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Abstract

We prove some Banach–Stone type theorems for linear isometries of vector-valued continuous function
spaces, by making use of the extreme point method.
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1. Introduction and preliminaries

The present paper deals with surjective linear isometries between subspaces of
vector-valued continuous function spaces and proves some variants of the classical
Banach–Stone theorem. Extensive research has been made in this direction and
relevant references include [2, 19–22, 27, 32–34] for scalar-valued function spaces
and [1, 3, 5–7, 10, 18, 24, 26, 28, 36] for vector-valued function spaces. The survey
in [23] and monographs in [16, 17] are valuable sources of information. For compact
Hausdorff spaces X and Y and a real or complex Banach space E, we consider an
isometry T : A→ B defined on a subspace A of C(X, E) onto a subspace B of C(Y, E),
where C(X, E) denotes the Banach space of all E-valued continuous functions on X
with the supremum norm. The Mazur–Ulam theorem [37] implies that T is a real-
linear isometry whenever T (0) = 0. When A and B have ‘enough functions’ (see
Condition (S1) and Condition (S2) below) and the duals A∗ and B∗ have enough
extreme points (see Condition (ext) below), T is often, but not always, a generalized
weighted composition operator in the sense that there exists a homeomorphism ϕ :
YB → XA defined on a subset YB of Y onto a subset XA of X and a collection of linear
operators (Vy)y∈YB on E such that

T f (y) = Vy( f (ϕ(y)))
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350 K. Kawamura [2]

for each f ∈ A and for each y ∈ YB. Moreover, the map y 7→ Vy is continuous on
YB to the space of linear operators on E when the latter is endowed with the strong
operator topology. A natural aim is to find a set of conditions on X,Y,A, B and E which
guarantees that every linear isometry T : A→ B is a generalized weighted composition
operator.

We give a framework for obtaining such conditions (Theorem 3.1) and, as its
applications, we show the following results (undefined terminologies will be explained
later). If one of following conditions holds, then every surjective linear isometry
T : A→ B is a generalized weighted composition operator for which the subspaces
YB and XA are the Choquet boundaries of B and A, respectively (Theorems 3.4, 3.5
and 4.6):

(1) E is strictly convex and reflexive, the dual of E is strictly convex, and A and B
satisfy Condition (S1), Condition (S3) and Condition (M); or

(2) E is reflexive, the dual of E is strictly convex, A and B satisfy Condition (S1),
Condition (S2) and Condition (ext) and ChE(A) = X, ChE(B) = Y and further X is
homotopically rigid; or

(3) E is separable and reflexive, dim E ≥ 3, the dual of E is strictly convex, A and B
satisfy Condition (S1), Condition (S2) and Condition (ext), X is metrizable and
its topological dimension is at most one.

The result (1) follows the same line of reasoning as previous results [1, 6, 18, 25,
28]. On the other hand, (2) and (3) seem to exhibit a relatively new variant in that their
assumptions are involved in the topology of underlying spaces X and Y (see [33] and a
paper by K. Kawamura and Miura, ‘Real-linear surjective isometries between function
spaces,’ which has been submitted for publication). The whole of the paper is based
on the extreme point method which is described in [1, 14, 17].

This paper is organized as follows. The rest of this section fixes notation and recalls
some basic results. Section 2 collects some results on extreme points of the dual unit
balls and the generalized Choquet boundaries. These are applied in Section 3 to study
homeomorphisms induced by the adjoint operators of the duals and to obtain a general
framework to derive Banach–Stone type theorems. Results (1) and (2) are proved in
Section 3. Also a previous result, given in [27], on complex-valued scalar function
spaces is reviewed from our viewpoint. Section 4 studies the topological dimension of
the underlying space and the result (3) above is proved.

For a Banach space E over a scalar field F = R or C, the closed unit ball and the unit
sphere are denoted by B(E) and S (E), respectively. For an F-subspace M of E, M∗F
denotes the F-dual of M, the space of all F-linear functionals of M with the operator
norm. For two F-linear spaces L1 and L2, LF(L1, L2) denotes the F-linear maps of L1
to L2. Under this notation, we have M∗F = LF(M,F). For a compact Hausdorff space X
and a Banach space E with the norm ‖ ‖, C(X, E) denotes the Banach space of all E-
valued continuous maps of X to E with the sup norm ‖ f ‖∞ = supx∈X ‖ f (x)‖.An extreme
point of a convex set C of a linear space L is a point ξ ∈ C with the property that the
equality ξ = η + ζ/2 with η, ζ ∈ C forces η = ζ = ξ (see [12]). The set of all extreme
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points of C is denoted by ext(C). In particular, the extreme points of the closed unit
ball B(E) of a Banach space E are simply denoted by ext(E). Under this notation, a
Banach space E is strictly convex if and only if ext(E) = S (E) (see [31]). For an F-
subspace M of C(X,E) and a point x ∈ X, let δx : M→ E be the evaluation map defined
by δx( f ) = f (x), f ∈ M. Notice that δx ∈ L(M, E).

In most of the present paper, a subspace A of C(X, E) is assumed to satisfy the
following conditions. For a vector u ∈ E, the constant map cu : X → E on a compact
Hausdorff space X is defined by cu(x) = u for each x ∈ X.

(S1) For each u ∈ E, the constant map cu : X → E belongs to A: cu ∈ A.
(S2) For each pair of distinct points x1 and x2 of X and for each u ∈ E, there exists a

function f ∈ A such that f (x1) = u and f (x2) = 0.

In the study of function algebras, it is common to assume the following, often
referred to ‘the point separation condition.’

(s2) For each pair of distinct points x1 and x2 of X, there exists a map f ∈ A such that
f (x1) , f (x2).

The following condition, or its variants, sometimes replaces Condition (S1) and
Condition (S2) (see [1, 18]).

(N) For each f ∈ C(X,F) and for each u ∈ E, f cu ∈ A.

Condition (N) above implies Condition (S1) and Condition (S2). A related notion
is the one of a function algebra module: a subspace A of C(X,E), where E is a Banach
space over F, is called a function algebra module if, for each f ∈ C(X, F) and for each
g ∈ A, f g ∈ A (cf. [3]).

It is readily seen from the definition that (S2) implies (s2). Our first observation is
that (S2) is equivalent to (s2) for scalar-valued function spaces satisfying (S1).

Lemma 1.1. Let X be a compact Hausdorff space and let A be a subspace of C(X, F)
satisfying Condition (S1). Then A satisfies Condition (S2) for the scalar F if and only
if A satisfies Condition (s2).

Proof. Let A be a subspace satisfying Condition (S1) and Condition (s2). Take an
arbitrary λ ∈ F \ {0} and take distinct points x1 and x2. By Condition (s2), there exists
an f0 ∈ A such that f0(x1) , f0(x2). Let f1 be the function defined by

f1(x) = f0(x) − f0(x2), x ∈ X.

By Condition (S1), the function f1 belongs to A and we see that f1(x1) , 0 = f1(x2).
Let

f (x) = λ( f1(x1))−1 f1(x), x ∈ X,

which is again an element of A. We obtain f (x1) = λ and f (x2) = 0, as desired. �
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2. Extreme points of the dual unit balls

Throughout this section, a scalar field F = R, or C is fixed and will be omitted in the
notation. Let E be a Banach space over F and let X be a compact Hausdorff space. The
F-dual of E is simply denoted by E∗. Observing that ξ ◦ δx is an F-linear functional on
C(X, E), we define a set EX,E of C(X, E)∗ by

EX,E = {ξ ◦ δx | ξ ∈ ext(E∗), x ∈ X},

where ext(E∗) denotes the set of all extreme points of the unit ball of E∗. A natural
map ΦX,E : ext(E∗) × X → EX,E is defined by ΦX,E(ξ, x) = ξ ◦ δx. When ext(E∗) and
C(X, E)∗ are endowed with the weak*-topology, the map ΦX,E is continuous. For an
F-subspace A of C(X, E), it is known from [8, Lemma 3.3] that

ext(A∗) ⊂ EX,E .

Condition (S1) and Condition (S2) imply the injectivity of ΦX,E , as shown in the
following lemma.

