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1. Introduction, Some time ago, J. G. Wendel proved that the operators 
on the group algebra LX(G) which commute with convolution correspond in a 
natural way to the measure algebra M(G) (13). One might ask if Wendel's 
theorem can be restated in a more general setting. It is this question that is 
the point of departure for our present paper. Let K be a Banach module 
over Li(G). Our interest is in operators from L\(G) into K, and from K into 
A»(G), which commute with the module composition (where Lœ(G) is thought 
of as a module over Li(G) also). Such operators we call (Li(G),K)- and 
{K, Lœ(G))-homomorphisms, respectively. Investigations of various other 
kinds of module homomorphisms occur in A. Figà-Talamanca (6) and B. E. 
Johnson (9; 10). 

Section 2 contains the preliminary discussion. In § 3 we present a partial 
characterization of the (Li(G), K)-homomorphisms, as a factor space of the 
second conjugate space of K. We conclude the section with explicit descrip
tions of the (Li(G)j LP{G))-homomorphisms, p Ç [1, °°], where LP(G) is a 
left Li(G)-module under a generalized convolution, and where LP(G) is a 
right Li(G)-module under a composition which is related to the construction 
of the Arens multiplication in the bidual of a Banach algebra. In § 4 we 
characterize the (K, Lœ(G))-homomorphisms completely, in terms of the dual 
of K, and finally give explicit descriptions of the (LP(G), Lœ(G))-homomor
phisms, p £ (1, oo], in the same manner as at the end of § 3. 

2. Preliminary discussion. This section contains the preliminary ma
terial from which we shall draw throughout the rest of the paper. Henceforth 
let G be an arbitrary locally compact topological group, abelian or not, with 
left Haar measure m. Let 1 be the identity element of G. For p G [1, °° ), we 
let, as is customary, LP(G) be the Banach space of m-measurable functions 
on G whose pth powers are absolutely integrable. For any measurable func
tion / and any s £ G, let (sf)t = f(st) and (fs)t = f(ts) for almost all t £ G. 
Corresponding to the Haar measure m, there exists a modular function A 
defined on G, with the property that for s £ G, A(s) = | | /*- i | | / | | / | | for all 
non-zero/ Ç Li(G). For U Q G, let %v be the characteristic function of U. 
Next, let Lœ(G) consist of the functions measurable and essentially bounded 
on G. An important subspace of Lœ(G) is Cru(G), which is the space of all 
bounded functions right uniformly continuous on G. 
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If £ is a Banach space, let E* represent the topological conjugate space 
(dual) of E. The bidual of E is then £**, and it is well-known that E can be 
embedded naturally as a subspace of £**. Let the injection map be denoted 
by w. By identification, Li*(G) = Lœ(G)> Li**(G) is the space of bounded, 
finitely additive measures on G absolutely continuous with respect to Haar 
measure, and for p G (1, » ) , LP*(G) = Lq(G), where 1/p + /lq = 1. 

In this paper we shall use a multiplication introduced by Arens (1; 2). For 
a Banach algebra E with multiplication o, we describe the Arens multiplica
tion o in £** in the following way: 

(x*ox)y = x*(xoy)j x* G £*, x,y G £ , 
(y**ox*)x = ;y**(x*ox), y** G E*, x* G £*, x G £ , 

(x**o /* )x* = x**(y**o x*), x**, 3;** G £**, x* G E*. 

As defined, x*ox G £* with | |x*ox| | < ||x*|| ||x||, y** o x* G £* with 
||;y**ox*|| < ||y**|| ||x*||,andx**o;y** G £** with ||x**o y**|| < ||x**|| \\y**\|. 
Indeed, under o, E** is a Banach algebra which is at the same time an alge
braic extension of E. Civin and Yood (4) pointed out that if E has an approxi
mate identity, then R** has a right identity under this Arens multiplication. 
In particular, Li(G) under convolution has this property. However, this right 
identity in Li**(G) is not a left identity unless G is discrete! 

Note. Although we denote several compositions by o, it should not be 
confusing, for a simple glance to the right and to the left of the symbol o 
shows us immediately where the bilinear operation acts. 

A second multiplication on £**, which we call the transposed Arens multi
plication, is created thus: 

(xox*);y = x*(;yox), x* G E*, x,y G E, 
(x*ox**)x = x**(xox*), x** G E**y x* G £*, x G E, 
(x**o;y**)x* = 3>**(x*o x**), x**, y** G E**, x* G E*. 

As before £** is a Banach algebra extension of E, and with the transposed 
Arens multiplication, E** has a left identity element whenever E has an 
approximate identity. There is a connection between the two Arens multi
plications. If E is commutative, then the two multiplications on £** coincide 
precisely when £** is commutative with respect to (either) Arens multiplica
tion. 

We call (K,o) a left Li(G)-module if K is a Banach space and if o is a 
bilinear operation o : Li(G) X K —> K, with the following properties: 

(a) (f*g)ok =fo(gok), keKtfigeL^G), 
(b) \\fok\\ < 11/1111*11, k£K,f£ L^G), 

where * denotes convolution in LX{G). Normally we shall abbreviate (K,o) 
to K. Right Li(G)-modules are defined analogously. 
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Let M (G) denote the Banach space of bounded, countably additive regular 
measures on G. Then M(G) can be made into both a left and a right LX(G)-
module. We define the convolutions * : Li(G) X M(G) —* Li(G) and 
* : M(G) X L1(G)-^L1(G) (8, p. 290) by 

