MONOTONE FUNCTIONS MAPPING THE SET OF RATIONAL NUMBERS ON ITSELF

(IN MEMORIAM FELIX A. BEHREND)

B. H. NEUMANN and R. RADO

(received 25 October 1962)

1.

The functions *f* defined by

$$f(x)=\frac{x}{cx+1-c}$$

or by

$$f(x)=\frac{x-1}{cx-1}$$

for c rational and less than + 1 map the set of rational numbers between 0 and 1 one-to-one onto itself; and they are the only fractional linear functions with this property. Miss Tekla Taylor recently raised the question * whether these are the only differentiable functions with the stated property. In the present note we show, by two different constructions, that the answer is negative; in each case much freedom remains, which could be used to make the functions in question have various additional properties.

2.

Let P denote the set of all rational numbers, R the set of all real numbers, and C the set of all complex numbers.

THEOREM 1. There is a function $f: R \to R$ with the following properties. (i) f is differentiable and monotone increasing in R, in fact $f'(x) \ge 1$ for all real x;

(ii) f(P) = P, that is to say, f maps the set of rational numbers onto itself;

(iii) f is not (entire) linear, that is to say, to all a, $b \in R$ there is an $x \in R$ such that $f(x) \neq ax + b$;

* Oral communication. A related but simpler problem, proposed by D. G. Northcott and communicated to us by I. D. Macdonald, is solved in a note by Peter M. Neumann in IN-VARIANT [the journal of the Oxford University Invariant Society] 1, 9-11 (1961). Subsequently one of us jointly with H. A. Heilbronn obtained a more general result (not published).

 $\mathbf{282}$

(iv) f is "locally linear" at every rational point, in the sense that to each $\rho \in P$ there are numbers α , β , $\delta \in P$, $\delta > 0$, such that for all $x \in [\rho - \delta, \rho + \delta]$,

$$f(x)=\alpha x+\beta.$$

An immediate consequence of (iv) is that f is not properly fractional linear (that is of the form f(x) = (ax + b)/(cx + d) with $c \neq 0$) in any real open interval.

THEOREM 2. There is a function $f: C \to C$ with the following properties. (i) f is differentiable on C, that is to say, an entire function;

(ii) f(R) = R and f(P) = P, that is to say, f maps the sets of real numbers and of rational numbers onto themselves;

(iii) f is monotone increasing on the real line, in fact, $f'(x) \ge 1$ for all $x \in R$;

(iv) f is not a polynomial.

The montoneity of these functions f on R implies that they map R, and thus also P, one-to-one. Miss Taylor's question is answered by the function φ defined by

$$\varphi(x) = \frac{f(x) - f(0)}{f(1) - f(0)},$$

where f is the function either of Theorem 1 or of Theorem 2.

The proof of Theorem 1 is quite simple and short and occupies § 3. The proof of Theorem 2 is more elaborate, as it requires the construction of an analytic function, not just a real once differentiable function; it is given in § 4.

3. Proof of Theorem 1

Let

$$P = \{\rho_0, \rho_1, \rho_2, \cdots\}$$

be an enumeration of the rational numbers. It is possible to define, by simultaneous induction, integers $\lambda(n) \ge 0$, closed intervals $I_n \subset R$ of positive length and with irrational endpoints, rational numbers α_n , β_n , and differentiable functions $f_n: R \to R$, for $n = 0, 1, 2, \cdots$, such that, let us say

$$\lambda(0) = 0, I_0 = [\rho_0 - \sqrt{2}, \rho_0 + \sqrt{2}], \alpha_0 = 2, \beta_0 = 0, f_0(x) = 2x$$

and such that, further, with the abbreviation

$$J_n = I_0 \cup I_1 \cup \cdots \cup I_{n-1},$$

we have for $n = 1, 2, 3, \cdots$

(1)
$$I_n \cap J_n = \emptyset,$$

(2)
$$f_n(x) = f_{n-1}(x) \text{ for all } x \in J_n,$$

(3)
$$f_n(x) = \alpha_n x + \beta_n$$
 for all $x \in I_n$,

(4)
$$\alpha_n \neq \alpha_m$$
 for $m < n$,

(5)
$$|f'_n(x) - f'_{n-1}(x)| < 2^{-n}$$
 for all $x \in R$.

Finally, we stipulate that

(a) if $n = 2, 4, 6, \cdots$ then $\lambda(n)$ is the least integer $\lambda \ge 0$ such that $\rho_{\lambda} \notin J_n$, and I_n is so chosen that $\rho_{\lambda(n)} \in I_n$;

(b) if $n = 1, 3, 5, \cdots$ then $\lambda(n)$ is the least integer $\lambda \ge 0$ such that $\rho_{\lambda} \notin f_{n-1}(J_n)$, and then I_n, α_n, β_n are so chosen that $\rho_{\lambda(n)} \in f_n(I_n)$.

