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An adverse-pressure-gradient turbulent
boundary layer with nearly constant β � 1.4 up
to Reθ � 8700
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In this study, a new well-resolved large-eddy simulation of an incompressible
near-equilibrium adverse-pressure-gradient (APG) turbulent boundary layer (TBL) over
a flat plate is presented. In this simulation, we have established a near-equilibrium APG
over a wide Reynolds-number range. In this so-called region of interest, the Rotta–Clauser
pressure-gradient parameter β exhibits an approximately constant value of around 1.4, and
the Reynolds number based on momentum thickness reaches Reθ = 8700. To the best of
the authors’ knowledge, this is to date the highest Reθ achieved for a near-equilibrium APG
TBL under an approximately constant moderate APG. We evaluated the self-similarity of
the outer region using two scalings, namely the Zagarola–Smits and an alternative scaling
based on edge velocity and displacement thickness. Our results reveal that outer-layer
similarity is achieved, and the viscous scaling collapses the near-wall region of the mean
flow in agreement with classical theory. Spectral analysis reveals that the APG displaces
some small-scale energy from the near-wall to the outer region, an effect observed
for all the components of the Reynolds-stress tensor, which becomes more evident at
higher Reynolds numbers. In general, the effects of the APG are more noticeable at
lower Reynolds numbers. For instance, the outer peak of turbulent-kinetic-energy (TKE)
production is less prominent at higher Re. Although the scale separation increases with Re
in zero-pressure-gradient TBLs, this effect becomes accentuated by the APG. Despite the
reduction of the outer TKE production at higher Reynolds numbers, the mechanisms of
energisation of large scales are still present.
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1. Introduction

The study of boundary layers (BLs) is the study of the behaviour of a fluid close to
the boundary with another substance (solid, liquid or gas). We can use the knowledge
of these BLs to predict the weather (atmosphere–Earth or atmosphere–sea systems) or
even to manipulate a fluid for engineering purposes (production of electricity, mixing
processes, transportation, etc.); note that most of these cases exhibit turbulent motions. In
wall-bounded flows, as in the previous engineering examples, the optimisation and control
of the BLs is crucial for a good performance of the application under study. Some of the
typical objectives are to reduce the drag in aeronautical surfaces, control the transition to
turbulence or to avoid recirculation bubbles in ducts where achieving the maximum mass
flow rate is important.

All the turbulent boundary layers (TBLs) in practical applications are subjected to
streamwise pressure gradients (PG), often with complex streamwise PG histories. These
complicated variations of the PG can be divided into regions of adverse pressure gradient
(APG), favourable pressure gradient (FPG) or zero pressure gradient (ZPG). The effects
of PGs in wall-bounded turbulence are very diverse: a FPG drives the flow in a turbulent
channel, whereas (if strong enough) it can produce relaminarisation in flat-plate TBLs
(Narasimha & Sreenivasan 1973; Araya, Castillo & Hussain 2015). On the opposite side,
an APG can promote turbulence in a laminar BL and increase the turbulent fluctuations
of a TBL; it can even produce flow separation, which is an undesirable phenomenon that
reduces the performance of an aerodynamic device and can be dangerous if it happens on
the wing of an airplane. In wall-bounded flows the BL is affected by the wall geometry,
the characteristics of the wall surface, the PG distribution and the flow state beyond the
BL. The effects on the wall will be seen as fluid-dynamic forces (lift and drag), but
we could also be interested in effects produced after the solid, i.e. in the wake and its
aeroacoustics properties (noise), or the wake instabilities that produce an increase in time
between take-offs in airports.

Understanding the energy-transfer mechanisms within the TBL, and how they are
affected by the PG, may lead to advancements in flow control and to new aerodynamic
designs with higher performance. The complexity of the problem has led to the definition
of canonical TBLs in simple geometries, such as flat plates subjected to a ZPG or PG
TBLs in equilibrium or near-equilibrium.