(2.1) (M *f)t = SGf(s-H)dix(s), f G L,(G), M G M(G), 

(2.2) (f^)t=jGA(s^)f(ts^)d^s), f G Li(G), M G M (G), 

for m-almost all t G G. By (8, Theorems 20,9. 20.12, and 20.13), M (G) is 
both a left and a right Li(G)-module. Even more, if / G L\(G), /* € M(G), 
then / * M and M * / are in Li(G). We next observe that since M(G) is a factor 
space of Li**(G), it inherits both the regular and the transposed Arens multi
plications, o, with the result that M(G) is a left Li(G)-module under the two 
compositions * and o. However, the Arens composition and the convolution 
which render M(G) a left L\(G) -module are identical. Indeed, let /x G M {G), 
f G £i(G), and let h G Ao(G). Then by an application of Fubini's theorem, 

(2.3) (hof)s = A{s-l)$Gh(t)f(ts~l)dt for almost all 5 6 G, 

whereupon 

br(f)o»)h = fx(hof) = fGA(s^)[fGh(t)f(ts^)dt]d^(s) 

= jGh(t)[fGA(s-i)f(ts-i)d»(s)]dt 

= h(f*n), 

so that 7T (f) o ix = / * /x. We summarize in 

2.1. LEMMA. Under the two convolutions, M(G) is a left and a right LX(G)-
module. The Arens composition {the transposed Arens composition) and the 
convolution making M(G) a left (right) L\{G)-module coincide. 

Proof. Except for the proof that the transposed Arens multiplication coin
cides with the convolution which makes M{G) a right Li(G)-module, every
thing has been proved above. The remainder of the proof follows the same 
pattern as the part presented. 

One might like to alter the compositions (2.1) and (2.2) in the following 
way. Consider (2.1). Let p G [1,°°]. Instead of taking /z in M(G), let 
y. G L1(G), and instead of having / G £i(G), let / G LP(G). It is verified in 
(8, Theorem 20.12) that with this alteration of (2.1), there is a composition 
* : LX(G) X LP(G) -» LP(G) such that 

(2.4) (f*k)s = jGf(st)k(t-i)dt = $Gf{t)k{t-'s)dt, f G Li(G), k G L,(G), 

for all s £ G. Furthermore, we have for this composition 

2.2. LEMMA. For p G [1, °°], LV(G) is a left Lx(G)-module. 
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Proof. The norm inequality follows from an application of Holder's in
equality. On the other hand, for/ , g G Li(G), k G LP(G), 

l(f*g)* k]s = j 0 [jG f(tu)g(u-i)du]k(t-h)dt 
= jo [J G f(sw)g(w~1v)dw]k(v~1)dv 

= If * (g*k)]s, 

for almost all s £ G. 

2.3. LEMMA. For p G [1, °°), £i(G) * LP(G) is norm dense in LP(G). Further
more, Li(G) * Lœ(G) is norm dense in Cru(G). 

Proof. The first half of the lemma is proved in (8, Theorem 20.15). For the 
second half, let k G Cru(G) and let e > 0. Then there is a symmetric neigh
bourhood U of 1 G G such that m(U) < oo and such that if rs~l G £/, then 
\k(r) - k(s)\ < e. Let g = [ l / m ( t / ) ] ^ . Then for any / G G, 

\(g*k)t - *(0| = Lf*^)*^ 1 / )^ - k(t)\ 
< [ l / m ( [ / ) ] / ^ \[k(s~H) - k(t)]\ds < e 

so that ||g * k — k\\ < e. 
Actually more than this can be proved. Indeed, Li(G) * LP(G) = LP(G) 

for £ € [1, oo ), and Za(G) *L00(G) = Crw(G), as proved in (7). We shall use 
these facts later, indirectly. 

If we next try to alter (2.2) in a similar fashion, we find that the composi
tion of two elements need not result in an element of LP{G). Consequently, 
in order to render L2,(G) a right Li(G)-module, we need to use another 
approach. For / G £i(G), let / ' be defined by the equation 

(2.5) f(s) = Ais-^fis'1) for almost all s G G. 

Then / ' G LX(G) and | | / | | = | |/ ' | | (8, Theorem 20.2). Next, we define the 
composition o : LP(G) X £i(G) —>LP(G), £ G (1, oo ], by the formula 

(2.6) kof=f *k, / 6 l i ( G ) , * G£P (G). 

2.4. LEMMA. The map f —>f is an isometric algebraic anti-isomorphism of 
Lx{G). 

Proof. Since A is a real-valued homomorphism, (/ ') ' = / . The isometry 
follows from the above remark and we need only check that if / , g G Za(G), 
then (f*g)' = gf * / ' almost everywhere in G. Let s G G. Then (almost 
always) 

a * £)'(*) = A ( ^ ) / e / ( « ) g ( « - ^ ) d t t 

= ja giur1 s-l)A(url s-l)f{u)A(u)du 

= (g'*f')(s). 
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2.5. LEMMA. LP(G) is a right Li(G)-module under o. 

Proof. For / € Li(G), ife G L„(G), we have 

i i * o / i i - i i r * t i i < i i f i i 11*11 = 11/1111*11. 
If g 6 Li(G), then by Lemma 2.4, 

*o(f*£) = tf *£)'** = (« '* / )** = *'*#'**) = (kof)og. 

We remark that via the first step in the construction of the Arens multi
plication in Li**(G), Li*(G) = Lœ(G) becomes a right Za(G)-module. The 
composition defined above and this Arens composition on Lœ(G) are the same. 
For if / Ç Li(G) and * G A»(G), then 

(* of)s = (f * *)* = / ( , A(t-l)f(t-i)k(t-is)dt 

= A(s-i)jGk(t)f(ts-i)dt 

for almost all s £ G, which is just the right-hand expression in (2.3). 
Our final comments in this section concern Cru(G)1 the space of all right 

uniformly continuous, bounded functions on G. Since Cru{G) is a subspace 
of Lœ(G), we see that under the Arens composition, Cru(G) is a right Z,i(G)-
module. Furthermore, if & G Cru*(G) and * G CrM(G), we define hok Ç. Cru(G) 
by the equation (hok)f = h(kof), for / € £i(G), which makes sense since 
Lœ(G)oLl(G) = L1(G)*Lœ(G) C Cm(G) by Lemmas 2.3 and 2.4. On the 
other hand, Buck (8, p. 275) has defined a composition * : Cru*(G) X CTU{G) 
—> CTU(G) by the equation (A * *)s = A(s*)> for all 5 6 G. 