Lemma 2.1. Assume that a subspace A satisfies Condition (S1) and Condition (S2). If
ξ1 ◦ δx1 |A = ξ2 ◦ δx2 |A for ξ1, ξ2 ∈ E∗ \ {0}, x1, x2 ∈ X, then (ξ1, x1) = (ξ2, x2).

Proof. The hypothesis means that ξ1( f (x1)) = ξ2( f (x2)) for each f ∈ A. By (S1),
ξ1(u) = ξ1(cu(x1)) = ξ2(cu(x2)) = ξ2(u) for each u ∈ E. Hence ξ1 = ξ2. Suppose that
x1 , x2 and take u ∈ E such that ξ1(u) , 0. By (S2), we may find an f ∈ A such that
f (x1) = u, f (x2) = 0. This yields a contradiction, as

0 , ξ1(u) = ξ1( f (x1)) = ξ2( f (x2)) = ξ2(0) = 0. �

For a subspace A of C(X, E), let

ΦA = ΦX,E |(ΦX,E)−1(ext(A∗)) : (ΦX,E)−1(ext(A∗))→ ext(A∗)

be the restriction of ΦX,E to the set (ΦX,E)−1(ext(A∗)). At the presence of the conditions
(S1) and (S2), ΦA is a bijection, by Lemma 2.1. Also, ΦA is continuous when the duals
are endowed with the weak*-topology. Moreover, the compactness of X implies the
following lemma which seems to be well known to the experts. A proof is sketched
below for completeness.

Lemma 2.2. Assume that a subspace A satisfies Condition (S1) and Condition (S2).
Then the map ΦA is a homeomorphism.

Sketch of Proof. Take a net (ξα, xα)α and a point (ξ, x) in (ΦX,E)−1(ext(A∗)) such that
ΦX,E((ξα, xα))→ ΦX,E((ξ, x)). This implies that

ξα( f (xα))→ ξ( f (x))

for each f ∈ A. For each u ∈ E, we see that ξα(u) = ξα(cu(xα))→ ξ(cu(x)) = ξ(u) and
hence

ξα → ξ (2.1)
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in the weak*-topology. By the compactness of X, the net (xα) contains a convergent
subnet. Let (xχ(ν)) be an arbitrary such subnet so that xχ(ν) → x0. This, together with
(2.1), implies that ξχ(ν) ◦ δχ(ν) → ξ ◦ δx0 and hence we obtain the equality

ξ ◦ δx0 = ξ ◦ δx.

By Lemma 2.1, x = x0 and hence xχ(ν) → x. Since (xχ(ν)) is an arbitrary convergent
subnet of (xα), we see that the net (xα) itself converges to x. �

We follow [1] to define the Choquet boundary ChE(A) as the set

ChE(A) = {x ∈ X | ξ ◦ δx ∈ ext(A∗) for some ξ ∈ ext(E∗)}.

Here the target vector space E is designated in order to be distinguished from the
usual Choquet boundary for which E = C. A complexity we encounter when dealing
with vector-valued function settings is that, for some x ∈ ChE(A), there may exist a
ξ′ ∈ ext(E∗) such that ξ′ ◦ δx < ext(A∗) (see [1, Example 3.2]). This obstacle leads us
to consider the following condition on A.

(ext) For each x ∈ ChE(A), we have ξ ◦ δx ∈ ext(A∗) for each ξ ∈ ext(E∗).

Under the assumption (ext) on A,

(ΦX,E)−1(ext(A∗)) = ext(E∗) × ChE(A)

and Lemma 2.2 is rephrased as follows.

Proposition 2.3. Assume that A satisfies Condition (S1), Condition (S2) and Condition
(ext). Then the map ΦA : ext(E∗) × ChE(A)→ ext(A∗) is a homeomorphism.

Condition (ext) plays an important role in the proof of Theorem 3.1. A sufficient
condition for a subspace A to satisfy the condition (ext) above is given by
Proposition 2.4 below. A consequence of [35, Theorem 1.1] and [29] is that for a
real Banach space E, a subspace A of C(X,E) satisfies Condition (ext) if it satisfies the
condition (N).

Proposition 2.4. Let A be a subspace of C(X, E) and x be a point of X satisfying the
following conditions.

(a) A satisfies Condition (S1).
(b) For each f ∈ A with f (x) = 0 and for each ε > 0, there exist a neighborhood U of

x and fε ∈ A such that ‖ f − fε‖∞ < ε and fε|U ≡ 0.
(c) For each ξ ∈ S (E∗) and for each neighborhood U of x, there exists an f ∈ A such

that ‖ f ‖∞ = 1 = ξ( f (x)) and f |X \ U ≡ 0.

Then ξ ◦ δx ∈ ext(A∗) for each ξ ∈ ext(E∗). In particular, if each point of ChE(A)
satisfies the above conditions (a)–(c), then A satisfies Condition (ext).
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Proof. The following proof uses the ideas of [1, 8, 10]. Take an arbitrary ξ ∈ ext(E∗)
and suppose that ξ ◦ δx = 1

2 (η + ζ) for some η, ζ ∈ B(A∗). First, we show that, for f ∈ A,

f (x) = 0 =⇒ η( f ) = ζ( f ) = 0. (2.2)

Case 1. Assume that ‖ f ‖∞ ≤ 1 and, moreover, assume that f |N ≡ 0 for some
neighborhood N of x.

By the assumption (c), there exists a g ∈ A such that ‖g‖∞ = 1 = ξ(g(x)) and
g|X \ N ≡ 0. Then |η(g)| ≤ ‖η‖ ‖g‖∞ = 1 and, similarly, |ζ(g)| ≤ 1. From these, together
with the equality 1 = ξ(g(x)) = 1

2 (η(g) + ζ(g)), we conclude that η(g) = ζ(g) = 1. Let
h = f + g ∈ A. We see easily that ‖h‖∞ ≤ 1 and thus |η(h)| ≤ 1 and |ζ(h)| ≤ 1. Also,
from the above,

1 = ξ(h(x)) = ξ ◦ δx(h) = 1
2 (η(h) + ζ(h)),

and this leads to the equality η(h) = ζ(h) = 1. Combining this with η(g) = ζ(g) = 1, we
conclude that η( f ) = ζ( f ) = 0.

Case 2. If the function f ∈ A has the norm at most one, then, for each ε > 0, we apply
the assumption (b) to find a function fε such that

‖ fε − f ‖∞ < ε, fε|Uε ≡ 0

for some neighborhood Uε of x. By what has been proved in Case 1, we see that
η( fε) = 0 from which we derive |η( f )| < ε (note ‖η‖ ≤ 1). Since ε is an arbitrary positive
number, we conclude that η( f ) = 0.

Case 3. General case: for a function f ∈ A with f (x) = 0, take a sufficiently large
N > 0 such that ‖ f /N‖∞ ≤ 1 and apply the conclusion in Case 2. We see that
η( f /N) = 0 and therefore η( f ) = 0. This proves (2.2).

By (2.2), we may find η̄, ζ̄ ∈ E∗ such that

η = η̄ ◦ δx, ζ = ζ̄ ◦ δx.

By assumption (1), cu ∈ A and thus, for u ∈ E,

|η̄(u)| = |η ◦ δx(cu)| ≤ ‖η‖ ‖cu‖∞ = ‖u‖.

Hence ‖η̄‖ ≤ 1 and, similarly, ‖ζ̄‖ ≤ 1. Now

ξ ◦ δx = 1
2 (η + ζ) = 1

2 (η̄ ◦ δx + ζ̄ ◦ δx),

and the assumption ξ ∈ ext(E∗) forces ξ = η̄ = ζ̄ and hence ξ ◦ δx = η = ζ, which is to
be shown. �

It should be noticed here that Condition (ext) is satisfied by subspaces of scalar-
valued continuous functions (see, for example, [16, Corollary 2.3.6] for a proof).
This fact is naturally generalized to vector-valued function settings, as follows. For
a Banach space E and a subgroup Γ of L(E,E), the group Γ naturally acts on the space
C(X, E) by the action

(γ · f )(x) = γ( f (x)), γ ∈ Γ, f ∈ C(X, E), x ∈ X.
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We say that a subspace A of C(X, E) is Γ-invariant if γ · f ∈ A whenever γ ∈ Γ and
f ∈ A. Let U(E) be the group of linear isometries on E. A U(E)-invariant subspace is
called a unitarily invariant subspace. Our generalization is stated in the Hilbert-space
setting.

