# $\phi$-PRIME SUBMODULES 

NASER ZAMANI<br>Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran e-mail: naserzaka@yahoo.com,zamanin@uma.ac.ir

(Received 3 July 2009; revised 21 August 2009; accepted 24 September 2009; first published online
25 November 2009)


#### Abstract

Let $R$ be a commutative ring with non-zero identity and $M$ be a unitary $R$-module. Let $\mathcal{S}(M)$ be the set of all submodules of $M$, and $\phi: \mathcal{S}(M) \rightarrow \mathcal{S}(M) \cup\{\emptyset\}$ be a function. We say that a proper submodule $P$ of $M$ is a prime submodule relative to $\phi$ or $\phi$-prime submodule if $a \in R$ and $x \in M$, with $a x \in P \backslash \phi(P)$ implies that $a \in\left(P:_{R} M\right)$ or $x \in P$. So if we take $\phi(N)=\emptyset$ for each $N \in \mathcal{S}(M)$, then a $\phi$-prime submodule is exactly a prime submodule. Also if we consider $\phi(N)=\{0\}$ for each submodule $N$ of $M$, then in this case a $\phi$-prime submodule will be called a weak prime submodule. Some of the properties of this concept will be investigated. Some characterisations of $\phi$-prime submodules will be given, and we show that under some assumptions prime submodules and $\phi_{1}$-prime submodules coincide.


2000 Mathematics Subject Classification. 13C05.

1. Introduction. Throughout the paper $R$ is a commutative ring with non-zero identity and $M$ is a unitary $R$-module. Prime ideals play an essential role in ring theory. One of the natural generalisations of prime ideals which have attracted the interest of several authors in the last two decades is the notion of prime submodules, (see for example [2-6]). These have led to more information on the structure of the $R$-module $M$. For an ideal $I$ of $R$ and a submodule $N$ of $M$ let $\sqrt{I}$ denote the radical of $I$, and $\left(N:_{R} M\right)=\{r \in R: r M \subseteq N\}$, which is clearly a submodule of $M$. We say that $N$ is a radical submodule of $M$ if $\sqrt{\left(N:_{R} M\right)}=\left(N:_{R} M\right)$. Then a proper submodule $P$ of $M$ is called a prime submodule if $r \in R$ and $x \in M$, with $r x \in P$ implies that $r \in\left(P:_{R} M\right)$ or $x \in P$. It is easy to see that $P$ is a prime submodule of $M$ if and only if $\left(P:_{R} M\right)$ is a prime ideal of $R$ and the $R /\left(P:_{R} M\right)$-module $M / P$ is torsion-free (the $R$-module $X$ is said to be torsion-free if the annihilator of any non-zero element of $X$ is zero). By restricting where $r x$ lies we can generalise this definition. A submodule $P \neq M$ is said to be a weak prime submodule of $M$ if $r \in R$ and $x \in M, 0 \neq r x \in P$ gives that $r \in\left(P:_{R} M\right)$ or $x \in P$. We will say that $P \neq M$ is an almost prime submodule if $r \in R$ and $x \in M$, with $r x \in P \backslash\left(P:_{R} M\right) P$ implies that $r \in\left(P:_{R} M\right)$ or $x \in P$. So any prime submodule is a weak prime submodule and any weak prime submodule is an almost prime submodule. Let $\mathcal{S}(M)$ be the set of all submodules of $M$ and $\phi: \mathcal{S}(M) \rightarrow \mathcal{S}(M) \cup$ $\{\emptyset\}$ be a function. A proper submodule $P$ of $M$ is said to be a $\phi$-prime submodule if $r \in R$ and $x \in M$, with $r x \in P \backslash \phi(P)$ implies that $r \in\left(P:_{R} M\right)$ or $x \in P$. Since $P \backslash$ $\phi(P)=P \backslash(P \cap \phi(P))$, so without loss of generality, throughout this paper we will consider $\phi(P) \subseteq P$. In the rest of the paper we use the following functions $\phi: \mathcal{S}(M) \rightarrow$
$\mathcal{S}(M) \cup\{\emptyset\}$.

$$
\begin{array}{lrl}
\phi_{\emptyset}(N) & =\emptyset, & \forall N \in \mathcal{S}(M), \\
\phi_{0}(N)=\{0\}, & \forall N \in \mathcal{S}(M), \\
\phi_{1}(N)=\left(N:_{R} M\right) N, & \forall N \in \mathcal{S}(M), \\
\phi_{2}(N)=\left(N:_{R} M\right)^{2} N, & \forall N \in \mathcal{S}(M), \\
\phi_{\omega}(N)=\cap_{i=1}^{\infty}\left(N:_{R} M\right)^{i} N, & \forall N \in \mathcal{S}(M) .
\end{array}
$$