2.6. LEMMA. 77se i3wc* awd £Ae ^4rews compositions from CTU*(G) X CTU(G) 
into Cru(G) are identical. 

Proof. Let g 6 L1{G)1 and let s Ç G. Then let gi = A(5-1)|[s-i. Immediately, 
we obtain g * (,-i/) = gi */ , for almost all 5 6 G. In addition, if * £ Lm(G), 
then for each / Ç £i(G), 

t . ( * o g ) ] / = (/*/(*)[.(* og)]*ft 

= J G / ( / )A( r 1 ) [ /G*(^ )A(5 - 1 )g (^ r 1 5- 1 ) ^ ]^ 

= (kogi)f, 

so that s(kog) = *ogi . Now let A G CrM*(G) and let (A)X<EA be a bounded 
approximate identity in Li(G). Then 

[A * (kog)]s = h(s(ko g)) = h(ko gi) = limxA(Ao (gi*^x)) 

= limx /K*o (g*,-i «x)) = Kmx [Ao ( iog)] ( , - i ex) 

= s[Ao (kog)] = (/zo ( iog))5 , 

and since 5 is arbitrary, h * (*og) = Ao (*og). By the comments following 
Lemma 2.3, Lco(G)oLi(G) = CrM(G), whence the result. 
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It is apparent that if hi, hi G Cru*(G), then we can define hioh* by 
(hioh?)k = hiQitok) for k G CTU(G), with the result that Cru*(G) becomes 
a Banach algebra under such a multiplication. Then Lemma 2.6 shows us 
that the Arens and the Buck compositions give identical multiplications on 
C7u*(G). 

3. Characterizations of (Li(G), iT)-homomorphisms. In the present 
section we shall discuss module homomorphisms from Li(G) to an arbitrary 
Li(G)-module K. First, however, we prove the preliminary 

3.1. LEMMA. With respect to the Arens (or the transposed Arens) multiplica
tion, the following statements are equivalent: 

il) G is compact. 
(ii) 7r(L1(G))oL1**(G)Ç7r(L1(G)). 

(hi) L1^(G)OTT(L1(G))QT(L1(G)). 

Proof. For the Arens multiplication, the proof that (i) implies both (ii) 
and (iii) is a straightforward generalization of (3, Theorem 2.4). On the 
other hand, assume that G is not compact. Let (D\)\e\ be the net of compact 
sets of G, ordered by inclusion. For each X G A, let k\ = %D\, and let k — %G, 
so that k\^k in the weak-(Lx(G)) topology on Li*(G). L e t / G -^i(G) such 
that Jof(t)dt 9^ 0. Then k\of—>kof in the weak-(Li(G)) topology. In 
addition, k\of G Cœ(G), for each X G A, whereas for each 5 G G, 

(kof)s = A(s-i)JGk(t)f(ts-i)dt = Jof(t)dt ^ 0, 

so that kof g Cœ(G). Now define M G Za**(G) so that 

M|cœ«?) = 0 and »{kof) = 1. 
Then 

(7r(f)o/x)&\ = V>(hof) y^iiikof) = (ir(f)Ofi)kt 

which means that 7r(/)o/x $ 7r(Li(G)); (11, Theorem 1.76). Therefore 

x ( L 1 ( G ) ) o i 1 * * ( G ) ^ T ( £ 1 ( G ) ) I 

so (ii) implies (i). To show that if G is not compact, then 

L1**(G)o7r(L1(G))^7r(Ll(G))t 

we need only remark that in the above proof, 

(ir(j)ok)s =fof(t)dt9*0; 

thus the proof may be used in the obvious modified form. Hence (iii) implies 
(i). For the transposed Arens multiplication the proofs are similar. 

We now study (Li(G), K)-homomorphisms. 

3.2. Definition. Let K\, K^ be left Li(G)-modules. A map R : Kx —> K% is 
called a left (K\, i^2)-homomorphism if R is a continuous, linear operator 
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and if R(fok) = foR(k) for each k G Kl9 f G Li(G). Likewise, if ifb if2 

are right Li(G)-modules, then the map R : if i —> if 2 is a right (if i, if 2)-homo-
morphism if i? is a continuous, linear operator and R(kof) = R(k)of for 
each & G Ki,/ G Li(G). The collection of (ifi, if2)-homomorphisms is denoted 
by 9?(ifi, if2). They are left or right if Kx and if2 are left or right Li(G)-
modules, respectively. 

In this section we shall let ifi = Li(G), and we shall abbreviate if2 to if. 
Through Theorem 3.6, let if be a left Li(G)-module. First we extend the 
module composition in if in analogy with the construction of the Arens 
multiplication. For / G £i(G), k G if, and k* G if*, define (k*of) by the 
equation 

(k*of)k = k*(fok), k G if. 

A routine check verifies that &*o/G if*, and that the new operation is 
bilinear and jointly continuous and renders if* a right Li(G)-module. Next, 
for / G Za(G), k* G if*, and k** G if**, we define (fok**) by the equation 

(fok**)k* = k**(k*of), k* G if*. 

Again fok** is linear and continuous, so fo k** G if**. 
Let the Arens compositions relating Ii**(G) and LX*(G) and Li(G) be 

denoted by V. 

3.3. LEMMA. Let R G 5K(£i(G), if). Then the adjoint R* : if* -> Lx*(G) 
satisfies the relation R*(k*of) = R*(k*) Vf, for f G LX(G), k* G if*. 

Proof. For g G £i(G), we have 

[R*(k*of)]g = (k*of)(R(g)) = k*(foR(g)) = **(2î(f *g)) 

= (R*(k*))(f*g) = (R*(k*)Vf)g. 