It is important to discuss the concept of equilibrium and the effects of flow history. As
discussed by Gibis et al. (2019) and Marusic et al. (2010), the term ‘equilibrium’ has been
used in different contexts in the literature. Clauser (1954) denoted ‘equilibrium profiles’
as those profiles of a BL which develop maintaining a non-dimensional ‘constant history’,
defined as a constant ratio of the PG and wall-shear forces, which can be written as the
Clauser PG parameter β = δ∗/τw(dp/dx), where δ∗ is the displacement thickness, τw is
the shear stress at the wall and (dp/dx) is the PG. Later, the term ‘equilibrium’ was used by
Rotta (1962) and Townsend (1956a) as a synonym of self-preserving flow and in Townsend
(1961) it is used to refer to regions of the flow (‘equilibrium layers’) where there is a
balance between rates of energy production and dissipation. In this context we follow the
same criterion as Marusic et al. (2010), avoiding the use of equilibrium BLs and referring
to near-equilibrium TBLs when the mean velocity defect Ue − U in the outer layer exhibits
self-similarity (note that U is the mean streamwise velocity and Ue the velocity at the BL
edge).

After these studies, many PG TBL experiments and simulations have been performed,
with the aim of obtaining constant-β distributions in order to obtain PG TBLs with

939 A34-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

22
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.221


LES of a moderate-APG TBL at high Re

a well-defined flow history, in this case with constant PG magnitude. If the equation
of momentum in the streamwise direction is integrated across the BL under several
assumptions, then the momentum integral equation will relate the evolution of the
momentum thickness θ with δ∗ and β.

From the momentum integral equation, it is possible to derive the argument that β must
be constant to obtain self-similarity based on integral assumptions.

However, note that the ZPG TBL exhibits at least two different scalings: the near-wall
region which scales properly using viscous units and the outer region, which does it with
outer units (such as δ∗ or the BL thickness).

Therefore, the interest in establishing well-defined and close-to-constant β distributions
is not related to integral self-similarity arguments but lies in the fact that it is an integral
parameter that quantifies the ratio between the pressure forces and the friction forces the
BL is subjected to throughout its evolution.

If this ratio had strong variations, especially at low Reynolds numbers, then it would be
difficult to understand whether the observed phenomena are due to a local effect of the
PG3 or the result of many different ratios of friction/pressure forces.

In this sense, a constant-β configuration, in principle, allows PG and Reynolds-number
effects to be separated by comparing TBLs that only differ in the magnitude of the ratio
between friction and pressure forces, because that ratio is maintained during the evolution
of each BL, therefore, not mixing the contribution of flow history.

An example of constant β are ZPG TBLs, which have been widely studied numerically,
e.g. by Schlatter & Örlü (2012) and Sillero, Jiménez & Moser (2013), and experimentally,
by Bailey et al. (2013), Örlü & Schlatter (2013) and Marusic et al. (2015). Regarding
near-equilibrium APG simulations, it is important to highlight the direct numerical
simulation (DNS) by Kitsios et al. (2016) with a constant β = 1; the self-similar DNS TBL
at the verge of separation (β = 39) by Kitsios et al. (2017) or the well-resolved large-eddy
simulation (LES) database comprising different PG intensities by Bobke et al. (2017).
Some relevant experimental databases include the near-equilibrium APG TBLs by Skåre
& Krogstad (1994), Sanmiguel Vila et al. (2020b), and the studies by Monty, Harun &
Marusic (2011) and Harun et al. (2013), where the flow history was not controlled.

For a complete study of PG TBLs it is necessary to obtain databases with
near-equilibrium conditions extending over long streamwise regions so the effects of
the PG and the Reynolds number can be clearly identified and studied. In this study
we contribute towards that goal with a new well-resolved LES of incompressible and
near-equilibrium APG TBL over a flat-plate with a nearly constant value of β � 1.4 over
a large Reynolds-number range up to Reθ � 8700 (where Reθ is the Reynolds number
defined in terms of edge velocity and displacement thickness). The β value is not constant
along the streamwise development of the TBL, but its rate of reduction is small enough
to be considered as nearly constant, because the APG effects are larger for low Reynolds
numbers and here we focus on a region of high Reynolds number. A comparison with
experiments at similarly high Re and β values is carried out in this work, and even if the
flow history of the experimental β exhibits a larger variation, the profiles of the simulation
and the experiment are in good agreement, indicating that these small deviations from a
constant β are not relevant in the region of high Reynolds number.

This is one of the largest simulations of a near-equilibrium APG TBL extending over a
Reynolds-number range comparable to that of wind-tunnel experiments (Sanmiguel Vila
et al. 2020b). Throughout this work, the results are compared with the well-resolved
LES ZPG TBL by Eitel-Amor, Örlü & Schlatter (2014), which exhibits a similar
Reynolds-number range. These datasets allow for a proper study of APG and
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Reynolds-number effects in the turbulent statistics as well as in the energetic scales
involved in turbulence.

