime ideals. 

I t is still an open problem if P in (2.10) can be Henselian. As pointed out 
in [6, p. 87], if such Henselian P exist, then the Chain Conjecture (the integral 
closure of a local domain is catenary) fails to hold. 

Since D Ç ? [7, (4.1.2]), given the mcpil n + 1 in L in (2.4), there exists 
a mcpil n + 1 in D. Is it true tha t there exists a mcpil n + 1 in D, say (0) C pi C 
. . . C Pn+i = (M, X)D, such tha t height pt = height Pt and depth pt = depth 
Pt (i = 1, . . . ,n + 1), where the P{ are as in (2.4)? 

https://doi.org/10.4153/CJM-1978-008-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-008-4


100 L. J. RATLIFF, JR. 

Another application of the construction in the proof of (2.4) will be given 

in (2.13). In order to keep from overburdening the s ta tement of (2.13), the 

following definition is needed. 

(2.11) Definition. Let (*) denote a proper ty of a local domain (R, M) such 
tha t : (i) if 5 is a finite local integral extension domain of R and R has (*), then 
5 has (*) ; (ii) UR(X) = R[X]MR[X] has (*), then R has (*) ; and, (iii) if R has 
(*), then RP has (*), for all prime ideals P in R. 

(2.12) Remark. (2.12.1) Examples of conditions which satisfy (*) are f.c.c 

(first chain condition for prime ideals) ; s.c.c. (second chain condition for prime 

ideals) ; pseudo-geometric; and, GB ( tha t is, adjacent prime ideals in arbi t rary 

integral extension domains of R contract to adjacent prime ideals in R—(see 

[8]))-

(2.12.2) Examples of conditions which satisfy (i) and (ii) in (2.11), bu t for 
which it is unknown if (iii) holds, are: Ht (prime ideals of height = i have 
depth = al t i tude R — i (see [9])); Ct (R is Hu Hi+i, and every maximal 
ideal in the integral closure of R/p has height = al t i tude R/p, for each prime 
ideal p in R such t ha t height p = i (see [9])) ; and, Dt (prime ideals of depth 
= i have height = a l t i t u d e ^ — i (see [5])). 

(2.13) ties the construction in the proof of (2.4) to the conditions (*). 

(2.13) PROPOSITION. Let (R, M) be a local domain and let D = R[X]iMtX). 
If D has a (*) property (2.11), then, for all finite integral extension domains B of 
R and for all prime ideals P in B, BP has the same (*) property. 

Proof. Assume tha t D has a proper ty (*) and let B be a finite integral exten
sion domain of R. If B is local, then B has proper ty (*). (For, R(X) does, by 
(iii), so R does, by (ii), hence B does, by (i).) Therefore, by (iii), BP has 
proper ty (*), for all prime ideals P in B. 

Therefore, assume tha t B has more than one maximal ideal. Let P be a prime 
ideal in B and let N be a maximal ideal in B such t ha t P C N. Then , by (iii), 
it suffices to show tha t BN has proper ty (*). For this, let 5 = B[X]{R[X]-(M,X)), 
and let L = D + / , where J is the Jacobson radical of 5 . Then L is a finite 
local integral extension domain of D, so L has proper ty (*), by (i). Also, since J 
is the conductor of L in S, LN$n L = SNS, so SNS has proper ty (*), by (iii). 
Finally, SNs = BN(X), so BN has property (*), by (ii), completing the proof. 

Concerning the properties (*), if the defining conditions in (2.11) are as
sumed to be properties of a quasi-local domain R, and if (i) is changed to: if 5 
is a quasi-local integral extension domain of R and R has (*), then 5 has (*); 
then, whenever D has a proper ty (*), then so does BP, for all integral extension 
domains B of R and prime ideals P in B. T h e proof is the same as the proof 
of (2.13). 

T h e following impor tan t known result follows quite easily from (2.13). 
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(2.14) COROLLARY [4, Theorem 2.21]. If (R, M) is a local domain such that 
D = R[X](MiX) satisfies thef.c.c, then R satisfies the s.ce. 

Proof. If B is a finite integral extension domain of R and Q is a maximal ideal 
in B, then, since D satisfies the f .c.c, BQ satisfies the f.c.c, by (2.12.1) and 
(2.13). Also, a mepil n up to Q in B gives rise to a mepil n + 1 in a finite local 
integral extension domain L of D (2.5). Now D satisfies the f .c.c, so L does 
(by (2.12.1) and (2.11) (i)), hence n + 1 = alt i tude L, so n = al t i tude R. 
Therefore B satisfies the f .c.c, so R satisfies the s.c.c. [3, (34.3)]. 

As a final comment on (2.13), we note tha t if it can be shown tha t (2.11) (iii) 
holds for Hi, then, using (2.13), it can be shown tha t the Catenary Chain 
Conjecture (the integral closure of a catenary local domain is catenary) holds. 
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