3.4. LEMMA. L ^ i? G 9î(Li(G), if). Le£ e** fo a cluster point in Li**(G) of 
an approximate identity (e\)x€A in LX{G). Then for each f G £i(G), R is given by 

T(R(f)) = foR**(e**). 

Proof. Since R is continuous, its second adjoint R** is weak-(LX(G), if*) 
continuous, which means that R**(ir(e\)) —> R**(e**) in the weak-(if*) 
topology of if**. By thacing through the module compositions, we find that 
this implies that 

[fo R**(* (ex))]k* -> (fo R**(e**))k* for any k* G if*. 
Thus 

*[R(f)] = limx*[R(f*ex)] = limXT[foR(ex)] = limx \jo R**(v(&))] 

= foR**(e**). 

Recently it has been proved (7) that any Li(G)-module if* has the pro
perty that K*oLx(G) is a linear space. Now if R G 9t(Li(G), if) and if e** 
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is a cluster point in Li**(G) for an approximate identity in LX(G). we define 
PB by 

pR = R**(e**)\iK*0LliCf». 

Indeed pR is then fully defined on K*oLi(G), inherits linearity and con
tinuity from R**, and in fact has its norm equal to the norm of R**(e**) 
restricted to X*oLi(G) . Thus pR G (2C*oZ,i(G))*. The fact that K* o Lx(G) 
is a full linear space has not been used. We could have defined pR on K* o LX(G) 
and extended it linearly. However, the observation served to simplify the 
notation. 

We mention that if / € LX(G) and k* G K*, then 

k*(R(f)) = (foR**(e**))k* = (R**e**))(k*of) = pR{k*of), 

so that there is a canonical equation joining i£ and pR : k*(R(f)) = pR(k*of). 

3.5. THEOREM. 77^ wa£ p : R-*pR is a linear isometric map of 9t( i i (G), i£) 
«ito (X*oi i (G) )* . 

Proof. First we must show that the map is independent of the choice of e**. 
Let £i** and e2** be cluster points of an approximate identity for Li(G). This 
means that #i** = e2** when each is restricted to Lœ(G) V L\{G) = Cfu{G). 
Consequently, for a n y / G L\(G) and &* G 2£*, 

(R**(ei**))(k*of) = ei**(R*(k*of)) = ci**{[iî*(**)] V / } 

= e2**{[i?*(&*)] V / } = (R**(e2**))(k*of)t 

so that pfî does not depend on the choice of e**. As the adjoint of a linear 
operator is linear, the map R—>pR is linear. Finally, to show that the map 
is an isometry, we first observe that pR is a restriction of R**(e**), so 
\\pR\\ < \\R\\. On the other hand, l e t / G LX(G) with ||/| | < 1. Then 

||22(f) 11 = ||/oie**(e**)|| = sup |(/oi?**(e**))&*| 

< sup |p«(**o/) | = ||pa||. 
l l**o/ | |<l 

Therefore ||p f l | | = \\R\\. 
We proceed to give a criterion for the map p to be onto (K*o Li(G))*. 

For p G (K*oLi(G))*, we define R'P by the formula 

(R'p(k*))f = />(**o/), / G i i (G) , ** G X*. 

Then Rf
v\ K*-* Lœ(G) is a linear continuous operator since o is bilinear 

and since p G (K*o Li(G))*. For our given p, we should like to find a linear 
continuous operator Rp : Li(G)—>K with the property that k* (Rp (f))=p (k*of) 
for a l l / G Li(G), k* G i£*. But the existence of such an Rp would mean that 
for a l l / amd k*, (R'p(k*))f = k*(Rp(f)), which says precisely that R'v is the 
adjoint operator of R . However, a necessary and sufficient condition for 
R'p to be an adjoint operator is for R'p to be weak-(i£, L\(G)) continuous. So 
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suppose that R'p is indeed weak-(if, Li{G)) continuous, with the result that 
(R'p(k*))f = k*(Rp(f)). We shall show that Rp 6 9t(Z,i(G), i f ) ; that for any 
f, g 6 Li(G), we have Rp(f*g) = foRp(g). The module operations on K 
yield the relation (k*of)og = &*o (/*g)> for all &* G if*. This, together 
with the relation joining R!v and p, yields R'P(k*of) = (R'p(k*)) V / . Hence 
for each k* € if*, 

* W « * / ) ] = (R',(k*))(f*g) = [R'P(k*) Vf]g = [R',(k*of)]g 

= £*[/o (2î,(g))]. 

Consequently Rp £ %{(LX(G), K). Besides, k*(Rp(g)) = p(k*of), so that 

PC*?*) = £• 
Thus we have found a criterion for the map p to be onto: for each 

p Ç (if*o Li(G))*, the operator R'P must be weakly-(if, LX(G)) continuous. 
We now display a more pliable criterion. 

3.6. THEOREM. The map p is an isometry from 9î(Li(G),if ) onto (if*o Li(G))* 
if and only if LX(G) o if ** Ç TT (if). 

Proof. On the one hand, assume that Li(G) o if** C 7r (if), and let 
£ 6 (if*oZ,! (G))*. Let &x*->&o* in if* in the weak-(if) topology and let 
/ be an arbitrary element of Li(G). Define (fop) by the relation 

(fop)k* = p(k*of), k* 6 if*. 

Then clearly fop ê if**. We must prove that (Rf
 P) (h*))f-* (R'p(k0*))f\ or 

what is the same, (fop)k*\—^(fop)ko*. By virtue of the Hahn-Banach 
theorem, extend p to &** £ if**. Then 

(fo &**)&* = k**(k*of) = p(k*of) = (fop)k* for any k* <E if*, 

whence / o &** = fo p £ if**. However, by hypothesis, Zi(G) o if** C 7r(if ), 
so that fop G 7r(if), and therefore (fop)k\*—> (fop)k0*; therefore i?'p is 
weakly-(if, Zi(G)) continuous. On the other hand, assume that 

Z 1 (G)o i f**^7r ( i f ) . 