Then it is clear that $\phi_{\varnothing^{-}}$and $\phi_{0}$-prime submodules are prime and weak prime submodules respectively. Evidently for any submodule and every positive integer $n$, we have the following implications:

$$
\text { prime } \Rightarrow \phi_{\omega}-\text { prime } \Rightarrow \phi_{n}-\text { prime } \Rightarrow \phi_{n-1}-\text { prime. }
$$

For functions $\phi, \psi: \mathcal{S}(M) \rightarrow \mathcal{S}(M) \cup\{\emptyset\}$, we write $\phi \leq \psi$ if $\phi(N) \subseteq \psi(N)$ for each $N \in \mathcal{S}(M)$. So whenever $\phi \leq \psi$, any $\phi$-prime submodule is $\psi$-prime.

In this paper, among other results concerning the properties of $\phi$-prime submodules, some characterisations of this notion will be investigated. Some of the results in this paper are inspired from [1].
2. Results. The following theorem asserts that under some conditions $\phi$-prime submodules are prime.

THEOREM 2.1. Let $R$ be a commutative ring and $M$ be an $R$-module. Let $\phi: \mathcal{S}(M) \rightarrow$ $\mathcal{S}(M) \cup\{\emptyset\}$ be a function and $P$ be a $\phi$-prime submodule of $M$ such that $\left(P:_{R} M\right) P \nsubseteq$ $\phi(P)$. Then $P$ is a prime submodule of $M$.

Proof. Let $a \in R$ and $x \in M$ be such that $a x \in P$. If $a x \notin \phi(P)$, then since $P$ is $\phi$-prime, we have $a \in\left(P:_{R} M\right)$ or $x \in P$.

So let $a x \in \phi(P)$. In this case we may assume that $a P \subseteq \phi(P)$. For, let $a P \nsubseteq \phi(P)$. Then there exists $p \in P$ such that $a p \notin \phi(P)$, so that $a(x+p) \in P \backslash \phi(P)$. Therefore, $a \in\left(P:_{R} M\right)$ or $x+p \in P$ and hence $a \in\left(P:_{R} M\right)$ or $x \in P$. Second, we may assume that $\left(P:_{R} M\right) x \subseteq \phi(P)$. If this is not the case, there exists $u \in\left(P:_{R} M\right)$ such that $u x \notin \phi(P)$ and so $(a+u) x \in P \backslash \phi(P)$. Since $P$ is a $\phi$-prime submodule, we have $a+u \in$ $\left(P:_{R} M\right)$ or $x \in P$. So $a \in\left(P:_{R} M\right)$ or $x \in P$. Now since $\left(P:_{R} M\right) P \nsubseteq \phi(P)$, there exist $r \in\left(P:_{R} M\right)$ and $p \in P$ such that $r p \notin \phi(P)$. So $(a+r)(x+p) \in P \backslash \phi(P)$, and hence $a+r \in\left(P:_{R} M\right)$ or $x+p \in P$. Therefore, $a \in\left(P:_{R} M\right)$ or $x \in P$ and the proof is complete.

Corollary 2.2. Let $P$ be a weak prime submodule of $M$ such that $\left(P:_{R} M\right) P \neq 0$. Then $P$ is a prime submodule of $M$.

Proof. In the above theorem set $\phi=\phi_{0}$.
Corollary 2.3. Let $P$ be a $\phi$-prime submodule of $M$ such that $\phi(P) \subseteq\left(P:_{R} M\right)^{2} P$. Then for each $a \in R$ and $x \in M$, $a x \in P \backslash \cap_{i=1}^{\infty}\left(P:_{R} M\right)^{i} P$ implies that $a \in\left(P:_{R} M\right)$ or $x \in P$. In other words $P$ is $\phi_{\omega}$-prime.

Proof. If $P$ is a prime submodule of $M$, then the result is clear. So suppose that $P$ is not a prime submodule of $M$. Then by Theorem 2.1 we have $\left(P:_{R} M\right) P \subseteq$
$\phi(P) \subseteq\left(P:_{R} M\right)^{2} P \subseteq\left(P:_{R} M\right) P$, that is, $\phi(P)=\left(P:_{R} M\right) P=\left(P:_{R} M\right)^{2} P$. Hence, $\phi(P)=\left(P:_{R} M\right)^{i} P$ for all $i \geq 1$ and the result follows.