The article is organised as follows. In § 2 the studied databases are presented, together
with the numerical setup of the new simulation. The turbulent two-dimensional (2D)
statistics are compared with experimental data in § 3.

Different scalings for the statistics are considered in § 4 and in order to understand
the energetic scales as well as their distribution, the spectral analysis of the Reynolds
stresses (RSs) are presented in § 5. In § 6 some conclusions on APG and Reynolds-number
effects are drawn, and an outlook is also given. In Appendix A we include for the sake
of completeness other turbulent statistics such as the streamwise evolution of integral
parameters and the turbulent kinetic energy (TKE) budgets as well as the other 2D statistics
in outer scaling that serve as a support material to document the phenomena seen in the
RSs and spectra seen in previous sections. Finally, Appendix B gives a brief description
of the sub-grid-scale (SGS) model used in the present simulation.

2. Numerical setup

The objective of the present simulation setup is to obtain a TBL developing under a
moderate APG over a long region of near-equilibrium flow from low to high Reynolds
numbers. To achieve a high-Reynolds-number simulation starting from a laminar flow
we have taken as a reference the ZPG LES simulation by Eitel-Amor et al. (2014) based
on Schlatter et al. (2010), which on itself was validated using DNS by Schlatter & Örlü
(2010). The box size in the streamwise direction (Lx) was chosen to be identical to that of
the ZPG simulation. The effect of an APG will increase the growth rate of the BL together
with the size of the energetic scales, and in order to account for this we increased the
box size in the wall-normal (Ly) and spanwise directions (Lz) with respect to the values
used by Eitel-Amor et al. (2014), as can be observed in table 1. As the code used for
the simulation, SIMSON (Chevalier et al. 2007), uses Fourier modes in the streamwise
direction, all the flow that has exited the domain through the top boundary due to the
growth of the BL, needs to enter again into the domain at the end of the box through
a fringe region. The fringe length in the APG case will have to be longer than in the
ZPG configuration, because a larger amount of flow leaves the domain in the former
case and it will need to return through a negative wall-normal velocity component V ,
which will increase the Courant–Friedrichs–Lewy (CFL) number. The time step of the
simulation was kept constant in order to perform Fourier analysis of the temporal series
of the velocity components. Therefore, in order to have a constant time step that would
not be too low and maintain a stable CFL, the fringe length had to be increased so the
maximum V was reduced in that region. It is important to mention that the CFL also
depends on the spatial discretisation, and because SIMSON uses Chebyshev polynomials
in the wall-normal direction y, the wall-normal grid spacing (�y) at the top boundary is
too fine, if this spacing could be increased, then the CFL number would be reduced and it
would be possible to use a shorter fringe with a higher V .

2.1. Parameters of the simulation
The streamwise, wall-normal and spanwise coordinates (x, y, z) and other lengths or
distances are non-dimensionalised with the reference length δ∗

0 (which is the displacement
thickness of the inflow laminar BL). In some parts of the text δ∗

0 is not written for the
sake of simplicity. That is also the case for the velocities, which are non-dimensionalised
with the inflow free stream velocity Uref . For all of the simulations in table 1 the same
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Case Lx/δ
∗
0 Ly/δ

∗
0 Lz/δ

∗
0 mx my mz �x+ �y+

max �z+ Colour Reference

b1 3000 140 250 3072 301 576 21.8 8.4 9.7 Bobke et al. (2017)
b2 3000 180 320 3072 361 768 21.6 7.9 9.2 Bobke et al. (2017)
m16 3000 180 220 3072 361 576 21.2 7.7 8.3 Bobke et al. (2016)
ZPG 13 500 400 540 13 824 513 1152 22.6 19.6 10.9 Eitel-Amor et al. (2014)
b1.4 13 500 800 1080 13 824 301 1920 21.7 30.1 12.5 Present study

Table 1. Parameters of the simulations used in this paper. The inlet displacement thickness δ∗
0 corresponds

to the displacement thickness of a laminar flow for a Reynolds number Reδ∗
0

= 450. The box size is
(Lx/δ

∗
0 , Ly/δ

∗
0 , Lz/δ

∗
0 ) and (mx, my, mz) are the number of collocation points including the 3/2 factor for

de-aliasing in the Fourier directions (x and z). The spatial resolution in viscous units (+) of the streamwise
and spanwise directions �x+, �z+, has been calculated using (mx, mz) at the position x/δ∗