L e t / 6 Li(G) and &** G if** such t h a t / o &** g TT (if). Let £ be the restriction 
of k** to (if*oLi(G)). Then as in the first part of the proof, we find that 
fop = /o&**. Since fok** $ 7r(if), there exists a net (&x*)xeA in if* con
verging in the weak-(if) topology to &o* in if* for which 

{f o k**)kx* -* (fo k**)k0*. 

But this just means that 

(R'(k,*))f= (fop)h*-»(fop)k0*) = (*',) (*„*))/, 

with the result that R'P is not weakly-(if, Li(G)) continuous. 
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Next consider the right Li (G)-module K and let R : Li(G) - > X b e a right 
(LiCff, i^-homomorphism, so that R(f * g) - R(f) o g, f, g £ Li(G). We 
define (Jok*) and (k**of) by the equations 

(fok*)k = k*(kof), fe ii(G),** e K*,k e K, 
(k**of)k* = k**(jok*), f e Li(G),*** ^ -K**, k* G x*. 

For the bilinear operations joining Za**(G), Li*(G), and Li(G), we choose 
the transposed Arens multiplication. We define p^ by the equation 

Pi2 = ^ * * ( e * * ) | ( L i ( G 0 O **) 

where e** is again a cluster point in Li**(G) for an approximate identity in 
Li(G). (Once again (7) shows that Li(G) o K* is a linear space.) We obtain 
the equation k*(R(f)) = pR(fok*), resulting in 

3.7. THEOREM. The map p is an isometry from $i{Li{G), K) into (Li(G)oK*)*. 
It is onto (Li(G) o i£*)* # awd ow/y if K**oLx(G) C 7r(i£). 

Proof. The proof imitates those of Theorems 3.5 and 3.6, but with the 
alternative definitions described above. 

Let us analyse Theorems 3.6 and 3.7. In the first place, if G is compact, 
then L1(G)oL1**(G) C *(Z,i(G)) and Z,1**(G)oL1(G) C *(Z,i(G)), and also 

(L1*(G)oL1(G))* = ( L i ( G ) o V ( G ) ) * = M(G), 

essentially by Lemmas 2.3 and 3.1. Therefore if G is compact, then 9î(Li(G)), 
Li(G)) corresponds isometrically to M(G). On the other hand, if G is not 
compact, wre gain no definitive information. 

In the second place, if p G (1, °°), then LP(G) is reflexive, and 

(L1(G)oL,*(G))* = ( V ( G ) o L i ( G ) ) * = L,(G), 

so that 9t(Li(G), LP(G)) corresponds isometrically to the space LP(G), and 
this holds for arbitrary G. 

Finally we encounter p = oo. If we can show that 

^ ( O o ^ O Ç x d . f G ) ) 

and Lœ**(G) o Li(G) C w(Lœ(G)) whenever G is compact, then since 

(LJiOoL^G))* = {L^OoLJiG))* = Zœ(G) 

if G is compact (by Lemma 3.1), we have the result that 9î(Z,i(G), Lœ(G)) 
corresponds isometrically to Lœ(G)—provided that G is compact. Once again, 
if G is not compact, we have no complete solution from Theorems 3.6 and 
3.7. Now we show that LX(G) o Lœ**(G) C ir(Lœ(G)) if and only if G is com
pact, but we omit the proof that Lœ**(G) o LX(G) Ç 7r(Lœ(G)) if and only if 
G is compact, because it is analogous. Assume that G is compact, and let 
/ G LX(G) and k** G LJ*(G). Let w(j) be the restriction of k** to TT(Z,I(G)), 
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so tha t j G Lœ(G).Forany&* G Lœ*(G), we have k*of G 7r(Li(G)), by Lemma 
3.1, so that 

(fok**)k* = k**(k*of) = [*(j)Kk*of) = (r(f)or(j))k*. 

But 7r(f)o7r0') G iKLJG)) , so t h a t / o * * * € ^ ( ^ ( G ) ) , and 

L1(G)oLJ*(G) Qw(Lœ(G)). 

Conversely, if G is not compact, then by Lemma 3.1, 

L1^(G)OL1(G)^T(L1(G))1 

so that there exist / G Li{G) and k* G Li**(G) with the property that 
* * o / G ir(Li(G)). Define jfe** G Lœ**(G) such that 

***U(LI(O)) = 0 and (fok**)k* = k**(k*of) ^ 0. 

Then fok** is not completely defined on TT(L1(G)), SO fok** G 7r(Lœ(G)), 
completing our proof. 

We conjecture that there is an attractive representation for 9t(Za(G), K), 
regardless of the Li(G)-module K. Although we have not found one, we 
can add to the knowledge obtained from Theorems 3.6 and 3.7 and the com
ments following them. We shall presently describe 9?(Li(G),i£) when 
K = LP(G), p G [1, °° ], without regard to the compactness of G. Before we 
state and prove our theorems we give the following definition and lemma. 

3.8. Definition. Let pi, p2 G [ l , 0 0 ] - We call a linear, continuous operator 
R : LP1(G) —> LP2(G) left translation-invariant if 

s(R(g)) = R(sg) for each g G LPI(G) and all s G G. 

Likewise, such an operator is right translation-invariant if 

(R(g))s = R(gs) for each g G LP1(G) and all 5 G G. 

3.9. LEMMA. Let R : LP1(G) —> LP2(G) be a linear continuous operator, where 
p\ G [1, °°] and p2 G (1, °° ]. Then R is a left (LP](G), LP2(G)-homomorphism 
if and only if R is left translation-invariant. Furthermore, R is a right (Li(G), 
L\{G))-homomorphism if and only if R is right translation-invariant. 