We first remark that from the definition of f_0 and from (5) we have

(6)
$$1 < f'_n(x) < 3$$
 for $n = 0, 1, 2, \cdots$ and all $x \in R$

moreover, still by (5), $\lim_{n\to\infty} f'_n$ exists uniformly in R. Also, by repeated application of (2)

$$f_n(\rho_0) = f_0(\rho_0)$$
 for $n = 0, 1, 2, \cdots$,

so that $\lim_{n\to\infty} f_n(\rho_0)$ (trivially) exists. Hence

$$\lim_{n\to\infty} f_n = f$$

exists on R and is differentiable, and

$$f'(x) = \lim_{n \to \infty} f'_n(x) \ge 1$$
 for all $x \in R$.

This proves (i).

Next, if $\rho \in P$, then there is an integer $m \ge 0$ such that $\rho \in I_m$, by (a). Then for all $n \ge m$,

$$f_n(\rho) = f_m(\rho) = \alpha_m \rho + \beta_m \in P,$$

by repeated application of (2), (3), and the choice of α_m , $\beta_m \in P$; thus

$$f(\rho) = \lim_{n \to \infty} f_n(\rho) = f_m(\rho) \in P,$$

and it follows that $f(P) \subseteq P$.

Again, if $\sigma \in P$, then there is an integer $k \ge 0$ such that $\sigma \in f_k(I_k)$, by (b). Thus there is $\rho \in I_k$ such that

$$\sigma = \alpha_k \rho + \beta_k,$$

and as $\alpha_k \neq 0$ — an obvious consequence of (3) and (6) — we have $\rho \in P$. Again we have as before $f_n(\rho) = f_k(\rho)$ for $n \geq k$, and

$$f(\rho) = \lim_{n \to \infty} f_n(\rho) = f_k(\rho) = \sigma,$$

and it follows that $P \subseteq f(P)$, completing the proof of (ii). Property (iii) is a consequence of (4), and (iv) follows from the fact that the endpoints of all I_n have been chosen irrational. This completes the proof of Theorem 1.

4. Proof of Theorem 2

We adopt the convention that x ranges over the real numbers, z over the complex numbers, and m, n over the non-negative integers.

Let two sequences of (not necessarily distinct) rational numbers

(7)
$$\pi_0 = 0, \pi_1, \pi_2, \cdots$$
 and $a_0 = 2, a_1, a_2, \cdots$

be chosen so that for $m \ge 1$

(8)
$$-m \leq \pi_m \leq m$$
 and $0 < a_m \leq (2m)^{-m^2-m-2}$.

We define polynomials p_0 , p_1 , p_2 , \cdots and f_0 , f_1 , f_2 , \cdots by

$$p_m(z) = z^{m^2+1}(z-\pi_1) (z-\pi_2) \cdots (z-\pi_m),$$

$$f_n = \sum_{m=0}^n a_m p_m.$$

Then we have, for $m \ge 1$ and $|z| \le m$,

(9)
$$|a_m \phi_m(z)| \leq a_m m^{m^2+1} (2m)^m \leq 2^{-m^2} \leq 2^{-m},$$

(10)
$$\begin{aligned} |a_m p'_m(z)| &\leq a_m ((m^2 + 1)m^{m^2}(2m)^m + m^{m^2 + 1}m(2m)^{m-1}) \\ &\leq a_m m^{m^2}(2m)^{m+2} \leq 2^{-m^2} \leq 2^{-m}. \end{aligned}$$

Hence we may define a function $f: C \rightarrow C$ by

$$f = \lim_{n \to \infty} f_n = \sum_{m=0}^{\infty} a_m p_m,$$

and as (9) ensures the uniform convergence in every circle, this function is entire. Also, by (10), we have

$$f' = \lim_{n \to \infty} f'_n = \sum_{m=0}^{\infty} a_m p'_m$$

We note that the only powers of the variable that actually occur in p_m are among those with exponents $m^2 + 1$, $m^2 + 2$, \cdots , $m^2 + m + 1$, and the last of these has coefficient 1; hence the different p_m contribute distinct powers of the variable to f, and in the power series expansion of f about the origin, infinitely many powers occur with non-zero coefficients. It follows that f is not a polynomial.

Next we note that p_m , p_{m+1} , p_{m+2} , \cdots all vanish at $z = \pi_m$, whence

(11)
$$f(\pi_m) = f_n(\pi_m) \text{ for } m \leq n+1;$$

this is a rational number, and if we ensure that all rational numbers occur among the π_m , then we shall have $f(P) \subseteq P$.