0 = 250, which
corresponds to a friction Reynolds number Reτ ≈ 210 for all the simulations. The maximum viscous distance
between grid points in the wall-normal direction inside the BL is observed close to the BL edge and for the
highest Reynolds number of each simulation.

code (SIMSON) was employed, and the well-resolved LES is based on the same SGS
model, ADM-RT, which stands for approximate deconvolution relaxation-term (Schlatter,
Stolz & Kleiser 2004), as discussed in more detail in Appendix B. In the present
simulation, denoted by b1.4, we have used a new feature in the code: the implementation
of message-passing interface (MPI) communication in single precision. In this version
of the code, all the computations continue to be in double precision, but the time spent
in communication between processors has been reduced by casting the data into single
precision and reducing by half the amount of data to communicate.

After selecting the box size we proceed to run the simulation with ZPG boundary
conditions (BCs) at a low resolution. The initial conditions and inflow profile are given
by a laminar Blasius BL with a displacement thickness δ∗

0 such that Reδ∗
0

= 450. The flow
is tripped to turbulence close to the inlet at x/δ∗

0 = 10 using a volume forcing (Schlatter &
Örlü 2012), which is the same method as in the other databases, and with this configuration
we expect the transition to turbulence to be over at Reθ ≈ 600 (Schlatter & Örlü 2012;
Eitel-Amor et al. 2014). The TBL will develop to high Reynolds numbers over a long
computational domain in a similar way as it is done in a wind-tunnel experiment. This
is different from setting up an auxiliary ZPG simulation and using a recycle plane for
the inflow as used in Kitsios et al. (2016, 2017) and Gungor et al. (2017), because the
APG BCs downstream would affect the initial ZPG, as can be seen in figure 1. At the
end of the domain a fringe region (Nordström, Nordin & Henningson 1999) reduces
the turbulence and yields the same laminar flow as the inflow in order to obtain the
periodicity required by the Fourier discretisation. One flow-through is defined as the
time required by the flow to pass through the domain once; here the mean streamwise
velocity is of the order of the unity, so we approximate the time required by the flow
to cover a distance Lx to be equal to that distance. When the flow is fully turbulent
after ∼3 flow-through times we proceeded to progressively change the APG BC to the
desired distribution. In the final APG configuration, a fringe length of 1500δ∗

0 is needed
to keep the simulation stable. The simulation was run for enough time for the statistics
to converge (Vinuesa et al. 2016b) after excluding the initial transients due to the change
of resolution. The statistics were averaged for over eight and four eddy-turnover times
(ETTs) at the middle and the end of the region of interest (ROI), respectively (note
that the ROI ends before the fringe). In APG TBLs the ETT varies significantly with
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Figure 1. Streamwise evolution of (dashed) velocity at the top of the domain Utop(x) and (solid) velocity at
the BL edge Ue(x): (orange) b1.4; (red) b1; (green) b2; (blue) m16.

x, and it is calculated as ETT(x) = �Tuτ (x)/δ99(x), with �T being the period of time
used for averaging and uτ (x) = √

(τw/ρ) the friction velocity. We also collected time
series containing 36,000 samples over the same period. The time step of the simulation
is held constant at �tstep = 0.25, which ensures that in viscous units the time step along
the domain is �t+step ≤ 0.35. The statistics were sampled every 4 time steps in the ROI,
which corresponds to �t+stat ≤ 0.5. The viscous scaling (denoted by the superscript ‘+’)
for velocity, length and time scales is uτ , lτ = ν/uτ and tτ = lτ /uτ .