Proof. Let / G i i (G) , g G Lm(G), and h G Lq(G), where l/p2 + l/q = 1 
and if ^2 = °°, we take a — 1. Then 

h[R(f*g)] =jGR(f*g)(s)h(s)ds 

= JGf(t)lja(R*(h))(s)g(t-is)ds]dt 

= SGf(t)[Soh(s)R(t-ig)(s)ds]dt, 
whereas 

h(f*R(g)) =Soh(s)(f*R(g))(s)ds 

= jof(t){jGh(s)(t-,[R(g)](s)ds}dt. 
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We readily verify that indeed R(f * g) = / * R(g) if R is left translation-
invariant. Next, let R be a left (Lip(G), LP2(G))-homomorphism, (A)X€A an 
approximate identity, / G Li(G) and t £ G. Then i ? ( / ) = l im\ i? (A */) = 
= l i m \ ( A * (Rf) == *W)> so i? is translation-invariant. The statement for 
right homomorphisms is similarly proved. 

We mention that the asymmetry involving LP(G), p 6 ( l , 0 0 ) , as a left 
and a right Li(G)-module precludes any relation between the right transla
tion-invariant operators and right homomorphisms. Also, we remark that we 
shall conclude from Theorem 4.4 that any left (Lœ(G), Lœ(G))-homomor
phisms is at the same time a left translation-invariant operator. Whether or 
not the converse is true we do not know. 

For fi € M(G), define /xi in the following way. For any A C G such that 
A~l is /x-measurable, let m(A) = y.(A~l). Then ni Ç M(G), and the formula 
which relates /z and HI is 

0*i *f)s = jGf(ts)dii(t), f Ç L1(G), ra-almost all 5 G G. 

For a linear map R : Li(G) -^Li(G), let Ri be defined by the equation 

Rid) = [R(f)Y, f € ^ ( G ) . 

Note that (i^i)i = i£. In addition, if R is a left (L1(G)J Li(G))-homomorphism, 
then Ri is also a right (Li(G), Li(6:))-homomorphism. For l e t / , g G LX{G). 
Then 

*i(/*«) = t^(/*g)']' = w * / ) r = [g'*^(/')r 
= [ i ? ( f ' ) ] ' *g= [Ri(f)]*g, 

with the help of Lemma 2.4. Now we are ready for 

3.10. THEOREM. There is an isometric isomorphism between dl(Li(G), Li(G)) 
and M(G). For a linear, continuous operator R:Li(G) -^Li(G), the following 
statements are equivalent: 

(i) R(f*g) =f*R(g), ftgtLiiG). 
(ii) R(f) = / * M, / € ^i(G), /or some /x € M(G). 

(iii) R is left translation-invariant. 
(iv) R,(f*g) =Ri(f)*g, figtUiG). 
(v) i^iCf) = /ii */, / G Li(G), /or ^me /n 6 jlf (G). 

(vi) i^i is a right translation-invariant. 

Proof. The isometry and the equivalence of (i), (ii), and (iii) follow from 
(13, Theorems 1 and 4). The proof that (iv), (v), and (vi) are equivalent 
follows a similar course, and we omit it. To conclude, we show that if/ £ £i(G), 
then R(f) = / * n if and only if Ri(f) = MI */• Indeed, 

[m*f']'(s) = A(s-i)jGf(ts-i)d»(t) 

= A(s-i)fGA(t-i)f(st-i)dfji(t) 

= (f*n)s 
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for almost all s £ G, so that (/-ii */ ' ) = (f * /*)', which means that R(f) = / * /* 
if and only if i?i(f) = MI */> / 6 Li(G); thus (i) is equivalent to (iv). 

For a linear map i? : Li(G) —> LP(G), where p Ç (1, » ] , let i?i be defined 
by the equation Rx{f) = R(f')} f Ç Li(G). Note that the R1 just defined 
differs from the one defined before Theorem 3.10. This is due in part to the 
lack of a corresponding anti-isomorphism which Li(G) has. In any case, the 
Ri now defined is linear and continuous whenever R is, and (Ri)i = R. Fur
thermore, if R is a left (Li(G), LP(G))-hornomorphism, then an easy check 
verifies that R\ is a right (Zi(G), Z,P(G) )-homomorphism. It turns out that a 
consequence of the lack of symmetry in the definition of the convolution 
Li(G) * LV{G), where p 6 (1, » ] , is that we cannot identify the right homo-
morphisms with either kind—right or left—of translation-invariant operators. 

3.11. THEOREM. There is an isometric isomorphism between 9t(Li(G), LV(G)) 
and Lv(G),for p G (1, °° ]. For a linear, continuous operator R : Li(G) —> LP(G), 
the following statements are equivalent: 

(i) R(f*g) =f*R(g), f,g£U(G). 
(ii) R(f) =f*h, f G LX(G), for some h € LP(G). 

(iii) i? is /e// translation-invariant. 
(iv) i?i(/ * g) = Ri(f) og, f,g£ Li(G). 
(v) iJxtf) = Ao/ f / G Li (G), /or some h € LP(G). 

Proof. First we deal with £ Ç ( l , 0 0 ) - Theorems 3.6 and 3.7 yield the 
isometry, and the formula of (ii) for a left (Li(G), LP(G))-horn omorph ism i£ 
comes directly from the formula joining R and pR just preceding Theorem 
3.5. As in Theorem 3.10, (ii) implies (iii), by a simple computation. By virtue 
of Lemma 3.9, (iii) implies (i), so that (i), (ii), and (iii) are equivalent. Simi
larly, (iv) and (v) are equivalent. Finally, (i) and (iv) are equivalent by 
the comments preceding this theorem. Now let p = oo, and let R be a left 
(Li(G), Lœ(G))-homomorphism. With the aid of Lemma 2.3, and an approxi
mate identity in Za(G), we conclude that the image of Li(G) under R is 
contained in Cru(G). Next, if k G CTU(G), then k is continuous, so &(1) is 
defined. Then the map hi : Li(G) —> complexes, defined by hi(f) = [R(f)]l, 
f G Li(G), yields hi ê Lœ(G). For almost all / Ç G, define h(t) = hiQr1), so 
that h £ Lœ(G) (8, p. 295). Then hx(J) = (f*h)l, and Lemma 3.9 shows us 
that for almost all t G G, 

(R(f))t = [t(R{f))]l = [(Rtf))]l = U*h)l = (f*h)t. 