Corollary 2.4. Let $M$ be an $R$-module and $P$ be a $\phi$-prime submodule of $M$. Then $\left(P:_{R} M\right) \subseteq \sqrt{\left(\phi(P):_{R} M\right)}$ or $\sqrt{\left(\phi(P):_{R} M\right)} \subseteq\left(P:_{R} M\right)$.If $\left(P:_{R} M\right) \nsubseteq \sqrt{\left(\phi(P):_{R} M\right)}$, then $P$ is not a prime submodule of $M$; while if $\sqrt{\left(\phi(P):_{R} M\right)} \varsubsetneqq\left(P:_{R} M\right)$, then $P$ is a prime submodule of $M$. If $\phi(P)$ is a radical submodule of $M$, either $\left(P:_{R} M\right)=$ $\left(\phi(P):_{R} M\right)$ or $P$ is a prime submodule of $M$.

Proof. If $P$ is not a prime submodule of $M$, then by Theorem 2.1, we have $\left(P:_{R} M\right) P \subseteq \phi(P)$. Hence $\sqrt{\left(P:_{R} M\right)^{2}} \subseteq \sqrt{\left(\left(P:_{R} M\right) P:_{R} M\right)} \subseteq \sqrt{\left(\phi(P):_{R} M\right)}$. So $\left(P:_{R} M\right) \subseteq \sqrt{\left(\phi(P):_{R} M\right)}$. If $P$ is a prime submodule of $M$, then $\sqrt{\left(\phi(P):_{R} M\right)} \subseteq$ $\sqrt{\left(P:_{R} M\right)}=\left(P:_{R} M\right)$ (note that we may assume that $\left.\phi(P) \subseteq P\right)$, and all the claims of the corollary follow.

Remark A. Suppose that $P$ is a $\phi$-prime submodule of $M$ such that $\phi(P) \subseteq$ $\left(P:_{R} M\right) P$ (resp. $\left.\phi(P) \subseteq\left(P:_{R} M\right)^{2} P\right)$ and that $P$ is not a prime submodule. Then by Theorem 2.1, we have $\phi(P)=\left(P:_{R} M\right) P\left(\right.$ resp. $\left.\phi(P)=\left(P:_{R} M\right)^{2} P\right)$. In particular, if $P$ is a weak prime (resp. $\phi_{2}$-prime) submodule but not a prime submodule then $\left(P:_{R} M\right) P=0\left(\right.$ resp. $\left.\left(P:_{R} M\right) P=\left(P:_{R} M\right)^{2} P\right)$.

Let $R_{1}$ and $R_{2}$ be two commutative rings with identity. Let $M_{1}$ and $M_{2}$ be $R_{1}$ module and $R_{2}$-module respectively and let $R=R_{1} \times R_{2}$. Then $M=M_{1} \times M_{2}$ is an $R$-module and each submodule of $M$ is of the form $N=N_{1} \times N_{2}$ for some submodule $N_{1}$ of $M_{1}$ and $N_{2}$ of $M_{2}$. Furthermore, $N=N_{1} \times N_{2}$ is a prime submodule of $M$ if and only if $N=P_{1} \times M_{2}$ or $N=M_{1} \times P_{2}$ for some prime submodule $P_{1}$ of $M_{1}$ and $P_{2}$ of $M_{2}$. (In fact, to see the non-trivial direction, let $N_{1} \times N_{2}$ be a prime submodule of $M_{1} \times M_{2}$. Then either $N_{1}$ must be a prime submodule of $M_{1}$ or $N_{2}$ must be a prime submodule of $M_{2}$. Now $\left(N_{1}:_{R_{1}} M_{1}\right) \times\left(N_{2}:_{R_{2}} M_{2}\right)=\left(N_{1} \times N_{2}:_{R} M_{1} \times M_{2}\right)$ is a prime ideal of $R=R_{1} \times R_{2}$. So either $\left(N_{1}:_{R_{1}} M_{1}\right)=R_{1}$ or $\left(N_{2}:_{R_{2}} M_{2}\right)=R_{2}$, which means that either $N_{1}=M_{1}$ or $N_{2}=M_{2}$ and the claim follows.) If $P_{1}$ is a weak prime submodule of $M_{1}$, then $P_{1} \times M_{2}$ need not be a weak prime submodule of $M$. Indeed $P_{1} \times M_{2}$ is a weak prime submodule of $M$ if and only if $P_{1} \times M_{2}$ is a prime submodule of $M_{1} \times M_{2}$. To see the non-trivial direction, let $P_{1} \times M_{2}$ be a weak prime submodule of $M_{1} \times M_{2}$. Let $r_{1} \in R_{1}$ and $x_{1} \in M_{1}$, with $r_{1} x_{1} \in P_{1}$. Let $0 \neq x_{2} \in M_{2}$. Then $\left(r_{1}, 1\right)\left(x_{1}, x_{2}\right)=\left(r_{1} x_{1}, x_{2}\right) \in P_{1} \times M_{2} \backslash\{(0,0)\}$. By assumption, this gives that $\left(r_{1}, 1\right) \in\left(P_{1} \times M_{2}:_{R_{1} \times R_{2}} M_{1} \times M_{2}\right)=\left(P_{1}:_{R_{1}} M_{1}\right) \times R_{2}$ or $\left(x_{1}, x_{2}\right) \in P_{1} \times M_{2}$, that is, $r_{1} \in\left(P_{1}:_{R_{1}} M_{1}\right)$ or $x_{1} \in P_{1}$. Therefore, $P_{1}$ is a prime submodule of $M_{1}$ and hence $P_{1} \times M_{2}$ is a prime submodule of $M_{1} \times M_{2}$.