In table 1 we list the box size, the collocation points using the 3/2 factor for de-aliasing
(mx, my, mz) and the resolution of the various simulations. With the previous parameters
we obtain the streamwise and spanwise resolution in viscous units (�x+, �z+). The
maximum separation of grid points in the wall-normal direction inside the BL is shown
in viscous units as �y+

max, and it occurs close to the BL edge at the highest Reynolds
numbers. In the new simulation b1.4, for Reτ = 500, the number of grid points below
y+ = 10 is 6, below y+ = 1 we have 2 and the distance of the first grid point from the
wall is �y+

w = 0.3. As the viscous length scale lτ increases with the streamwise position,
the resolution in viscous units close to the wall will be better at higher Reynolds numbers:
for Reτ = 800 we have 7 grid points below y+ = 10, 3 grid points below y+ = 1 and
�y+

w = 0.2. The colour code that is used throughout this work is also shown in table 1.
The Reynolds-number and PG ranges are listed in table 2, together with the ROI for each

simulation. The ROI in the APG cases starts at the point where the maximum β is achieved,
whereas in the ZPG TBL, the starting point is taken at Reτ = 500, which approximately
corresponds to Reθ ≈ 1500, where according to Eitel-Amor et al. (2014) and Schlatter &
Örlü (2012) the flow is independent of the inflow conditions and the tripping. The last point
of the ROI was chosen as the position where the skin-friction coefficient exhibits a clear
tendency upwards due to the effects of the fringe; note that the large scales have not been
affected yet. In the ROI we observe a slowly decaying positive β, where β̄ is the average
β along the ROI. Note that this is not the accumulated β̄ defined by Vinuesa et al. (2017),
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Case Range of x/δ∗
0 Range of Reτ Range of Reθ Range of β β̄ σ (β)/β̄ G

b1 718–2101 350–750 1320–3080 1.12–0.85 0.99 0.08 9.8–10
b2 1148–2001 480–730 2260–3530 2.19–1.86 2.06 0.04 12.1–12.3
m16 823–2001 370–740 1790–3650 2.8–1.9 2.42 0.11 12.5–13.5
ZPG 1251–11 666 500–2500 1430–8200 �0 �0 �0 7.1–7.2
b1.4 2455–8117 800–1900 3700–8700 1.65–1.20 1.41 0.10 10.5–11.6

Table 2. Flow characteristics in the ROI for the various cases.

but a simple average instead. The standard deviation is σ(β) and these quantities, together
with the defect shape factor G = (H12 − 1)/(H12

√
cf /2), are given in table 2. Note that

H12 and cf are the shape factor and the skin-friction coefficient, respectively. In the ROI of
the b1.4 case, G lies between 10.5 and 11.6, which is in agreement with the results reported
by Bobke et al. (2017): 9.8 and 12.1 for the b1 and b2 cases, respectively.

2.2. Boundary conditions
These simulations are statistically homogeneous in the spanwise direction z, therefore, they
are statistically 2D in the streamwise and wall-normal directions, and have periodic BCs
in the streamwise and spanwise directions. As no cross-flow is present in the spanwise
direction the only BC is imposed by the periodicity. In the streamwise direction, the
periodicity forces the outflow to be the same as the inflow, and this is achieved through a
fringe region as mentioned previously. The inflow is given by a Blasius BL at Reδ∗

0
= 450.

At the bottom boundary of the computational domain there is a flat plate, the BCs of which
are no-slip and no transpiration. The PG will be imposed at the top boundary of the domain
with the free-stream BCs discussed next.

2.2.1. Free-stream BCs
Three conditions have to be imposed at the top of the domain:

∂W
∂y

= 0, (2.1)

Ωz = ∂V
∂x

− ∂U
∂y

= 0, (2.2)

Utop(x) =

⎧⎪⎨
⎪⎩

Uref , x ≤ xz,

Uref

(
1 + x − xz

xb

)−m

, x > xz.
(2.3)

The first relates to the statistical homogeneity in z, through the derivative in the
wall-normal direction of the spanwise mean velocity as shown in (2.1). Homogeneity in z
implies that W is statistically zero, therefore its wall-normal derivative should also be zero.
Homogeneity also implies that the mean derivatives in z are statistically zero, a fact that
has an implication in the mean streamwise vorticity, i.e. Ωx = ∂W/∂y − ∂V/∂z = 0. This
could be implemented in the simulation in multiple ways, but because the perturbations
in the farfield are negligible in our case, the easiest way is to set ∂w̃/∂y = 0 for each
time step, where (̃ ) denotes instantaneous quantities. The second BC is zero spanwise
vorticity, given by (2.2) as in Kitsios et al. (2016) and Hiroyuki (2019); finally, the third
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BC will introduce the APG through a decaying mean streamwise velocity Utop(x) using
a power-law distribution. First, a constant velocity is used to provide an initial ZPG
development and at x = xz = 350 the power law is applied as indicated in (2.3). At the
end of the domain the fringe raises the velocity to the initial Uref values. The power law
was also used as in Bobke et al. (2016), based on the theoretical studies by Townsend
(1956b) and Mellor & Gibson (1966) in order to obtain a near-equilibrium TBL. The use
of (2.3) together with a fringe region may produce instabilities in the code where the fringe
region starts, which were damped by the LES filter. The parameters of the power law were
chosen as in the m16 simulation (Bobke et al. 2016), i.e. xz = 350, xb = 60 and m = 0.16.