Lemma 2.5. Let E be a Hilbert space and let Γ be a subgroup of U(E) which acts
transitively on S (E). Then every Γ-invariant subspace A of C(X,E) satisfies Condition
(ext).

Proof. Let 〈·, ·〉 be the inner product on E. For an element γ ∈ Γ, define γ∗A : A∗ → A∗

to be the linear isometry by the formula

(γ∗Aξ)( f ) = ξ(γ−1 f ), ξ ∈ A∗, f ∈ A.

The above γ 7→ γ∗A defines an action of Γ on A∗ by linear isometries. We show that

for each ξ, η ∈ S (E∗) and for each x ∈ X there exists a γ ∈ Γ

such that γ∗A(ξ ◦ δ) = η ◦ δ. (2.3)

Proof of (2.3). By the Riesz representation theorem, there exist aξ, aη ∈ E such that
ξ(u) = 〈u, aξ〉 and η(u) = 〈u, aη〉 for each u ∈ E. Since ξ, η ∈ S (E∗), aξ, aη ∈ S (E). Take
an element γ of Γ such that γ(aξ) = aη. Then, for each f ∈ A,

γ∗A(ξ ◦ δx)( f ) = (ξ ◦ δx)(γ−1 f )
= ξ((γ−1 f )(x))
= ξ(γ−1( f (x))) = 〈γ−1( f (x)), aξ〉
= 〈 f (x), γ(aξ)〉
= 〈 f (x), aη〉 = η( f (x))
= η ◦ δx( f ).

This proves (2.3).
For each x ∈ ChE(A), there exists a ξ ∈ ext(E∗) such that ξ ◦ δx ∈ ext(A∗). For an

arbitrary η ∈ ext(E∗), choose an element γ ∈ Γ such that γ∗A(ξ ◦ δx) = η ◦ δx, by (2.3).
Since γ∗A is an isometry, γ∗A(ext(A∗)) = ext(A∗) and thus we see that η ◦ δx ∈ ext(A∗), as
desired. �

We conclude this section with a well-known lemma.

Lemma 2.6. Let E be a Banach space. For each u ∈ E there exists ξ ∈ ext(E∗) such that
ξ(u) = ‖u‖.

Proof. Let E be the subset of E∗ defined by

E = {ξ ∈ E∗ | ‖ξ‖ ≤ 1, ξ(u) = ‖u‖},

which is nonempty by the Hahn–Banach theorem. It is also a convex and weak*-
compact subset and hence, by the Krein–Milman theorem, it has an extreme point
ξ ∈ ext(E). We show that ξ is an extreme point of B(E∗).
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Suppose that ξ = 1
2 (α + β) with α, β ∈ E∗ and ‖α‖, ‖β‖ ≤ 1. Then ‖u‖ = ξ(u) =

1
2 (α(u) + β(u)) and |α(u)|, |β(u)| ≤ ‖u‖. The last equality implies that α(u) = β(u) = ‖u‖
and hence α, β ∈ E. Then we obtain the desired conclusion: that is, α = β = ξ. �

3. Linear isometries of function spaces and induced homeomorphisms of
extreme points

Let T : A→ B be a surjective isometry between linear subspaces A and B of C(X,E)
and C(Y, E), respectively, where E is a real or complex Banach space. The Mazur–
Ulam theorem [37] states that T is a real-linear isometry whenever T (0) = 0. If E
is a complex Banach space, A and B are complex subspaces and T is a real-linear
isometry, then we regard E, C(X, E) and C(Y, E) as real Banach spaces and consider
the real duals.

Fix a scalar field F = R,C. Let E be a Banach space over F and let A and B be F-
subspaces of C(X, E) and C(Y, E), respectively, that satisfy Condition (S1), Condition
(S2) and Condition (ext). Assume that T : A→ B is an F-linear surjective isometry
and we consider the F-duals A∗F and B∗F and the F-adjoint T ∗F : B∗F → A∗F, which is a
surjective F-linear isometry and thus satisfies T ∗F(ext(B∗F)) = ext(A∗F). In what follows
until Example 3.7, we will omit the scalar field F from the notation. Proposition 2.3
implies that

ΦA : ext(E∗) × ChE(A)→ ext(A∗),
ΦB : ext(E∗) × ChE(B)→ ext(B∗)

are both homeomorphisms. They, together with the adjoint T ∗, induce a homeomor-
phism

τ = Φ−1
A ◦ T ∗ ◦ ΦB : ext(E∗) × ChE(B)→ ext(E∗) × ChE(A).

Let
τ(η, y) = (α(η, y), ϕ(η, y)), (η, y) ∈ ext(E∗) × ChE(B),

where (α(η, y), ϕ(η, y)) ∈ ext(E∗) × ChE(B). This defines continuous maps

α : ext(E∗) × ChE(B)→ ext(E∗)

and
ϕ : ext(E∗) × ChE(B)→ ChE(A).

It is convenient to use the following notation to rewrite the above as

T ∗(η ◦ δy) = α(η, y)δϕ(η,y), (y, η) ∈ ext(E∗) × ChE(B). (3.1)

For y ∈ ChE(B) and η ∈ ext(E∗), let αy : ext(E∗)→ ext(E∗) and ϕη : ChE(B)→ ChE(A)
be continuous maps defined by

αy(η) = α(η, y), η ∈ ext(E∗),
ϕη(y) = ϕ(η, y), y ∈ ChE(B). (3.2)
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Similarly, the adjoint operator (T−1)∗ = (T ∗)−1 : A∗→ B∗ induces two continuous maps

β : ext(E∗) × ChE(A)→ ext(E∗),
ψ : ext(E∗) × ChE(A)→ ChE(B),

which are defined by the formula

(T ∗)−1(ξ ◦ δx) = β(ξ, x) ◦ δψ(ξ,x), (ξ, x) ∈ ext(E∗) × ChE(A). (3.3)

As in (3.2), set

βx(ξ) = β(ξ, x), ξ ∈ ext(E∗),
ψξ(x) = ψ(ξ, x), x ∈ ChE(A). (3.4)

Writing down the equalities η ◦ δy = (T ∗)−1T ∗(η ◦ δy) and ξ ◦ δx = T ∗(T ∗)−1(ξ ◦ δx),
according to (3.1) and (3.4), we obtain, for each y ∈ ChE(B), x ∈ ChE(A), and for each
η, ξ ∈ ext(E∗),

η = β(α(η, y), ϕ(η, y)), (3.5)
y = ψ(α(η, y), ϕ(η, y)), (3.6)
ξ = α(β(ξ, x), ψ(ξ, x)), (3.7)
x = ϕ(β(ξ, x), ψ(ξ, x)). (3.8)

The following theorem reduces a derivation of a Banach–Stone type theorem to
a problem of verifying a set of conditions on the above maps. This is a common
framework in previous works, for example, [1, 3, 9, 10, 27, 34].

Theorem 3.1. Let X and Y be compact Hausdorff spaces and let E be a Banach space
over F (F = R or C). Assume that A and B are subspaces of C(X, E) and C(Y, E),
respectively, both satisfying Condition (S1), Condition (S2) and Condition (ext). For a
surjective F-linear isometry T : A→ B, we have the following.

(a) For an arbitrary y ∈ ChE(B), let Vy : E → E be the linear operator defined by

Vy(u) = Tcu(y), u ∈ E, (3.9)

and let Ay = V∗y : E∗→ E∗, the adjoint operator of Vy. Then we have the following.

(a.1) ‖Vy‖ = ‖Ay‖ ≤ 1.
(a.2) Ay | ext(E∗) = αy.
(a.3) The map y 7→ Vy : ChE(B) → L(E, E) is continuous where the space

L(E, E) is endowed with the strong operator topology.

