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1.

The functions / defined by

cx-\-l —
or by

x-1
/(*) = ex—I

for c rational and less than + 1 map the set of rational numbers between 0
and 1 one-to-one onto itself; and they are the only fractional linear functions
with this property. Miss Tekla Taylor recently raised the question * whether
these are the only differentiable functions with the stated property. In the
present note we show, by two different constructions, that the answer is
negative; in each case much freedom remains, which could be used to make
the functions in question have various additional properties.

2.

Let P denote the set of all rational numbers, R the set of all real num-
bers, and C the set of all complex numbers.

THEOREM 1. There is a function f : R -* R with the following properties.
(i) / is differentiable and monotone increasing in R, in fact f'(x) ^ 1 for

all real x;
(ii) f(P) — P, that is to say, f maps the set of rational numbers onto itself;
(iii) / is not (entire) linear, that is to say, to all a, beR there is an xeR

such that f(x) # ax -+- b;

* Oral communication. A related but simpler problem, proposed by D. G. Northcott and
communicated to us by I. D. Macdonald, is solved in a note by Peter M. Neumann in IN-
VARIANT [the journal of the Oxford University Invariant Society] 1, 9—11 (1961). Subse-
quently one of us jointly with H. A. Heilbronn obtained a more general result (not published).
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(iv) / is "locally linear" at every rational point, in the sense that to each
peP there are numbers a, $, 8 eP, 8 > 0, such that for all xe [p — 8, p + 8],

f(x) =*x + p.

An immediate consequence of (iv) is that / is not properly fractional
linear (that is of the form f(x) = (ax + b)f(cx + d) with c # 0) in any
real open interval.

THEOREM 2. There is a function f : C -> C with the following properties.
(i) / is differentiate on C, that is to say, an entire function;
(ii) f(R) = R and f(P) = P, that is to say, f maps the sets of real numbers

and of rational numbers onto themselves;
(iii) / is monotone increasing on the real line, in fact, f'(x) 2g 1 for all xeR;
(iv) / is not a polynomial.

The montoneity of these functions f on R implies that they map R, and
thus also P, one-to-one. Miss Taylor's question is answered by the function <p
defined by

fW-«">-«l))

where / is the function either of Theorem 1 or of Theorem 2.
The proof of Theorem 1 is quite simple and short and occupies § 3. The

proof of Theorem 2 is more elaborate, as it requires the construction of an
analytic function, not just a real once differentiable function; it is given
in § 4.

3. Proof of Theorem 1

Let
P = {pO>Pl>P2. • • • }

be an enumeration of the rational numbers. It is possible to define, by
simultaneous induction, integers A(«) ^ 0, closed intervals/„ C R of positive
length and with irrational endpoints, rational numbers an, /?„, and differen-
tiable functions /„ : R ->• R, for n = 0,1,2, •••, such that, let us say

X(0) = 0,I0= [Po - y/2, Po + V2], oo = 2, ft, = 0, /„(*) = 2x

and such that, further, with the abbreviation

we have for n = 1, 2, 3,
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(1) / , n /„ = 0,

(2) / . ( * ) = / - i ( * ) for all xejn,

(3) /.(*) = ccBa; + ft, for aU xeln.

(4) «n =£ am for w < «,

(5) ! / • ( * ) - £ - i ( * ) l < 2"" for all x e R.

Finally, we stipulate that
(a) if n — 2, 4, 6, • • • then X(n) is the least integer X ̂  0 such that

p A £ / B , and /„ is so chosen that pMn) eln;
(b) if n = 1,3,5, • • • then A(«) is the least integer X ̂  0 such that

PK$fn-i[Jn)> a n d t h e n 4 . «», /?„ are so chosen that pMn) e/„(/„).
We first remark that from the definition of /0 and from (5) we have

(6) 1 < f'n(x) < 3 for n = 0, 1, 2, • • • and all xeR;

moreover, still by (5), lim,,^^/!, exists uniformly in R. Also, by repeated
application of (2)

L(Po) = fo(po) for n = 0, 1, 2, • • •,

so that limB_oo/M(p0) (trivially) exists. Hence

lim /„ = /
n-»oo

exists on R and is differentiate, and

f'{x) = lim f'n(x) ^ 1 for all x e 2?.
n-»oo

This proves (i).
Next, if p e P , then there is an integer m ^ 0 such that pelm, by (a).

Then for all n 2g w,

by repeated application of (2), (3), and the choice of ara, fimeP; thus

/(/>) = lim fn(p)=fm(p) e P,
n-+oo

and it follows that f(P) Q P.
Again, if a e P, then there is an integer k 5: 0 such that a e /*(/*), by (b).

Thus there is p e Ik such that

and as a4 ^ 0 — an obvious consequence of (3) and (6) — we have p e P.
Again we have as before /„(/>) = fk(p) for n ^ k, and
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f{p) = lim fn(P) = fk(P) = a,
n-»oo

and it follows that PQf{P), completing the proof of (ii). Property (iii) is a
consequence of (4), and (iv) follows from the fact that the endpoints of all /„
have been chosen irrational. This completes the proof of Theorem 1.