However, before carrying this out, we prove that f is monotone on the real line; to this end we show by induction that

(12)
$$f'_n(x) \ge 1 + 2^{-n} \text{ for all } x \in \mathbb{R}.$$

As $f_0 = p_0$ is defined by $f_0(z) = 2z$, (12) is true for n = 0. Let now $m \ge 0$ be fixed and assume (12) is valid for n = m. Then, if $|x| \le m + 1$, we apply (10) and obtain

$$f'_{m+1}(x) = f'_m(x) + a_{m+1}p'_{m+1}(x) \ge 1 + 2^{-m} - 2^{-m-1} = 1 + 2^{-m-1}.$$

If |x| > m + 1, then $p'_{m+1}(x) > 0$ since p_{m+1} is a monic polynomial of odd degree whose roots are real and contained in the interval $\lfloor -m - 1, m + 1 \rfloor$. Hence

$$f'_{m+1}(x) = f'_m(x) + a_{m+1}p'_{m+1}(x) \ge 1 + 2^{-m} + 0 \ge 1 + 2^{-m-1}.$$

This proves (12) for n = m + 1, and thus (12) is true for all n. The monotoneity of f follows at once:

$$f'(x) = \lim_{n \to \infty} f'_n(x) \ge 1$$
 for all $x \in R$.

It only remains to specialize the sequences (7) of rational numbers, subject to (8), so that

$$(13) f(P) = P.$$

Let again, as in the proof of Theorem 1,

(14)
$$P = \{\rho_0, \rho_1, \rho_2, \cdots\}$$

be an enumeration of the rational numbers, which we now choose so that

$$|\rho_m| \leq m$$
 for all $m \geq 0$.

Recall that $\pi_0 = 0$ and $a_0 = 2$, so that p_0 and f_0 are already given. The coefficients a_m for $m \ge 1$ can be chosen arbitrarily; let us put

$$a_m = (2m)^{-m^2 - m - 2}$$
 for $m \ge 1$.

We define π_n inductively as follows. Suppose $\pi_0, \pi_1, \dots, \pi_{n-1}$ have been determined, where *n* is fixed, $n \ge 1$; then p_m and f_m are defined for m < n.

Case 1. Let n = 3k + 1. We put $\pi_n = \rho_k$. Then $|\pi_n| \le k < n$, as required

by (8). We thus ensure that all rational numbers occur among the π_n , and thus that

(15)
$$f(P) \subseteq P.$$

Case 2. Let n = 3k + 2; we then define both π_n and π_{n+1} . Determine $\xi \in R$ from the equation

$$f_{n-1}(\xi)=\rho_k.$$

There is precisely one such ξ , and as $|\rho_k| \leq k < n$, and as $f_{n-1}(0) = 0$ and $f'_{n-1}(x) > 1$ for all $x \in R$ (see (12)), also $|\xi| < n$.

Case 2a. Let $\xi \in P$. Then we put $\pi_n = \pi_{n+1} = \xi$. Then $|\pi_n| \leq n$ and $|\pi_{n+1}| \leq n + 1$, as required by (8); and, by (11),

(16)
$$f(\pi_n) = f_{n-1}(\pi_n) = \rho_k$$

Case 2b. Let ξ be irrational. Define a function F by

$$F(x) = \frac{f_{n-1}(x) - \rho_k}{a_n x^{2n-1} p_{n-1}(x)} + x.$$

This function exists and is continuous in a neighbourhood of ξ , that is for $|x - \xi| < \delta$ with a suitable $\delta > 0$; and

$$|F(\xi)| = |\xi| < n.$$

Hence there is a $\rho \in P$ such that $|\rho| < n$ and $|F(\rho)| < n$. Note that also $F(\rho) \in P$. We put

$$\pi_n = F(\rho), \qquad \pi_{n+1} = \rho$$

Then $|\pi_n| \leq n$ and $|\pi_{n+1}| \leq n+1$, as required by (8); and

$$\pi_n = F(\rho) = \frac{f_{n-1}(\rho) - \rho_k}{a_n \rho^{2n-1} p_{n-1}(\rho)} + \rho,$$

$$\rho_{k} = f_{n-1}(\rho) + a_{n}\rho^{2n-1}p_{n-1}(\rho)(\rho - \pi_{n}) = f_{n-1}(\rho) + a_{n}p_{n}(\rho) = f_{n}(\rho);$$

thus, using (11),

(17)
$$f(\pi_{n+1}) = f_n(\pi_{n+1}) = f_n(\rho) = \rho_k$$

Now (16) and (17) combine to show that every rational number is of the form

$$\rho_k = f(\pi_{3k+2}) \quad \text{or} \quad \rho_k = f(\pi_{3k+3}),$$

and so

$$P \subseteq f(P).$$

In conjunction with (15) this shows (13) and completes the proof of Theorem 2.

The Australian National University The University, Reading