In figure 1 we show the streamwise evolution of Utop for the various cases under study,
and it can be observed that this quantity is constant up to x = 350, while it decays following
a power law with different exponents m for each APG (Bobke et al. 2017). Note that the
later rise of Utop is produced by the fringe. As the BC is applied at the top of the domain
and not at the edge of the BL, the velocity at the BL edge Ue is not the same as Utop,
a fact that has been observed in multiple experiments and simulations of PG TBL and
is still discussed in the scientific community as part of the problem of determining the
edge of the TBL (Vinuesa et al. 2016a; Griffin, Fu & Moin 2021). The top BC is far from
the BL edge where the TBL starts to develop, however, when the TBL starts to grow,
this distance is reduced and the curves for Utop and Ue come close to each other. This
effect can be seen for the APGs by Bobke because the height of the domain was lower
than in the larger b1.4 simulation. The fact that the mean streamwise velocity U exhibits
a gradient ∂U/∂y /= 0 (which is a consequence of the streamwise PG) makes it harder
to impose a specific velocity distribution at the edge of the BL, especially for the larger
high-Reynolds-number simulations that require a taller computational domain for the TBL
to grow. This effect could be reduced if the simulation could be performed in a domain
with a variable height and not in a box of constant height. As a result of this effect, the
imposed ZPG at y = Ly is not perceived as a pure ZPG at the BL edge, where the velocity
instead of being constant, is slightly decaying as in an APG. As stated previously, in the
case where an auxiliary ZPG simulation gives the inflow, this effect of upstream influence
of the APG will not be seen. The parameters for Utop are the same in the b1.4 and m16
cases, as can be observed in figure 1, but the resulting Ue is higher in the b1.4 than in the
m16 case, which means that the decay of the velocity is not as steep in the former as in the
latter and it will result in a smaller β. This shows that it is important to take into account
the value of Ly when setting the Utop(x) distribution to achieve a certain Ue(x).

As we use a zero-spanwise vorticity as a BC, it is possible to rewrite the
Reynolds-averaged Navier–Stokes (RANS) equations for the momentum in x and y in
terms of the mean spanwise vorticity and its derivatives. Being outside of the TBL means
that the RSs can be neglected if the turbulence is confined in the BL. The first derivatives in
x and y of U and V are present in the continuity equation and the mean spanwise vorticity
Ωz. If those two equations are derived in x and y, then it is possible to obtain relationships
between the first derivatives of Ωz with the second derivatives of U and V (present in
the viscous terms of the RANS equations). Substituting the spanwise vorticity and its first
derivatives in the convective and viscous terms we obtain

U
∂U
∂x

+ V
∂V
∂x

+ 1
ρ

∂P
∂x

= ν

(
∂Ωz

∂y

)
+ VΩz, (2.4)

U
∂U
∂y

+ V
∂V
∂y

+ 1
ρ

∂P
∂y

= ν

(
∂Ωz

∂x

)
+ UΩz, (2.5)

939 A34-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

22
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.221


LES of a moderate-APG TBL at high Re
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Figure 2. Evolution of the Clauser PG parameter β as a function of the friction Reynolds number Reτ for
three of the simulations: (orange) b1.4; (red) b1; (green) b2; (◦) experiments by Sanmiguel Vila et al. (2020b).

where P is the pressure. In these equations we can see the effects of using a zero-spanwise
vorticity or also making its derivatives zero. The convective terms on the left-hand side
can be written as the gradient of a total pressure PT/ρ = P/ρ + (U2 + V2)/2 caused by
the effects of non-zero spanwise vorticity. Even if the spanwise vorticity is set to zero at
the top of the domain, this does not guarantee that it will remain zero in all the domain
outside of the TBL. The spanwise vorticity outside of the BL is related to the curvature of
PT outside of the BL due to the growth of the BL.