4. Proof of Theorem 2

We adopt the convention that x ranges over the real numbers, z over the
complex numbers, and m, n over the non-negative integers.

Let two sequences of (not necessarily distinct) rational numbers

(7) 7to = 0, rcj.jijj,- •• and a0 = 2, a^, az, - • •

be chosen so that for m ^ 1

(8) — m^nmg>m and 0 < am ^ (2m)-mt~m-2.

We define polynomials p0, px, p2, • • • and /0, flt /2, • • • by

Pm(z) = *»'+l(*-J^) ( * - » , ) . - . ( * -»„ ) .
n

fn = 2amPm-
flinD

Then we have, for m ^ 1 and \z\ ^ m,

(9) I««A»(*)I ^ «mm-»a+i(2m)™ ^ 2-»2 ^ 2—,

(2w)'n+2 ^ 2-m* ^ 2-m.

Hence we may define a function / : C -> C by

n-̂ oo tn=0

and as (9) ensures the uniform convergence in every circle, this function
is entire. Also, by (10), we have

We note that the only powers of the variable that actually occur in j>m

are among those with exponents m2 + 1, m2 + 2, • • •, m2 + m + 1, and
the last of these has coefficient 1; hence the different pm contribute distinct
powers of the variable to /, and in the power series expansion of / about the
origin, infinitely many powers occur with non-zero coefficients. It follows
that / is not a polynomial.

https://doi.org/10.1017/S1446788700028305 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028305


286 B. H. Neumann and R. Rado [5]

Next we note that fm, pm+x, pm+i, • • • all vanish at z — nm, whence

(11) / (» . )=/»(«») for m^n+1;

this is a rational number, and if we ensure that all rational numbers occur
among the nm, then we shall have f{P) Q P.

However, before carrying this out, we prove that / is monotone on the
real line; to this end we show by induction that

(12) f'n(x) ^ 1 + 2-" for all x e R.

As /„ = p0 is defined by fo(z) = 2z, (12) is true for n = 0. Let now m ^ 0
be fixed and assume (12) is valid for n = m. Then, if \x\ ^ tn + 1, we apply
(10) and obtain

If \x\ > m + 1, then p'm+y(x) > 0 since pm+1 is a monk polynomial of odd
degree whose roots are real and contained in the interval [— m — 1, m + 1].
Hence

/;+!(*) = L(») + «m+ifi'm+i(x) ^ 1 + 2-m + 0 ^ 1 + 2—i.

This proves (12) for n = m + 1, and thus (12) is true for all n. The monoto-
neity of / follows at once:

f'{x) = lim fn(x) ^ 1 for all x e R.
n-*co

It only remains to specialize the sequences (7) of rational numbers, subject
to (8), so that

(13) f(P) = P.

Let again, as in the proof of Theorem 1,

(14) P = {pa, Pi. Pt. • • •}

be an enumeration of the rational numbers, which we now choose so that

|/>J sS m for all m ^ 0.

Recall that n0 = 0 and a0 = 2, so that p0 and /0 are already given. The
coefficients am for m ^ 1 can be chosen arbitrarily; let us put

am = (2m)-mt-m-z for m ^ 1.

We define ?rB inductively as follows. Suppose n0, n^ • • ' .^n-i have been
determined, where n is fixed, n 3: 1; then pm and /m are defined for m < n.

Case 1. Let n = 3A; + 1. We put jrn = pfc. Then |wB| ^ k < n, as required
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by (8). We thus ensure that all rational numbers occur among the nn, and
thus that

(15) f(P)QP.

Case 2. Let n = Zk + 2; we then define both nn and nn+1. Determine
£ e R from the equation

/-x(£) = /»*•

There is precisely one such f, and as \pk\ ̂  k < n, and as /„_!(()) = 0 and
/»-i(*) > 1 for all x e R (see (12)), also |f| < n.

Case 2a. Let £ e P. Then we put nn = ^n + 1 = | . Then |jin| ̂  « and
|JIB+1| ^ » + 1, as required by (8); and, by (11),

(16) /(»,) = /_!(«.) = />*.

Case 26. Let I be irrational. Define a function F by

This function exists and is continuous in a neighbourhood of f, that is for
\x — £\<d with a suitable 5 > 0; and

Hence there is a. p e P such that |/>| < « and |F(/>)| < n. Note that also
i="0>) e P. We put

»» = F(p). nn+i = /»•

Then |jrn| ̂  » and \nn+1\ ^ « + 1, as required by (8); and

Pic = fn-M + "nP^Pn
thus, using (11),

Now (16) and (17) combine to show that every rational number is of the
form

Pk = f(^3k+z) or pk = f(n3k+z),
and so

PQf(P).

In conjunction with (15) this shows (13) and completes the proof of Theorem2.
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