(b) Suppose that ϕη1 = ϕη2 for each η1, η2 ∈ ext(E∗) and let ϕ∗ = ϕη : ChE(B) →
ChE(A). Then we have the following.

(b.1) For each y ∈ ChE(B), ‖Vy‖ = 1.
(b.2) For each f ∈ A and for each y ∈ ChE(B),

T f (y) = Vy( f (ϕ∗(y)). (3.10)
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(b.3) The map ϕ∗ : ChE(B)→ ChE(A) is a continuous surjection. If the maps
αy and βx are injective for each x ∈ ChE(A) and y ∈ ChE(B), then ϕ∗ is a
homeomorphism.

(c) Assume that E∗ is strictly convex so that S (E∗) = ext(E∗). Then we have the
following.

(c.1) The maps αy : S (E∗)→ S (E∗) and βx : S (E∗)→ S (E∗) are injective for
each x ∈ ChE(A) and for each y ∈ ChE(B).

(c.2) Suppose that ϕη1 = ϕη2 for each η1, η2 ∈ S (E∗) and let ϕ∗ = ϕη. Then αy
is a homeomorphism for each y ∈ ChE(B) and Ay = V∗y is an isometric
isomorphism. If, moreover, E is reflexive, then Vy is also an isometric
isomorphism.

The injectivity/bijectivity of maps involved in the above theorem are summarized
in the following Lemma.

Lemma 3.2. (a) We have the following implications.

(a.1) Suppose that ϕη1 = ϕη2 for each η1, η2 ∈ ext(E∗) and let ϕ∗ = ϕη. Then αy is
injective for each y ∈ ChE(B), βx is surjective for each x ∈ ChE(A) and ϕ∗
is surjective.

(a.2) Suppose that ψξ1 = ψξ2 for each ξ1, ξ2 ∈ ext(E∗) and let ψ∗ = ψξ. Then βx is
injective for each x ∈ ChE(A), αy is surjective for each y ∈ ChE(B) and ψ∗
is surjective.

(b) Assuming that αy and βx are injective for each x ∈ ChE(A) and for each y ∈
ChE(B), consider the following eight conditions.

(1) ϕη1 = ϕη2 for each η1, η2 ∈ ext(E∗).
(2) ϕη is bijective for each η ∈ ext(E∗).
(3) ψξ1 = ψξ2 for each ξ1, ξ2 ∈ ext(E∗).
(4) ψξ is bijective for each ξ ∈ ext(E∗).
(5) αy1 = αy2 for each y1, y2 ∈ ChE(B).
(6) αy is bijective for each y ∈ ChE(B).
(7) βx1 = βx2 for each x1, x2 ∈ ChE(A).
(8) βx is bijective for each x ∈ ChE(A).

We have the following implications and equivalences.

(1) ⇒ (2) ⇔ (8) ⇐ (7)
m m

(3) ⇒ (4) ⇔ (6) ⇐ (5)

(c) When the above condition (1)(⇐⇒ (3)) holds, the map ϕ∗ := ϕη is a homeo-
morphism with the inverse ϕ−1

∗ = ψ∗ := ψξ.

Theorem 3.1 is proved after the proof of Lemma 3.2. In what follows up to
Example 3.7, we will keep the notation above and, also, Condition (S1), Condition (S2)
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and Condition (ext) on subspaces A and B are always assumed, unless stated otherwise.
The assumptions on Banach spaces will be explicitly stated each time. We start with a
proof of Lemma 3.2.

Proof of Lemma 3.2. (a) Suppose that ϕη1 = ϕη2 for each η1, η2 ∈ ext(E∗) and let
ϕ∗ = ϕη.

First, we show that αy is injective. Assume that αy(η1) = αy(η2). Then, by (3.5) and
the assumption,

η1 = β(αy(η1), ϕ∗(y)) = β(αy(η2), ϕ∗(y)) = η2,

and hence αy is injective. Next, we show the surjectivity of βx. For each η ∈ ext(E∗),
let y = ψ(η, x). By the assumption and (3.8),

ϕ(η, y) = ϕ(β(η, x), y) = ϕ(β(η, x), ψ(η, x)) = x.

Hence, by (3.5),

βx(α(η, y)) = β(α(η, y), x) = β(α(η, y), ϕ(η, y)) = η,

as desired. In order to prove that ϕ∗ is surjective, fix an arbitrary η. For each
x ∈ ChE(A), use the surjectivity of βx to take a ξ such that βx(ξ) = η. Then

ϕ∗(ψ(ξ, x)) = ϕ(β(ξ, x), ψ(ξ, x)) = x,

by (3.8). Hence ϕ∗ is surjective.
This proves (a.1) and a symmetric argument proves (a.2).
(b) Assume that αy and βx are injective for each x ∈ ChE(A) and for each y ∈ ChE(B).

We show that the implications and equivalences given by

(1) =⇒ (8)⇐⇒ (2), (1) =⇒ (3), (5)⇐⇒ (7) and (7) =⇒ (8)

hold. The other implications/equivalences are proved by symmetric arguments.
(1) =⇒ (8). Assume that ϕη1 = ϕη2 for each η1, η2. By (a.1), we see that βx is

surjective, and is bijective because βx is injective, by our starting assumption. The
inverse map is given by β−1

x (η) = α(η, ψ(η, x)).
(8) =⇒ (2). We suppose that βx is bijective for each x ∈ ChE(A) and prove that ϕη is

a bijection. For an arbitrarily fixed η ∈ ext(E∗), let ψ̄ : ChE(B)→ ChE(A) be the map
defined by

ψ̄(x) = ψ(β−1
x (η), x), x ∈ ChE(A).

We verify the equalities ψ̄ ◦ ϕη = id and ϕη ◦ ψ̄ = id. For an arbitrary y ∈ ChE(B), let
ξ = (βϕη(y))−1(η). Then, by (3.5),

βϕη(y)(ξ) = η = β(α(η, y), ϕ(η, y)) = βϕη(y)(α(η, y)),

and, by the injectivity of βϕη(y), we obtain ξ = α(η, y). Thus we see that

ψ̄(ϕη(y)) = ψ((βϕη(y))−1(η), ϕη(y)))
= ψ(ξ, ϕη(y)) = ψ(α(η, y), ϕ(η, y))
= y (by (3.6)),
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which proves that ψ̄ ◦ ϕη = id. For the other equality, take x and let ξ = (βx)−1(η) so
that ψ̄(x) = ψ(ξ, x). Then we obtain

ϕη(ψ̄(x)) = ϕ(η, ψ̄(x))

= ϕ(β(ξ, x), ψ(ξ, x))

= x (by (3.8)),

as required. This proves that ψ̄ is the inverse map of ϕη.
(2) =⇒ (8). Suppose that ϕη is bijective for each η. In order to prove that βx is a

bijection for each x ∈ ext(E∗), take an arbitrary η ∈ ext(E∗) and let y = (ϕη)−1(x). Then,
by (3.5),

η = β(α(η, y), ϕ(η, y)) = βx(α(η, y)),

and hence βx is surjective and thus is bijective. The inverse map β−1
x is written as

β−1
x (η) = α(η, ϕ−1

η (x)).

(1) =⇒ (3). We assume that ϕη1 = ϕη2 for each η1, η2 and let ϕ∗ = ϕη. In order to
show that ψξ1 = ψξ2 , take an arbitrary x ∈ ChE(A) and apply (3.8) and the assumption
to see that

ϕ(β(ξ2, x), ψ(ξ2, x)) = x = ϕ(β(ξ1, x), ψ(ξ1, x)) = ϕ(β(ξ2, x), ψ(ξ1, x)).

By the implication (1) =⇒ (8)⇐⇒ (2) proved above, we know that ϕβ(ξ2,x) = ϕ∗ is a
bijection, from which we obtain ψ(ξ1, x) = ψ(ξ2, x). This proves that ψξ1 = ψξ2 .