However, if $P_{1}$ is a weak prime submodule of $M_{1}$, then $P_{1} \times M_{2}$ is a $\phi$-prime submodule if $\{0\} \times M_{2} \subseteq \phi\left(P_{1} \times M_{2}\right)$.

To see this, we have $P_{1} \times M_{2} \backslash \phi\left(P_{1} \times M_{2}\right) \subseteq P_{1} \times M_{2} \backslash\{0\} \times M_{2}=\left(P_{1} \backslash\{0\}\right) \times$ $M_{2}$. Now let $\left(r_{1}, r_{2}\right)\left(x_{1}, x_{2}\right)=\left(r_{1} x_{1}, r_{2} x_{2}\right) \in P_{1} \times M_{2} \backslash \phi\left(P_{1} \times M_{2}\right)$. Then $r_{1} x_{1} \in P_{1} \backslash$ $\{0\}$ and by the assumption on $P_{1}$ we have $r_{1} \in\left(P_{1}:_{R_{1}} M_{1}\right)$ or $x_{1} \in P_{1}$. This gives that $\left(r_{1}, r_{2}\right) \in\left(P_{1}:_{T} M_{1}\right) \times R_{2}=\left(P_{1} \times M_{2}:_{R_{1} \times R_{2}} M_{1} \times M_{2}\right)$ or $\left(x_{1}, x_{2}\right) \in P_{1} \times M_{2}$. Therefore, $P_{1} \times M_{2}$ is a $\phi$-prime submodule of $M_{1} \times M_{2}$.

Corollary 2.5. Let $R_{1}$ and $R_{2}$ be two commutative rings, and let $M_{1}$ and $M_{2}$ be $R_{1}$ module and $R_{2}$-module respectively. Let $M=M_{1} \times M_{2}$ and $\phi: \mathcal{S}(M) \rightarrow \mathcal{S}(M) \cup\{\emptyset\}$ be a function. Suppose that $P_{1}$ is a weak prime submodule of $M_{1}$ such that $\{0\} \times M_{2} \subseteq$ $\phi\left(P_{1} \times M_{2}\right)$. Then $P_{1} \times M_{2}$ is a $\phi$-prime submodule of $M_{1} \times M_{2}$.

Proposition 2.6. With the same notations as in Corollary 2.5, let $\phi$ be a function such that $\phi_{\omega} \leq \phi$. Then for any weak prime submodule $P_{1}$ of $M_{1}, P_{1} \times M_{2}$ is a $\phi$-prime submodule of $M_{1} \times M_{2}$.

Proof. If $P_{1}$ is a prime submodule of $M_{1}$, then $P_{1} \times M_{2}$ is prime and so a $\phi$-prime submodule of $M_{1} \times M_{2}$. Suppose that $P_{1}$ is not a prime submodule of $M_{1}$. Then by Remark A, we have $\left(P_{1}:_{R_{1}} M_{1}\right) P_{1}=0$. This gives that

$$
\left(P_{1} \times M_{2}:_{R_{1} \times R_{2}} M_{1} \times M_{2}\right)^{i}\left(P_{1} \times M_{2}\right)=\left[\left(P_{1}:_{R_{1}} M_{1}\right)^{i} P_{1}\right] \times M_{2}=0 \times M_{2},
$$

for all $i \geq 1$ and hence we have
$0 \times M_{2}=\cap_{i=1}^{\infty}\left(P_{1} \times M_{2}:_{R_{1} \times R_{2}} M_{1} \times M_{2}\right)^{i}\left(P_{1} \times M_{2}\right)=\phi_{\omega}\left(P_{1} \times M_{2}\right) \subseteq \phi\left(P_{1} \times M_{2}\right)$,
and the result follows by the above corollary.
Theorem 2.7. Let $M$ be an $R$-module and $0 \neq x \in M$ such that $R x \neq M$ and $\left(0:_{R} x\right)=0$. If $R x$ is not a prime submodule of $M$, then $R x$ is not a $\phi_{1}$-prime submodule of $M$.