Consequently R(f) = f * h, for / Ç L\(G). Inasmuch as Lœ(G) is a left Li(G)-
module, we have \\h\\ < \\R\\. On the other hand, the proof of Lemma 2.3 
yields ||Â|| > \\R\\, whence the isometry. The definition of Ri gives the equiva
lence of (i) and (iv), and the remainder of the proof takes the same course 
as that for p Ç (1, oo). 

We conclude this section with a new, simplified proof of a multiplier theorem 
(12, Theorem 3.8.1). First, though, we need a little additional notation. Let 
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G be abelian, and let T denote the character group of G. Let A(T) be the 
collection of Fourier transforms of the elements of Li(G), and B(T) the 
collection of Fourier transforms of elements in M(G). For / £ LX(G) and 
H Ç M(G), l e t / i and /xi be the Fourier transforms, respectively. Now we can 
state and prove the following 

3.12. THEOREM (12). Let h be a complex-valued function defined on Y. Assume 
that f G Li(G) implies fx h G B(T). Then h G B(T). 

Proof. We first note that L1(G) is a (two-sided) ideal in M(G). This, to
gether with the hypothesis and the fact that each element of L±(G) can be 
factored (5, Theorem 1), means that if / £ £i(G), then fih (z A(T). Now 
define R \ LX(G)—> LX(G) by the rule R(f) = g, where gi=fih1 for all 
/ £ Li(G). Then i? is linear, and the closed graph theorem yields the con
tinuity of R. Fo r / , g £ Li (G), we have 

[i?(/*g)]i = (f*g)iï=figih=MR(g))i = If* (R(g))]u 

whence R(f * g) = f * R(g) and i? is an (L1(G)1 Zi(G))-homomorphism. Con
sequently Theorem 3.10 applies, and there exists an /* £ M(G) such that 
^(f) ==/*M> for all / £ Li(G). Therefore, by the semi-simplicity of L1(G), 
Mi = A, so that A 6 5 ( r ) . 

4. Charac ter iza t ions of (i£, LO T(G))-homomorphisms. We turn our 
attention now to (K, Lœ(G))-homomorphisms, where K is again an L\(G)-
module. At first we shall ask that K be a right Li(G)-module under the 
composition o, and we take Lœ(G) to be a right Li(G)-module, under the Arens 
composition. Once again let the Arens compositions relating L1**(G) and 
LX*(G) and LX(G) be denoted by V. 

Let R : K —> Lœ(G) be a right (K, Lœ(G))-homomorphism, and let 
R* : LJ(G)-*K* be the adjoint of R. If w G LJ(G),k £ X, a n d / G Li(G), 
then 

(R*(m))(kof) = m[R(kof)] = w[iî(jfe) V / ] = [w V i? (&)]/. 

If e** is a right identity in LJ(G), then for each k £ K, e** V R(k) = R(k) 
(4, Lemma 3.8). Consequently 

(R*(e**))(kof) = [e** V i ? ( £ ) ] / = (*(*))/• 

We therefore define p# by the equation 

Pi2 = R*(e**)\KoLi(G)} 

with the result that pR £ (Ko Li(G))*, and with the equation relating i? 
and pig : pR(kof) = (R(k))f, f £ L1(G), k £ K. We should just remark that, 
as in § 3, (7) assures us that i£o Li(G) is a linear space, so that p# is com
pletely defined. We next state 
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4.1. THEOREM. The map p : R-^ pR gives an isometric isomorphism between 
$i(K,Lœ(G)) and (KoL^G))*. 

Proof. We must first prove that for each R, pB is independent of the choice 
of e**. But (R*(e**))(kof) = [R(k)]f, so that indeed pR is independent of 
the particular e** selected. Next we prove that p is an isometry. Using Lemma 
2.3 and an approximate identity (ex)xeA in Li(G), we obtain 

||22|| = sup sup \(R(k))f\ < UPBII < sup sup \pB(ko (f*ex))\ 
| | * | |<1 l l / I K l llfc°/ll<l X 

= sup sup \(R(kof))e\\ < \\R\\. 
l l*o/ | |< l X 

The linearity of p follows from the linearity of the adjoint operation for 
operators. Finally we demonstrate that p is onto. Take p G (KoLi(G))* 
and define Rv : K —> Lœ(G) by the relation 

(Rp(k))f = p(kof), jeL^OtkeK. 

Then R is surely uniquely defined, and is a linear, continuous operator. In 
addition, for/ , g G Li(G), k G 2£, we have 

fo(*o/)]g = />((*<>/) og) = [RP(k)](f*i) = [R„(k) V / k , 

which means that Rv G 9î(i£, Lœ(G)), and its image under p is, after all, £. 
Thus p is onto. 

Next we characterize the left (K, Lœ(G) )-homomorphisms, where K and 
Lœ(G) are both left L\(G)-modules. There are two ways of giving such a 
characterization. The first way is simple. We transform K and Lœ(G) into 
right Li(G)-modules by the equations 

fok = kof, / G Li(G), k G K, 

/ * * = * v / ' , / e i i ( G ) , heLn(p). 