(7)⇐⇒ (5). We suppose that βx1 = βx2 for each x1, x2 ∈ ChE(A) and show that
αy1 = αy2 for each y1, y2 ∈ ChE(B). For each η, let x1 = ϕ(η, y1) and x2 = ϕ(η, y2). By
the assumption and (3.5),

βx2 (α(η, y1)) = βx1 (α(η, y1)) = β(α(η, y1), ϕ(η, y1))

= η = β(α(η, y2), ϕ(η, y2))

= βx2 (α(η, y2)).

The injectivity of βx2 implies that α(η, y1) = α(η, y2). Hence αy1 = αy2 , as required. The
converse implication is proved by an argument that is symmetric to the above.

(7) =⇒ (8). Suppose that βx1 = βx2 for each x1, x2 ∈ ChE(A) and we show that
β∗ := βx is a bijection. In view of the equivalence (7)⇔ (5), let α∗ = αy for an arbitrary
y. Take an η ∈ ext(E∗) and let ξ = α∗(η). Then, by (3.5),

β∗(ξ) = βϕ(η,y)(ξ)

= β(ξ, ϕ(η, y)) = η.

Hence β∗ is surjective and thus is bijective, and the inverse is given by β−1
∗ = α.
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(c) Assume that the condition (1)(⇐⇒ (3)) holds in (b) and let ϕ∗ := ϕη and ψ∗ = ψξ.
We see directly from (3.6) and (3.8) that ϕ−1

∗ = ψ∗. The continuity of these maps ϕ∗
and ψ∗ are a direct consequence of that of ϕ and ψ ((3.1) and (3.3)) and hence each of
those maps is a homeomorphism that has the other as its inverse.

This completes the proof of Lemma 3.2. �

Proof of Theorem 3.1.
(a) Let Vy be the operator defined by (3.9) and let Ay be the adjoint operator of Vy.

By definition, for each η ∈ E∗ and for each u ∈ E,

Ay(η)(u) = η(Vy(u))
= η(Tcu(y)) = η ◦ δy(cu)
= T ∗(η ◦ δy)(cu).

If η ∈ ext(E∗), then the last term of the above is equal to

α(η, y)δϕ(η,y)(cu) = α(η, y)(u) = αy(η)(u)

(see (3.1) and (3.2)) and hence αy(η) = Ay(η). This proves statement (a.2). The
continuity of the map y 7→ Vy : ChE(B)→ L(E, E) is a direct consequence of (3.9).
In order to show the inequality ‖Vy‖ ≤ 1, observe that

‖Vy(u)‖ = ‖Tcu(y)‖
≤ ‖Tcu‖∞ = ‖cu‖∞

= ‖u‖.

Hence we have ‖Vy‖ ≤ 1. This completes the proof of (a).
(b) and (c). Assume that ϕη1 = ϕη2 for each η1, η2 ∈ S (E∗) and let ϕ∗ = ϕη :

ChE(B)→ ChE(A). In order to prove (3.10), we first show that

for each f ∈ A with f (ϕ∗(y)) = 0, we have T f (y) = 0. (3.11)

In fact, for each η ∈ ext(E∗),

η(T f (y)) = T ∗(η ◦ δy) f
= α(η, y)δϕ∗(y)( f ) = αy(η)( f (ϕ∗(y)))
= 0.

Applying Lemma 2.6, we obtain the conclusion (3.11). Notice here that, in order
to obtain the above conclusion from Lemma 2.6, we need to have the equality
η(T f (y)) = 0 for each η ∈ ext(E∗). This is where we rely on Condition (ext).

The above (3.11) implies that

T f1(y) = T f2(y) whenever f1(ϕ∗(y)) = f2(ϕ∗(y)), f1, f2 ∈ A.

In particular, T f (y) = Tc f (ϕ∗(y)) for f ∈ A. Then, by definition (3.9), we obtain the
desired formula (3.10).
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For the proof of the equality of (b.1), it suffices to show that ‖Vy‖ ≥ 1. For the
proof, take a u ∈ E such that ‖u‖ = 1 and let f = T−1cu. Then ‖ f ‖∞ = ‖cu‖∞ = 1. Also,
by (3.10),

1 = ‖u‖ = ‖T f (y)‖ = ‖Vy( f (ϕ∗(y)))‖
≤ ‖Vy‖ ‖ f (ϕ∗(y))‖
≤ ‖Vy‖ ‖ f ‖∞ = ‖Vy‖,

and hence we obtain ‖Vy‖ ≥ 1, as desired.
By Lemma 3.2(a), ϕ∗ is a surjection. If βx and αy are injective for each x ∈

ChE(A) and y ∈ ChE(B), then Lemma 3.2(b) and (c) apply to conclude that ϕ∗ is a
homeomorphism. This proves the statements of (b).

Assume, further, that E∗ is strictly convex so that S (E∗) = ext(E∗). First, we show
that, for each η ∈ E∗,

‖Ay(η)‖ = ‖η‖. (3.12)

For each η ∈ E∗ \ {0}, η/‖η‖ ∈ S (E∗) = ext(E∗). Hence its image αy(η/‖η‖) is in ext(E∗)
and, in particular, has norm one. Thus we see that

‖Ay(η)‖ = ‖η‖

∥∥∥∥∥Ay

(
η

‖η‖

)∥∥∥∥∥
= ‖η‖

∥∥∥∥∥αy

(
η

‖η‖

)∥∥∥∥∥
= ‖η‖.

This proves (3.12). Since Ay is an extension of αy, it follows from this that αy is
injective. By repeating the above argument for T−1, we obtain the same conclusion
for βx. This proves (c.1). In order to prove (c.2), assume ϕη1 = ϕη2 for each
η1, η2 ∈ S (E∗) and let ϕ∗ = ϕη : ChE(B)→ ChE(A). The implication (1) =⇒ (6) of
Lemma 3.2(b) shows that αy : S (E∗)→ S (E∗) is a bijection on the unit sphere of E∗.
Then Ay, as a linear extension of αy, is a linear isomorphism as well as an isometry
(by (3.12)). If, moreover, E is reflexive, the operator Vy : E � E∗∗ → E is also an
isometric isomorphism. This completes the proof of (c) and completes the proof of
Theorem 3.1. �

In [6, Proposition 3.2], Botelho and Jamison proved the condition ‘αy1 = αy2 ’,
that is, the condition (5) of Lemma 3.2(b), under the hypothesis that T preserves
the constant functions. Then they appeal to the Ding–Liu extension theorem [30,
Corollary 2, page 963] to obtain an linear extension of αy. Assuming, further, that
E is reflexive, they obtain a linear map Vy : E → E to prove that T is a generalized
weighted composition operator. The idea of applying the reflexivity in the proof of
Theorem 3.1(c) was adopted from their argument.

Some of the previous works study sufficient conditions that guarantee the condition
‘ϕη1 = ϕη2 ’ from which we conclude that T is a generalized weighted composition
operator. These conditions have generally been stated in terms of some separation
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properties of the subspaces A and B. Theorem 3.4 is a result in this direction and its
proof follows arguments given in [1, 10, 18]. For a subspace A of C(X,E), we consider
the following condition.

(S3) For each x ∈ ChE(A), for each neighborhood U of x and for each u ∈ E, there
exists an f ∈ A such that ‖ f ‖∞ = ‖u‖, f (x) = u and f |X \ U ≡ 0.

Notice that Condition (S3) implies Condition (S2).

Theorem 3.3 (Cf. [1, 10, 18]). Assume that E is strictly convex and reflexive, and
assume, further, that A satisfies Condition (S1), Condition (S3) and Condition (ext).
Then, for each η1, η2 ∈ ext(E∗), ϕη1 = ϕη2 .

Proof. Let y ∈ ChE(B). We prove that there exists an x ∈ ChE(A) such that for each
η ∈ ext(E∗),

T ∗(η ◦ δy) = ξ ◦ δx for some ξ ∈ ext(E∗).

From this, and Lemma 2.1, we conclude that ϕη(y) = x for each η ∈ ext(E∗). First, we
show the following.

Claim 1. Suppose that T ∗(η ◦ δy) = ξ ◦ δx for ‖η‖ = ‖ξ‖ = 1. If a function f ∈ A satisfies
f |U ≡ 0 for a neighborhood U of x, then (T f )(y) = 0.