Proof. Since $R x$ is not a prime submodule of $M$, there exist $a \in R$ and $y \in M$ such that $a \notin\left(R x:_{R} M\right), y \notin R x$, but $a y \in R x$. If $a y \notin\left(R x:_{R} M\right) x$, then by our definition $R x$ is not a $\phi_{1}$-prime submodule. So let $a y \in\left(R x:_{R} M\right) x$. We have $y+x \notin R x$ and $a(y+x) \in R x$. If $a(y+x) \notin\left(R x:_{R} M\right) x$, then again by our definition $R x$ is not a $\phi_{1}$-prime submodule. So let $a(y+x) \in\left(R x:_{R} M\right) x$, then $a x \in\left(R x:_{R} M\right) x$, which gives that $a x=r x$ for some $r \in\left(R x:_{R} M\right)$. Since $\left(0:_{R} x\right)=0$, it gives that $a=r \in\left(R x:_{R} M\right)$, which contradicts with our assumption.

Corollary 2.8. Let x be a non-zero element of an $R$-module $M$ such that $\left(0:_{R} x\right)=0$ and that $R x \neq M$. Then $R x$ is a prime submodule of $M$ if and only if $R x$ is a $\phi_{1}$-prime submodule of $M$.

Proposition 2.9. Let $P$ be a $\phi_{1}$-prime submodule of $M$. Then the following holds:
(i) If a is a zero divisor in $M / P$, then $a P \subseteq\left(P:_{R} M\right) P$.
(ii) Let $J$ be an ideal of $R$ such that $\left(P:_{R} M\right) \subseteq J$ and $J \subseteq Z_{R}(M / P)$, then $J P=$ $\left(P:_{R} M\right) P$.

Proof. (i) By assumption, there exists $x \in M \backslash P$ such that $a x \in P$. If $a \in\left(P:_{R} M\right)$ then clearly $a P \subseteq\left(P:_{R} M\right) P$. So let $a \notin\left(P:_{R} M\right)$. Since $P$ is a $\phi_{1}$-prime submodule of $M$, we must have $a x \in\left(P:_{R} M\right) P$. Now for any $y \in P, y+x \notin P$ and $a(y+x) \in P$. Hence as $P$ is a $\phi_{1}$-prime submodule $a(y+x) \in\left(P:_{R} M\right) P$, which gives that $a y \in\left(P:_{R}\right.$ $M) P$. So $a P \subseteq\left(P:_{R} M\right) P$ and the result follows.
(ii) This follows from (i).

Theorem 2.10. Let $M$ be an $R$-module and let a be an element of $R$ such that $a M \neq M$. Suppose $\left(0:_{M} a\right) \subseteq a M$. Then $a M$ is a $\phi_{1}$-prime submodule of $M$ if and only if it is a prime submodule of $M$.

Proof. The direction $\Leftarrow$ is clear. So we prove $\Rightarrow$. Let $b \in R$ and $x \in M$ such that $b x \in a M$. We show that $b \in\left(a M:_{R} M\right)$ or $x \in a M$. If $b x \notin\left(a M:_{R} M\right) a M$, then $b \in\left(a M:_{R} M\right)$ or $x \in a M$, since $a M$ is a $\phi_{1}$-prime submodule. So suppose $b x \in$ $\left(a M:_{R} M\right) a M$. Now $(b+a) x \in a M$. If $(b+a) x \notin\left(a M:_{R} M\right) a M$, then, since $a M$ is a $\phi_{1}$-prime submodule, $b+a \in\left(a M:_{R} M\right)$ or $x \in a M$, which gives that $b \in\left(a M:_{R} M\right)$ or $x \in a M$. So assume that $(b+a) x \in\left(a M:_{R} M\right) a M$. Then $b x \in\left(a M:_{R} M\right) a M$ gives
that $a x \in\left(a M:_{R} M\right) a M$. Hence there exists $y \in\left(a M:_{R} M\right) M$ such that $a x=a y$ and so $x-y \in\left(0:_{M} a\right)$. This gives that $x \in\left(a M:_{R} M\right) M+\left(0:_{M} a\right) \subseteq a M+\left(0:_{M} a\right) \subseteq a M$, and the result follows.

In the next theorem we give several characterisations of $\phi$-prime submodules.
Theorem 2.11. Let $P$ be a proper submodule of $M$ and let $\phi: \mathcal{S}(M) \rightarrow \mathcal{S}(M) \cup\{\emptyset\}$ be a function. Then the following are equivalent:
(i) $P$ is a $\phi$-prime submodule of $M$;
(ii) for $x \in M \backslash P,\left(P:_{R} x\right)=\left(P:_{R} M\right) \cup\left(\phi(P):_{R} x\right)$;
(iii) for $x \in M \backslash P,\left(P:_{R} x\right)=\left(P:_{R} M\right)$ or $\left(P:_{R} x\right)=\left(\phi(P):_{R} x\right)$;
(iv) for any ideal $I$ of $R$ and any submodule $L$ of $M$, if $I L \subseteq P$ and $I L \nsubseteq \phi(P)$, then $I \subseteq\left(P:_{R} M\right)$ or $L \subseteq P$.