Then the maps R : K-> Lœ(G) for which i?(£o/) = (Rk) V f, for all 
/ G £i(G) and k £ K, are exactly the maps i? : K-* L^{G) for which 
R(fok) = f * R(k) for all / G £i(G) and k £ K. Therefore we can apply 
Theorem 4.1 and formula (2.6). The result is that p : R—> pR gives an iso
metric isomorphism between 9t(i£, Lœ{G)) and ( I i ( G ) o Z ) * . 

The second way of characterizing the left (K, Lco(G
:))-homomorphisms 

utilizes the transposed Arens composition uniting Li*(G) and Li(G) and 
rendering L^(G) a left Li(G)-module. A procedure mirroring that in Theorem 
4.1 applies. To get the process started, we let (£X)X<EA be an approximate 
identity in LX(G), and e** a cluster point in Li**(G). Fo r / G Li(G) and k £ K 
we obtain the relation 

(/o£)[i?*(e**)] = [*(W-
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This permits us to define pR G (Li(G) o K)* by the relation 

PR = # * ( * * * ) | Zl(G)oJ8> 

Note that pR(fo ft) = [R(k)]f, f G Li(G), ft G X. The remainder of the work 
is a repetition of that in Theorem 4.1. We summarize in the following theorem. 

4.2. THEOREM. The map p : R—> pR is an isometry from dt(K, Lm(G)) onto 
( I i (G)oX)* . 

In the rest of this section we discuss modules K, where K — LP(G), 
p G [1, oo]. For h G LP*(G) and ft G LP{G), we define the function hok by 
the equation 

(hok)f = h(kof), / G L i ( G ) , 

so that hok G Lœ(G). The result concerning 9?(Li(G), Lœ(G)) has been 
presented in Theorem 3.11, and has an essentially different character from 
the results on dl(Lp(G), Lœ(G)), p G ( l , 0 0 ] . This is due once again to the 
asymmetry in the operations making Lp(H),p G (1, °°] into left and right 
Li(G)-modules. In fact, let p G (1, » ], and l e t / G £i(G), ft G LP{G). Then for 
an operator i?, it turns out that R(f * k) = f * R(k) if and only if 

22(*o/') =R(k)Vf. 

However, by formula (2.6), / * * = ft o f . Thus R is a left (LP(G), Lœ(G))-
homomorphism if and only if R is a right (LP(G), Z,œ(G) )-homomorphism. 
Thus we can refer simply to (LP(G), Lœ(G))-homomorphisms, and then prove 

4.3. THEOREM. Let p G (1 , 0 0 ) . There is an isometric isomorphism between 
9?(LP(G), Lœ(G)) and LP*(G). For a linear continuous operator R : LP(G) —» 
Lœ(G), the following statements are equivalent: 

(i) R(kof) = R(k) Vf, f G Li(G), ft G L,(G). 
(ii) R(k) = hok, ft G L„(G) for some h G V ( G ) . 

(iii) R(f*k) =f*R(k), / G Li (G), ft a p ( G ) . 
(iv) i? w fe/ï translation-invariant. 

Proof. The isometry follows from Theorem 4.1 and Lemma 2.3. If 
R G dt(Lp(G),Lœ(G)), then for each ft G £P(G), 

(R(k))f=PB(kof) = (Pi2oft)/; 

thus if we define /z G LP*(G) to be p^, then i^(ft) = Ao ft, ft G LP(G), and (i) 
implies (ii). Next, (ii) implies (i) because LP(G) and Lœ(G) are right Z,i(G)-
modules. The comments preceding the statement of this theorem show that 
(i) and (iii) are equivalent. Lemma 3.9 and (iv) together yield (iii). On the 
other hand, a simple computation shows that if (ii) holds and if ft G LP(G) 
and s £ G, then 

(hok)s = jGh(t)k(st)dt, 
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so that 
s[R(k)] = s(hok) = ho (sk) = R(sk), 

which means that R is left translation-invariant, and (ii) implies (iv), thereby 
completing the proof. 

4.4. THEOREM. There is an isometric isomorphism between dt(Lœ(G), Lœ(G)) 
and Cru*(G). For a linear continuous operator R : Lœ(G) —^Lœ(G), the follow
ing statements are equivalent: 

(i) R(kof) = R(k) Vf, f e i i (G) , k £ L„(G). 
(ii) R(k) = hok, k e Lm(G), for some h g Cm*(G). 

(hi) R(f*k) =f*R(k), /6Li(G), K I J G ) . 
Furthermore, any (Lœ(G), Lœ(G))-homomorphism is left translation-invariant. 

Proof. If * € Lœ(G) and h G Cru*(G), then (hok)f = h(k V / ) , / € LX(G), 
similar to the definition of the composition on Cru*(G) o CTU{G) preceding 
Lemma 2.6. In addition, Lœ(G) V L1(G) is dense in Cru{G), by Lemmas 2.3 
and 2.4. Thus the isometry follows from Theorem 4.1. If R is an (Lœ(G), 
Lœ(G))-homomorphism, let h = pR as in Theorem 4.1. Then by the definition 
of hok and by the equation (R(k))f = h(k V / ) , / G £i(G), we conclude 
that R(k) = hok, k £ Lœ(G). Thus (i) implies (ii). However, since Lœ(G) 
is a right L\{G)-module, (ii) implies (i). The comments preceding Theorem 
4.3 therefore complete the proof of the equivalence of (i), (ii), and (iii). To 
show that any homomorphism R is left translation-invariant, we use (ii) and 
Lemma 2.6. Let k G Cru(G) and let h G Cru*(G) correspond to R. Then for 
s, t e G, 

s[R(k)]t = s(hok)t = (hok)st = h(8tk) = (ho sk)t = [R(sk)]t, 

so that s[R(k)] = R(sk) and R is left translation-invariant. 
If G is compact, it is easy to show that an (Lœ(G), Lm(G))-homomorphism 

is left translation-invariant, and conversely. As we mentioned directly after 
Lemma 5.9, we do not know if this is true when G is an arbitrary locally 
compact group. 
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