Proof of Claim 1 (Cf. proof of Proposition 2.4). We may assume at the outset that
‖ f ‖∞ = 1. By the reflexivity, there exists a vector u ∈ E with ‖u‖ = 1 such that
ξ(u) = ‖u‖ = ‖ξ‖ = 1. By Condition (S3), there exists a function f1 ∈ A such that
‖ f1‖∞ = 1, f1(x) = u and f1|X \ U ≡ 0. Let g = f + f1 and h = 1

2 (g + f1) = f1 + 1
2 f .

Then we see that g(x) = h(x) = u and also ‖g‖∞ = ‖h‖∞ = 1. Furthermore, we see that

η(T f1(y)) = T ∗(η ◦ δy) = ξ( f1(x)) = ξ(u) = ‖u‖ = 1,

and we obtain, in the same way, that η(Th(y)) = η(Tg(y)) = 1. It follows that
‖T f1(y)‖ = ‖Tg(y)‖ = ‖Th(y)‖ = 1 and in, particular, Th(y) is an extreme point of B(E),
by the strict convexity of E. Now the equation

Th(y) = 1
2 T f1(y) + 1

2 Tg(y)

forces that Th(y) = T f1(y) = Tg(y). This implies that 1
2 (T f )(y) = 0, as desired.

The proof will be complete once we have shown the following.

Claim 2. If T ∗(η1 ◦ δy) = ξ1 ◦ δx1 and T ∗(η2 ◦ δy) = ξ2 ◦ δx2 , then x1 = x2.

Proof of Claim 2. Suppose that x1 , x2 and take u ∈ E such that ξ2(u) , 0. By
Condition (S3), we may find a neighborhood U of x1 and a map f ∈ A such that
‖ f ‖∞ = ‖u‖, f (x2) = u and f |U ≡ 0. By Claim 1, we see that T f (y) = 0, which leads to
the contradiction

0 = η2(T f (y)) = T ∗(η2 ◦ δy)( f ) = ξ2( f (x2)) = ξ2(u) , 0.

Thus x1 = x2 and the proof is complete. �
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In summary, we obtain the following theorem.

Theorem 3.4. Let X and Y be compact Hausdorff spaces and let E be a strictly convex,
reflexive Banach space. Assume that A and B are subspaces of C(X, E) and C(Y, E),
respectively, and that both satisfy Condition (S1), Condition (S3) and also:

(M) for each f ∈ A with f (x) = 0 and for each ε > 0, there exist a neighborhood U of
x and fε ∈ A such that ‖ f − fε‖ < ε and fε|U ≡ 0.

Let T : A→ B be a surjective linear isometry.

(a) There exists a continuous surjection ϕ∗ : ChE(B) → ChE(A) and a collection
(Vy : E → E) of linear operators with ‖Vy‖ = 1 and

(T f )(y) = Vy( f (ϕ∗(y))) for each f ∈ A and for each y ∈ ChE(B).

The map y 7→ Vy is continuous with respect to the strong operator topology on
L(E, E).

(b) If, furthermore, the dual E∗ is strictly convex, then the above map ϕ∗ is a
homeomorphism and Vy is an isometric isomorphism for each y ∈ ChE(B).

In particular, if A and B are function-algebra modules in the sense of Section 2, then
the above conclusions hold.

The last assertion has been known in the literature under weaker assumptions on
the Banach space E. See, for example, [18] and [17, Theorem 7.5.9], while the subset
on which the homeomorphism ϕ∗ is defined does not necessarily coincide with the
Choquet boundary. See also [1, Theorem 4.3].

Proof. Condition (M) is exactly the hypothesis (b) of Proposition 2.4. We show that A
and B satisfy the hypothesis (c) of Proposition 2.4;

• for each ξ ∈ S (E∗) and for each neighborhood U of x, there exists an f ∈ A such
that ‖ f ‖∞ = 1 = ξ( f (x)) and f |X \ U ≡ 0.

Indeed. there exists a u ∈ E such that ξ(u) = 1 = ‖u‖, by the reflexivity of E. Take an
f ∈ A such that ‖ f ‖∞ = 1, f (x) = u and f |X \ U ≡ 0, by (S3). Then ξ( f (x)) = 1 and f
is the required function. The above, with Condition (S1) via Proposition 2.4, implies
that A satisfies Condition (ext). The same is true for B.

Applying Theorem 3.3, we see that ϕη1 = ϕη2 for each η1, η2 ∈ ext(E∗). Let ϕ∗ = ϕη.
By Theorem 3.1(b), (c) and the reflexivity of E, there exists a continuous surjection
ϕ∗ : ChE(E)→ ChE(A) and a collection (Vy)y∈ChE (B) of linear operators with the desired
properties. This completes the proof. �

By the use of Lemma 2.5, we may replace the assumptions on E, A and B in the
above theorem by

E is a Hilbert space and A and B are unitarily invariant
subspaces satisfying Condition (S1) and Condition (S3),

to obtain the same conclusion.
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As mentioned in Section 1, the above theorem follows the same lines as that of
previous results, for example [1, 6, 18, 25, 28]. In these previous works, deriving the
existence of well-defined maps ϕ∗ and Vy from (3.1), and verifying their continuity,
requires involved arguments. In our set-up, these verifications are built into the
statements of Propositions 2.3 and 2.4 and Theorem 3.1.

Homotopical rigidity is another condition on a compact Hausdorff space X which
forces every linear isometry between function spaces over X to be a generalized
weighted composition opearator. We say that a topological space M is homotopically
rigid if each continuous map h : [0, 1]→ M is a constant map. If M is homotopically
rigid, then every homotopy H : Z × [0, 1]→ M of a space Z to M must be trivial in
the sense that H(z, t) = H(z, 0) for each (z, t) ∈ Z × [0, 1]. Besides totally disconnected
spaces, connected examples include hereditarily indecomposable continua (see, for
example, [11, 13]). There even exists a planar hereritarily indecomposable, and hence
homotopically rigid, compact connected space [4]. Let X and Y be compact Hausdorff
spaces and let A and B be subspaces of C(X, E) and C(Y, E), respectively. Assume
that X is homotopically rigid, E is reflexive and that E∗ is strictly convex so that
S (E∗) = ext(E∗). A surjective isometry T : A→ B induces a map ϕ : S (E∗) ×ChE(B) =

ext(E∗) × ChE(B)→ ChE(A) ⊂ X, as in (3.1). For each η0, η1 ∈ S (E∗), there exists
a path (ηt)0≤t≤1 from η0 to η1 in S (E∗). Then (ϕηt )0≤t≤1 is a homotopy and, by the
homotopical rigidity, ϕη0 = ϕη1 . Therefore Theorem 3.1 yields the following theorem.

Theorem 3.5. Let X and Y be compact Hausdorff spaces and let A and B be subspaces
of C(X, E) and C(Y, E), respectively. Assume that A and B satisfy Condition (S1),
Condition (S2) and Condition (ext) and assume, further, that E is reflexive and E∗

is strictly convex. If X is homotopically rigid, then every surjective linear isometry
T : A→ B is a generalized weighted composition operator

T f (y) = Vy( f (ϕ∗(y))), f ∈ A, y ∈ Y,

where ϕ∗ : Y → X is a homeomorphism and (Vy : E → E)y∈ChE (B) is a continuous
collection of isometric linear isomorphisms.

Remark 3.6. In view of the comment after Theorem 3.4, we see that assumptions on E,
A and B are replaced by ‘E is a Hilbert space, A and B are unitarily invariant subspaces
satisfying (S1) and (S2)’ to obtain the same conclusion.

Example 3.7. As an illustration of previous results, we review a Banach–Stone type
theorem for C-valued continuous function spaces.

Let A and B be C-subspaces of C(X,C) and C(Y,C) where X and Y are compact
Hausdorff spaces. We assume that A and B satisfy Condition (S1), and also that they
separate the points of X and Y , respectively, in the sense of (s2). Let T : A→ B be
a surjective isometry such that T (0) = 0. The Mazur–Ulam theorem [37] implies that
T is a real-linear isometry. We show that T is a generalized weighted composition
operator under some additional hypotheses on A and B.

https://doi.org/10.1017/S1446788715000518 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000518


366 K. Kawamura [18]

First, let us make some preliminary considerations. Let R : C→ R2 be the map
defined by

R(a + ib) = t(a, b), a, b ∈ R.