3. Turbulence statistics at moderately high Reynolds numbers

The streamwise development of the different simulations as well as statistics in different
wall-normal profiles are given in Appendix A, where similar conclusions as the ones
observed in Bobke et al. (2017) for near-equilibrium flows at lower Reynolds numbers
are observed and extended to higher Re numbers.

In this section, we present the RSs obtained at different streamwise positions because
later in § 5 they are decomposed into their spectral components.

In figure 2 the Clauser PG parameter β = (δ∗/τw)(∂P/∂x)e is shown for the
nearly-constant-β simulations by Bobke et al. (2017), the current simulation and data
obtained in experiments (Sanmiguel Vila et al. 2020b) for a similar range of Reτ − β.
Here, Reτ = uτ δ99/ν is the Reynolds number based on friction velocity and δ99 is the
99 % BL thickness, which was calculated by means of the method proposed by Vinuesa
et al. (2016a).

For the following figures, the Reτ = 500 profiles (outside the ROI) are considered
to observe effects of different β, comparing b1.4 with the other near-equilibrium
APG simulations at lower Re. Three additional profiles within the ROI, at Reτ =
{500, 1000, 1500}, are used to determine the effects of moderate APG at higher Re through
a comparison with the high-Re ZPG. The mean velocity profiles of these cases are shown
in figure 21 from Appendix A.
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Figure 3. Inner-scaled RSs scaled with the friction velocity uτ at various matched Reτ : (a) Reτ = 500 where
β(Reτ ) intersects for the simulations b1 and b1.4; (b) Reτ = 1000; (c) Reτ = 1500; (d) Reτ = 2000; (——)

u2+
; (· · · · ·) v2+

; (– – –) w2+
; (–·–·) uv+. Colors and symbols: (black) ZPG; (red) b1; (orange) b1.4; (green)

b2 as in table 1.

The inner-scaled RSs are shown in figure 3, and the corresponding profiles in outer
scaling can be observed in Appendix A, figure 22. The most noticeable characteristic
of these TBLs is that the wall affects each component of the RS tensor differently. The
streamwise component has, in general, a larger value than the other terms, making it
the leading term of the TKE. As at the wall the no-slip condition makes the velocities
zero, the RSs also start from a zero level. In the viscous sub-layer the mean velocity
gradually increases, together with the velocity fluctuations. In the near-wall region, i.e.
at around y+ � 15, the streamwise RS exhibits the well-known inner peak, while the
other fluctuating components are moderately affected by the strong TKE production in
this region.

The APG significantly affects the inner peak of u2+
, and when this peak is scaled in

outer units its magnitude decreases with APG magnitude (see figure 22a). Interestingly,
the near-wall fluctuations increase slightly with β in the other velocity components when
scaling in outer units (figure 22), a result which is more prominent in the case of w2.

In the inner-scaled RSs shown in figure 3, the influence of the APG can be observed in

both u2+
and w2+

, especially on the latter, from y+ ≈ 2 onward. However, the components
containing the wall-normal velocity fluctuation are affected farther from the wall, starting
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Figure 4. Streamwise evolution of the wall-normal location of the inner and outer peaks of the streamwise
RS profiles: (a) inner-scaled position of the inner peak y+

IP; (b), (c) outer-peak location (yOP) scaled with δ99

and δ∗, respectively; (d) inner-scaled outer-peak location y+
OP; (black) ZPG; (orange) b1.4; (red) b1; (green) b2;

(blue) m16; (♦) β = 1 DNS data from Kitsios et al. (2016); (◦) experiments by Sanmiguel Vila et al. (2020b);
(�) experiments by Skåre & Krogstad (1994).

at y+ ≈ 10 for Reτ = 500 or even y+ ≈ 20 for higher Re. This behaviour supports the
attached-eddy hypothesis on the differing contributions to the RSs close to the wall
(Townsend 1976; Deshpande, Monty & Marusic 2021), however, the trends are modified
by the APG farther from the wall. The viscous scaling is appropriate for regions close to
the wall, because it properly scales the mean streamwise velocity and the viscous length

locates the inner peak of u2+
at y+ ≈ 15 (see figure 4a). Furthermore, the friction velocity

uτ leads to more similar inner-peak magnitudes from different β values than what is
obtained using the outer velocity scale Ue. It is important to recall that the friction velocity
is computed from dU/dy, which is the largest term of the near-wall TKE production
also in APGs, closely connected with the formation of the inner peak in u2+

. The other
components of the RSs exhibit a better scaling using outer units even close to the wall, as
shown in figure 22 from Appendix A.