Proof. (i) $\Rightarrow$ (ii). Let $x \in M \backslash P$ and $a \in\left(P:_{R} x\right) \backslash\left(\phi(P):_{R} x\right)$. Then $a x \in P \backslash \phi(P)$. Since $P$ is a $\phi$-prime submodule of $M$, so $a \in\left(P:_{R} M\right)$. As we may assume that $\phi(P) \subseteq P$, the other inclusion always holds.
(ii) $\Rightarrow$ (iii). If a subgroup is the union of two subgroups, it is equal to one of them.
(iii) $\Rightarrow$ (iv). Let $I$ be an ideal of $R$ and $L$ be a submodule of $M$ such that $I L \subseteq P$. Suppose $I \nsubseteq\left(P:_{R} M\right)$ and $L \nsubseteq P$. We show that $I L \subseteq \phi(P)$. Let $a \in I$ and $x \in L$. First let $a \notin\left(P:_{R} M\right)$. Then, since $a x \in P$, we have $\left(P:_{R} x\right) \neq\left(P:_{R} M\right)$. Hence by our assumption, $\left(P:_{R} x\right)=\left(\phi(P):_{R} x\right)$. So $a x \in \phi(P)$. Now assume that $a \in I \cap\left(P:_{R} M\right)$. Let $u \in I \backslash\left(P:_{R} M\right)$. Then $a+u \in I \backslash\left(P:_{R} M\right)$. So by the first case, for each $x \in L$ we have $u x \in \phi(P)$ and $(a+u) x \in \phi(P)$. This gives that $a x \in \phi(P)$. Thus in any case $a x \in \phi(P)$. Therefore, $I L \subseteq \phi(P)$.
(iv) $\Rightarrow$ (i). Let $a x \in P \backslash \phi(P)$. By considering the ideal ( $a$ ) and the submodule ( $x$ ), the result follows.

Let $S$ be a multiplicatively close subset of $R$. Then by [7, 9.11 (v)] each submodule of $S^{-1} M$ is of the form $S^{-1} N$ for some submodule $N$ of $M$. Also, it is well known that there is a one-to-one correspondence between the set of all prime submodules $P$ of $M$ with $\left(P:_{R} M\right) \cap S=\emptyset$ and the set of all prime submodules of $S^{-1} M$, given by $P \rightarrow S^{-1} P$ (see [6, Theorem 3.4]). Furthermore, it is easy to see that if $P$ is a weak prime submodule of $M$ with $S^{-1} P \neq S^{-1} M$, then $S^{-1} P$ is a weak prime submodule of $S^{-1} M$. This fact remains true for $\phi_{1}$-prime submodules $P$ of $M$ with $S^{-1} P \neq S^{-1} M$. In the next theorem we want to generalise this fact for $\phi$-prime submodules. In the following, for a submodule $N$ of $M$ we put $N(S)=\{x \in M: \exists s \in S, s x \in N\}$. Then $N(S)$ is a submodule of $M$ containing $N$ and $S^{-1}(N(S))=S^{-1} N$. Let $\phi: \mathcal{S}(M) \rightarrow \mathcal{S}(M) \cup\{\emptyset\}$ be a function. We define $\left(S^{-1} \phi\right): \mathcal{S}\left(S^{-1} M\right) \rightarrow \mathcal{S}\left(S^{-1} M\right) \cup\{\emptyset\}$ by $\left(S^{-1} \phi\right)\left(S^{-1} N\right)=$ $S^{-1}(\phi(N(S)))$ if $\phi(N(S)) \neq \emptyset$ and $\left(S^{-1} \phi\right)\left(S^{-1} N\right)=\emptyset$ if $\phi(N(S))=\emptyset$. Since dealing with prime submodules $P$ we can always assume that $\phi(P) \subseteq P$, there is no loss of generality in assuming that $\phi(N) \subseteq N$, and hence $\left(S^{-1} \phi\right)\left(S^{-1} N\right) \subseteq S^{-1} N$. Also we note that $\left(S^{-1} \phi_{\emptyset}\right)=\phi_{\emptyset},\left(S^{-1} \phi_{0}\right)=\phi_{0}$, and whenever $M$ is finitely generated $\left(S^{-1} \phi_{i}\right)=\phi_{i}$ for $i=1,2$. In the next theorem we show that if $S^{-1}(\phi(N)) \subseteq\left(S^{-1} \phi\right)\left(S^{-1} N\right)$, then $\phi$-primeness of $P$ together with $S^{-1} P \neq S^{-1} M$ imply that $S^{-1} P$ is $\left(S^{-1} \phi\right)$-prime.