The map R is an R-linear isometry and induces an R-linear isometry RX : C(X,C)→
C(X, R2), defined by RX( f ) = R ◦ f for f ∈ C(X, C). Let AR = RX(A). Since the
space A satisfies Condition (S1) and Condition (S2), by Lemma 1.1, so does AR. By
Lemma 2.5, A, and hence also AR, satisfy Condition (ext). Via the standard isometry
between R2 and (R2)∗, the unit sphere S ((R2)∗) is isometric to the unit circle S = R(T),
where T = {z ∈ C | |z| = 1}. Let A∗C be the C-dual of A and let A∗R = LR(AR,R), the
R-dual of AR.

It is known that there exists an R-isometry rA : A∗C →LR(A,R) defined by

rA(ξ)( f ) =<ξ( f ), ξ ∈ A∗C, f ∈ A,

whose inverse sA = r−1
A is given by

sA(ρ)(g) =<(ρ(g)) − i<(ρ(ig)), ρ ∈ LR(A,R), g ∈ A

(see, for example, [27]). The maps RX and rA naturally induce an R-linear isometry
ρA : A∗C → A∗R = LR(AR,R) defined by

ρA(ξ)(t(u, v)) =<ξ(u + iv)

for ξ ∈ A∗C and t(u, v) ∈ AR. In particular,

ρA(ext(A∗C)) = ext(A∗R).

In view of the above isometry, we can prove the equality ChR2 (A) = Ch(A), the standard
Choquet boundary of A. As we have already seen above, A∗R satisfies Condition (S1),
Condition (S2) and Condition (ext). Combining these with Proposition 2.3, we have a
homeomorphism

ΦAR : S × Ch(A) = ext((R2)∗) × Ch(A)→ ext(A∗R). (3.13)

The same holds for the subspace B. The R-adjoint of the R-linear map TR = RY ◦ T ◦
R−1

X : AR → BR, denoted by T ∗R : B∗R → A∗R, is an R-linear isometry and preserves the
extreme points: that is,

T ∗R(ext(B∗R)) = ext(A∗R).

These preliminary considerations enable us to apply Theorem 3.1. The homeomor-
phisms T ∗R, ΦAR and ΦBR of (3.13) induce a homeomorphism S × Ch(B)→ S × Ch(A)
which comprises two maps ϕ : S × Ch(B)→ Ch(A) and α : S × Ch(B)→ S . By
Theorem 3.1(a), for each y ∈ Ch(B), there exists an isometric R-linear isomorphism
Ay : (R2)∗ → (R2)∗, which is an extension of αy : S → S .

Assume that ϕy1 = ϕy2 for each pair y1, y2 of points of Ch(B): for example, assume
that A and B satisfy Condition (S3), or A and B are strongly separating and strongly
zero-separating in the sense of [27]. Then we see that AR and BR have the same
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property. The map ϕ∗ := ϕη and the adjoint Vy : R2 → R2 of Ay provide us with an
expression of TR as a generalized weighted composition operator, by Theorem 3.1(c):
that is,

TR fR(y) = Vy( fR(ϕ∗(y))), fR ∈ AR, y ∈ ChR2 (B) = Ch(B).

The linear map Vy is an isometry and, with respect to the standard basis of R2, it is
represented as a two-by-two matrix of the form

Vy = ρ(θy) or Jρ(θy),

depending on whether det Vy = 1 or det Vy = −1, where

ρ(θ) =

(
cos θ −sinθ
sin θ cos θ

)
(3.14)

and

J =

(
1 0
0 −1

)
.

Let K+ = {y ∈ Ch(B) | det Vy = 1} and K− = {y ∈ Ch(B) | det Vy = −1}. They are closed
and open in Ch(B), mutually disjoint, and cover Ch(B).

Let Wy = R−1 ◦ Vy ◦ R : C→ C. Noticing that the action of the rotation matrix ρ(θ)
of (3.14) on R2 transfers, via the map R, to the multiplication of eiθ ∈ T on C, we see
that there exists a map ω : Ch(B)→ T such that

Wy(λ) =

{
ω(y) · λ if y ∈ K+,

ω(y) · λ if y ∈ K−.
(3.15)

Therefore, for each f ∈ A, and with fR = RX( f ) = R ◦ f ,

T f (y) = ((R−1
Y ◦ TR ◦ RX) f )(y)

= R−1(TR fR(y))

= R−1(Vy( fR(ϕ∗(y))))

= (R−1 ◦ Vy ◦ R)(R−1( fR(ϕ∗(y))))

= Wy( f (ϕ∗(y)).

Applying (3.15) to the last term of the above, gives

T f (y) =

{
ω(y) · f (ϕ∗(y)) if y ∈ K+,

ω(y) · f (ϕ∗(y)) if y ∈ K−.

If T is complex-linear, it is easy to see that K− = ∅. This is the Banach–Stone type
theorem for complex-valued continuous functions that was proved in [27].
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4. Topological dimensions of underlying spaces and generalized weighted
composition operators

For an F-linear surjective isometry T : A→ B between function spaces A ⊂ C(X,E)
and B ⊂ C(Y, E) satisfying Condition (S1), Condition (S2) and Condition (ext), we
continue to examine the induced map ϕ : ext(E∗) × ChE(B)→ ChE(A) (see (3.1))
in connection with the topological dimension dim ChE(A) of ChE(A). For each
y ∈ ChE(B), let φy : ChE(B)→ ChE(A) be the map defined by

φy(η) = ϕ(η, y), η ∈ ext(E∗).

Assume that the dual E∗ is strictly convex so that ext(E∗) = S (E∗). The next lemma
states that each fiber of φy forms a spherically convex subset of S (E∗). For η1, . . . , ηr ∈

ext(E∗) ⊂ S (E∗), let H(η1, . . . , ηr) = spanF〈η1, . . . , ηr〉, which is the linear subspace of
E∗ spanned by {η1, . . . , ηr}. Moreover, let S (η1, . . . , ηr) = H(η1, . . . , ηr) ∩ S (E∗), which
is the spherical convex hull spanned by η1, . . . , ηr.

Lemma 4.1. Assume that E∗ is strictly convex. For an arbitrary point x ∈ φy(S (E∗))
and for each finite subset {η1, . . . , ηr} ⊂ φ

−1
y (x),

S (η1, . . . , ηr) ⊂ φ−1
y (x).

In particular, {η,−η} ⊂ φ−1
y (x) for each η ∈ φ−1

y (x).

Proof. For each F-linear combination η =
∑r

i=1 tiηi, we see that

α(η, y)δφy(η) = α(η, y)δϕ(η,y) = T ∗(η ◦ δy)

=

r∑
i=1

tiT ∗(ηi ◦ δy)

=

r∑
i=1

tiα(ηi, y)δφy(ηi)

=

( r∑
i=1

tiα(ηi, y)
)
δx.

By Condition (S2) and Lemma 2.1, we obtain that x = φy(η), which completes the
proof. �

Let L be a subspace of E∗ and notice that S (L) = L ∩ S (E∗). Also, let φy,L =

φy|S (L) : S (L)→ ChE(A). For x ∈ ChE(A), let Hx,L be the subspace of E∗ spanned
by the set φ−1

y,L(x). When L = E∗, Hx,L is simply denoted by Hx. The above lemma
implies the following proposition.

Proposition 4.2. For each x ∈ φy,L(S (L)),

φ−1
y,L(x) = Hx ∩ S (L).
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Take an F-linear isometry T : A → B which is not a generalized weighted
composition operator. By Theorem 3.1(b), the map η 7→ ϕη is not a constant map
and thus φy : S (E∗)→ ChE(A) is not a constant map for some y ∈ ChE(B). Fix such y
arbitrarily and take a finite dimensional subspace L such that φy,L is not constant. The
map φy,L is examined in the next lemma.