For a submodule $L$ of $M$, we define $\phi_{L}: \mathcal{S}(M / L) \rightarrow \mathcal{S}(M / L) \cup\{\emptyset\}$ by $\phi_{L}(N / L)=$ $(\phi(N)+L) / L$ for $N \supseteq L$ and $\emptyset$ for $\phi(N)=\emptyset$.

Theorem 2.12. Let $M$ be an $R$-module and let $\phi: \mathcal{S}(M) \rightarrow \mathcal{S}(M) \cup\{\emptyset\}$. Let $P$ be a $\phi$-prime submodule of $M$.
(i) If $L \subseteq P$ is a submodule of $M$, then $P / L$ is a $\phi_{L}$-prime submodule of $M / L$.
(ii) Suppose that $S$ is a multiplicatively closed subset of $R$ such that $S^{-1} P \neq S^{-1} M$ and $S^{-1}(\phi(P)) \subseteq\left(S^{-1} \phi\right)\left(S^{-1} P\right)$. Then $S^{-1} P$ is an $\left(S^{-1} \phi\right)$-prime submodule of $S^{-1} M$. Furthermore, if $S^{-1} P \neq S^{-1}((\phi(P))$, then $P(S)=P$.

Proof. (i) Let $a \in R$ and $\bar{x} \in M / L$ with $a \bar{x} \in P / L \backslash \phi_{L}(P / L)$, where $\bar{x}=x+L$, for some $x \in M$. By the definition of $\phi_{L}$, this gives that $a x \in P \backslash(\phi(P)+L)$. So we have $a x \in P \backslash \phi(P)$, which gives that $a \in\left(P:_{R} M\right)$ or $x \in P$. Therefore, $a \in\left(P / L:_{R} M / L\right)$ or $x \in P$ and so $P / L$ is a $\phi_{L}$-prime submodule.
(ii) Let $a / s \in S^{-1} R$ and $x / t \in S^{-1} M$ with $a x / s t \in S^{-1} P \backslash\left(S^{-1} \phi\right)\left(S^{-1} P\right)$. Then by our assumption, $a x / s t \in S^{-1} P \backslash S^{-1}(\phi(P))$. Therefore, there exists $u \in S$ such that uax $\in P \backslash \phi(P)$ (note that for each $v \in S$, vax $\notin \phi(P)$ ). Since $P$ is $\phi$-prime and ( $P:_{R}$ $M) \cap S=\emptyset$, it gives that $a x \in P \backslash \phi(P)$ and so $a \in\left(P:_{R} M\right)$ or $x \in P$. Therefore, $a / s \in$ $S^{-1}\left(P:_{R} M\right) \subseteq\left(S^{-1} P:_{S^{-1} R} S^{-1} M\right)$ or $x / t \in S^{-1} P$. Hence $S^{-1} P$ is an $\left(S^{-1} \phi\right)$-prime submodule of $S^{-1} M$.

To prove the last part of the theorem, let $x \in P(S)$. Then there exists $s \in S$ such that $s x \in P$. If $s x \notin \phi(P)$, then $x \in P$. If $s x \in \phi(P)$, then $x \in \phi(P)(S)$. So $P(S)=P \cup$ $(\phi(P)(S))$. Hence $P(S)=P$ or $P(S)=(\phi(P)(S))$. If the second holds, then we must have $S^{-1} P=S^{-1} P(S)=S^{-1}(\phi(P)(S))=S^{-1}(\phi(P))$, which is not the case. So $P(S)=P$ and the proof is complete.

Let $S^{-1} P$ be an $\left(S^{-1} \phi\right)$-prime submodule of $S^{-1} M$. Then evidently $\left(P:_{R} M\right) \cap S=$ $\emptyset$. In general we do not know under what conditions $P$ is a $\phi$-prime submodule of $M$. Even in the case $\phi=\phi_{0}, \phi_{1}$ and $\phi_{2}$ we could not answer this question.

As we mentioned previously, for two commutative rings $R_{1}$ and $R_{2}$ and two modules $M_{1}$ and $M_{2}$ over $R_{1}$ and $R_{2}$ respectively, the prime submodules of the $R=R_{1} \times R_{2}$ module $M=M_{1} \times M_{2}$ are in the form $P_{1} \times M_{2}$ or $M_{1} \times P_{2}$, where $P_{1}$ is a prime submodule of $M_{1}$ and $P_{2}$ is a prime submodule of $M_{2}$. This is not true for correspondence $\phi$-prime submodules in general. For example, if $P_{1}$ is a $\phi_{0}$-prime submodule of $M_{1}$, then $P_{1} \times M_{2}$ is not necessarily a $\phi_{0}$-prime submodule of $M_{1} \times M_{2}$. To be more specific let $R_{1}=R_{2}=M_{1}=M_{2}=\mathbb{Z}_{6}$, and suppose $P_{1}=\{0\}$. Then evidently $P_{1}$ is a $\phi_{0}$-prime submodule of $M_{1}$. However, $(2,1)(3,1) \in P_{1} \times M_{2}$ and $(3,1) \notin P_{1} \times M_{2}$. Also as $(2,1)(2,1) \notin P_{1} \times M_{2},(2,1) M \nsubseteq P_{1} \times M_{2}$. However, in this direction we have the following result.

Theorem 2.13. Let the notation be as in the above paragraph. Let $\psi_{i}: \mathcal{S}\left(M_{i}\right) \rightarrow$ $\mathcal{S}\left(M_{i}\right) \cup\{\emptyset\}$. Let $\phi=\psi_{1} \times \psi_{2}$. Then each of the following types is a $\phi$-prime submodule of $M_{1} \times M_{2}$ :
(i) $N_{1} \times N_{2}$ where $N_{i}$ is a proper submodule of $M_{i}$, with $\psi_{i}\left(N_{i}\right)=N_{i}$.
(ii) $P_{1} \times M_{2}$ where $P_{1}$ is a prime submodule of $M_{1}$.
(iii) $P_{1} \times M_{2}$ where $P_{1}$ is a $\psi_{1}$-prime submodule of $M_{1}$ and $\psi_{2}\left(M_{2}\right)=M_{2}$.
(iv) $M_{1} \times P_{2}$ where $P_{2}$ is a prime submodule of $M_{2}$.
(v) $M_{1} \times P_{2}$ where $P_{2}$ is a $\psi_{2}$-prime submodule of $M_{2}$ and $\psi_{1}\left(M_{1}\right)=M_{1}$.

Proof. (i) This is clear, since $N_{1} \times N_{2} \backslash \phi\left(N_{1} \times N_{2}\right)=\emptyset$.
(ii) If $P_{1}$ is a prime submodule of $M_{1}$, then $P_{1} \times M_{2}$ as a prime submodule of $M_{1} \times M_{2}$ is $\phi$-prime.
(iii) Let $P_{1}$ be a $\psi_{1}$-prime submodule of $M_{1}$ and $\psi_{2}\left(M_{2}\right)=M_{2}$. Let $\left(r_{1}, r_{2}\right) \in R$ and $\left(x_{1}, x_{2}\right) \in M$ be such that $\left(r_{1}, r_{2}\right)\left(x_{1}, x_{2}\right)=\left(r_{1} x_{1}, r_{2} x_{2}\right) \in P_{1} \times M_{2} \backslash \phi\left(P_{1} \times M_{2}\right)=$ $P_{1} \times M_{2} \backslash \psi_{1}\left(P_{1}\right) \times \psi_{2}\left(M_{2}\right)=P_{1} \times M_{2} \backslash \psi_{1}\left(P_{1}\right) \times M_{2}=\left(P_{1} \backslash \psi_{1}\left(P_{1}\right)\right) \times M_{2}$. So $r_{1} \in$
$\left(P_{1}:_{R_{1}} M_{1}\right) \quad$ or $\quad x_{1} \in P_{1}$. Therefore, $\left(r_{1}, r_{2}\right) \in\left(P_{1}:_{R_{1}} M_{1}\right) \times R_{2}=\left(P_{1} \times M_{2}:_{R_{1} \times R_{2}}\right.$ $\left.M_{1} \times M_{2}\right)$ or $\left.\left(x_{1}, x_{2}\right) \in P_{1} \times M_{2}\right)$. So $P_{1} \times M_{2}$ is a $\phi$-prime submodule of $M_{1} \times M_{2}$. Parts (iv) and (v) are proved similarly as (ii) and (iii) respectively.
A question that arises here is whether any prime submodule of $M$ has one of the above forms. As it has been shown in [1, Theorem 16], this is true for the ideal and the ring cases. But we were not able to prove similar results for the module case.

Acknowledgements. I would like to thank the referee for his/her valuable comments and suggestions.

## REFERENCES

1. D. D. Anderson and M. Bataineh, Generalizatins of prime ideals, Comm. Algebra 36 (2008), 686-696.
2. J. Dauns, Prime modules, J. Reine Angew. Math. 298 (1978), 156-181.
3. C. P. Lu, Prime submodules, Comm. Math. Univ. Sancti Pauli 33 (1984), 61-69.
4. R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra 20 (1992), 1803-1817.
5. R. L. McCasland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math. 23 (1993), 1041-1062.
6. M. E. Moore and S. J. Smith, Prime and radical submodules of modules over commutative rings, Comm. Algebra 30 (2002), 5037-5064.
7. R. Sharp, Steps in commutative algebra (Cambridge University Press, Cambridge, 2000).