Lemma 4.3. Assume that E∗ is strictly convex and let L be a finite dimensional subspace
of E∗ such that φy,L is not a constant map. Let nL = dimF L. Then we have the following.

(a) The inequality
1 ≤ dimF Hx,L ≤ nL − 1

holds for each x ∈ φy,L(S (L)).
(b) Assume that nL ≥ 2. Then, either:

(b.1) dim Hx,L < nL − 1 for each x ∈ ChE(A); or
(b.2) there exists a unique x0 ∈ ChE(A) such that dimF Hx0,L = nL − 1 and

dimF Hx,L = 1 for each x ∈ ChE(A) \ {x0}.

Proof. (a) Note that dim Hx,L cannot be zero for each x ∈ φy,L(S (L)) because {η,−η} ⊂
φ−1

y,L(x). Also, Hx,L cannot be the whole L because φy,L is not a constant map. The
conclusion (a) follows from these.

(b) The set {φ−1
y,L(x) | x ∈ φy,L(S L)} is a mutually disjoint collection. This implies that

Hx1,L ∩ Hx2,L = {0} for each pair of distinct points x1 and x2. Thus

dimF Hx1,L + dimF Hx2,L = dimF(Hx1,L + Hx2,L) ≤ nL (4.1)

for each pair of points x1 , x2 of φy,L(S (L)). This, together with (a), yields that
dimF Hx,L ≤ nL − 1.

Suppose that dimF Hx0,L = nL − 1 for some x0 ∈ ChE(A). Then, for each x other than
x0, we see from (4.1) and (a) that dimF Hx,L = 1. This proves (b). �

In order to apply the following theorem from topological dimension theory, we
assume that the underlying space X is metrizable and the Banach space E is separable
in Theorems 4.5 and 4.6 below. For a separable metrizable space M, dim M denotes
the topological dimension of M. See [15] for a thorough treatment of topological
dimension theory.

Theorem 4.4 [15, Theorem 1.12.2]. Let f : M→ N be a closed map between separable
metrizable spaces M and N. Then

dim M ≤ dim N + sup
q∈N

dim f −1(q).

Theorem 4.5. Let X and Y be compact metrizable spaces and let E be a separable
Banach space over F = C or R with the strictly convex dual. Let A and B be subspaces
of C(X, E) and C(Y, E), respectively, satisfying Condition (S1), Condition (S2) and
Condition (ext). Let T : A→ B be an F-linear isometry such that φy : S (E∗)→ ChE(A)
is not a constant map for some y ∈ ChE(B).
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(a) Assume that dimF E ≥ 3. Then dim ChE(A) ≥ 2.
(b) Assume that dimF E ≤ 2.

(b.1) If F = R, then dimR E = 2 and dim ChE(A) ≥ 1.
(b.2) If F = C, then

dim ChE(A) ≥
{

1 if dimC E = 1,
2 if dimC E = 2.

Proof. (a) First we assume that F = R. Take a subspace L of E∗ such that 3 ≤ dimR L
< ∞ and φy,L : S (L)→ ChE(A) is not a constant map. Let n = dimR L and observe,
from Lemma 4.3, that either:

(i) dimR Hx,L < n − 1 for each x ∈ φy,L(S (L)); or
(ii) there exists a unique x0 ∈ ChE(A) such that dimF Hx0,L = n − 1 and dimR Hx,L = 1

for each x ∈ φy,L(S (L)), other than x0.

In Case (i), the dimension of φ−1
y (x) satisfies

dim φ−1
y (x) = dimR(Hx,L ∩ S (L)) ≤ n − 2 − 1 = dim S (L) − 2.

Since L is finite dimensional, the sphere S (L) is compact and the map φy : S (L)→
ChE(A) is closed. Applying Theorem 4.4 to the map φy, we obtain

dim S (L) ≤ dim ChE(A) + sup
x∈ChE (A)

dim φ−1
y (x)

≤ dim ChE(A) + dim S (L) − 2,

from which we conclude that dim ChE(A) ≥ 2.
In Case (ii), we see that the restriction φy,L|S (L) \ (φy,L)−1(x0) of φy,L to the subset

S (L) \ (φy,L)−1(x0) satisfies the condition

φy(η1) = φy(η2) =⇒ η2 = ±η1. (4.2)

Let PS (L) be the projective space PS (L) = S (L)/(η ∼ −η) with the standard quotient
map

[·] : S (L)→ PS (L) = S (L)/(η ∼ −η).

The above (4.2) yields that φy,L : S (L)→ ChE(A) induces a map [φy,L] : PS (L)→
ChE(A) such that the restriction [φy,L]|PS (L) \ [φ−1

y (x)] : PS (L) \ [φ−1
y (x)]→ ChE(A)

is a topological embedding. Hence

dim ChE(A) ≥ dimR S (L) = n − 1 ≥ 2.

This proves the desired conclusion for the case F = R.
When F = C, the inequality dimC Hx,L ≤ n − 1 of Lemma 4.3 implies that

dimR Hx,L ≤ 2n − 2 and hence dim φ−1
y,L(x) ≤ 2n − 3 = dim S (L) − 2 for each x ∈

φy,L(S (L)). Therefore, the same proof as that of Case(i) above can be used to prove
that dim ChE(A) ≥ 2.
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(b.1) If dimR E = 1, then S (E∗) consists of two antipodal points and hence φy(S (E∗))
consists of a singleton, by Lemma 4.1, which contradicts the assumption that φy is not
a constant map. Assume that dimR E = 2. We show that

the induced map [φy] : PS (E∗)→ ChE(A) is an embedding.

Suppose that there exist η1, η2 ∈ S (E∗) with η2 , ±η1 such that φy(η1) = φy(η2) := x. By
Proposition 4.2 and the two-dimensionality of E∗, we see that φ−1

y (x) = Hx ∩ S (E∗) =

E∗ ∩ S (E∗) = S (E∗). Hence φy is a constant map, which is a contradiction. Then we
see that ChE(A) contains a homeomorphic copy of PS (E∗) and thus has dimension at
least one.

(b.2) The real dimension of E, dimR(E∗), is equal to two or four. When dimR E∗ = 2,
we may repeat the proof of (b.1) to show that [φy] is an embedding of the projective
space PS (L) into ChE(A) and dim ChE(A) ≥ 1. When dim S (E∗) = 3, the proof of (a)
can be repeated to conclude that dim ChE(A) ≥ 2. �

In summary, we obtain the following theorem.

Theorem 4.6. Let X and Y be compact metrizable spaces and let E be a separable,
reflexive Banach space with E∗ being strictly convex. Let A and B be subspaces
of C(X, E) and C(Y, E), respectively, satisfying Condition (S1), Condition (S2) and
Condition (ext). If one of the conditions:

(a) dimR E = 1; or
(b) dimR E ≥ 2 and dim X = 0; or
(c) dimR E ≥ 3 and dim X ≤ 1

holds, then every surjective linear isometry T : A → B between A and B is a
generalized weighted composition operator

T f (y) = Vy( fϕ∗(y)), f ∈ A, y ∈ ChE(B),

where ϕ∗ : ChE(B)→ ChE(A) is a homeomorphism and (Vy)y∈ChE (B) is a continuous
collection of isometric linear isomorphisms E → E such that ChE(B) 3 y 7→ Vy ∈

L(E, E) is continuous with respect to the strong operator topology on L(E, E).
Suppose, further, that E is a Hilbert space, and A and B are unitarily invariant

subspaces satisfying Condition (S1) and Condition (S2). Then, under each one of the
assumptions (a)–(c), the same conclusion holds.

Proof. Let T : A→ B be a surjective linear isometry. Theorem 4.5 implies that,
for each y ∈ ChE(B), the map φy : S (E∗)→ S (E∗) must be a constant map. Let
{ϕ∗(y)} = φy(S (E∗)). It readily follows from this that ϕη = ϕ∗ and Theorem 3.1 can
be applied to obtain the conclusion.

The statement on a Hilbert space and unitarily invariant subspaces follows from
Lemma 2.5, in the same way as in Theorem 3.5. �
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