To further study the impact of APG and Re on the near-wall and outer peaks, it is
important to have fine resolutions around y+ = 15 and well-converged statistics in the
outer region.

As the experimental database exhibits some noise, a curve-fit approach was considered
around the inner and outer peaks of the streamwise RS to determine their locations,
whereas a simple spline interpolation was employed for the numerical data.
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In figure 4 we show the streamwise evolution of the peak locations, where a clear
influence of the APG is observed. Based on our results, an increasing APG magnitude
leads to a larger wall-normal location of the inner peak y+

IP, a phenomenon which is also
observed for higher Re at a given constant β. Although for the ZPG case the near-wall-peak
location reaches an asymptotic value of around y+ � 15 for Reτ > 2000, the trend in the
b1.4 case is currently inconclusive.

Figure 4(b) shows the outer-peak location yOP of u2, scaled with the 99 % BL thickness,
and our results indicate that the curve reaches a slightly decaying trend with Re in the b1.4
case. Furthermore, comparison with the other cases indicates that the values of yOP/δ99
are clearly affected by β, with stronger APGs leading to larger values of the outer-peak
location. Note that although the value of β is approximately the same in the b1 simulation
and in the experiment, the former is at a much lower Reynolds number, and therefore this
case is expected to perceive a more intense effect of the APG. This would explain that
the outer-peak location is slightly farther away from the wall in the b1 case than in the
experiment. Figure 4(c) shows the outer-peak location of u2 scaled with the displacement
thickness δ∗. The low-Re simulations exhibit a similar slowly growing trend for the various
β cases, with an average value of around yOP/δ∗ = 1.4. The b1.4 case appears to reach an
approximately constant state at higher Re, also around 1.4, a result consistent with that
reported by Sanmiguel Vila et al. (2020a) for the experimental data (despite the noise
present in the measurements).

The inner-scaled location of the outer peak present in the DNS by Kitsios et al. (2016)
and the experiments by Skåre & Krogstad (1994) are also shown in figure 4(d). The
outer-peak location of the β = 1 DNS by Kitsios et al. (2016) continues the trend defined
by the b1 LES at lower Re and lies below the line of the b1.4 LES. The values of the
near-equilibrium experimental data by Skåre & Krogstad (1994) at a much higher Re and
β ≈ 20 appear to be consistent with the linear trend of y+

OP established by the lower-Re
data.

The magnitudes of the inner (u2IP) and outer (u2OP) peaks of the streamwise RS are
shown in the different panels of figure 5. In (a) it is possible to see the Reynolds-number
evolution of the inner-scaled inner peak (u2+

IP) for the various APGs, as well as that of
the ZPG TBL, which is well documented in the literature (Marusic, Uddin & Perry 1997;
Eitel-Amor et al. 2014). Although it is unclear what the behaviour will be for the APG
cases at higher Re, our data indicates that the inner-scaled near-wall peak increases with
APG magnitude. The trend from the experiment exhibits more scatter, but it appears to be
in qualitative agreement with that of the b1.4 case. Note that, although the inner peak in
inner scaling increases with β, it actually decreases in outer scaling for stronger APGs, as
can be observed in figure 22. The outer-peak value increases with β using inner scaling,
as shown in figure 5(b), and also in outer scaling with Ue, as illustrated in figure 5(c). In
both panels, the trends are approximately constant with Reτ , where Ue yields a reasonably
flat curve even at lower Reynolds numbers.

In figure 5(b) the location of u2+
for the β = 1 DNS by Kitsios et al. (2017) and the b1

LES exhibit small differences probably associated with the different flow histories at low
Reynolds numbers. The experimental data by Skåre & Krogstad (1994) exhibits a larger
uncertainty and dispersion of the values, but an approximately constant trend in u2+

can
be observed.

An unexpected trend is observed in figure 5(c) for the b1 simulation, a fact that could be
attributed to the relatively low outer-peak values in this simulation.
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Figure 5. Streamwise evolution of the magnitude of the inner and outer peaks of the streamwise RS profiles:

(a) inner-scaled magnitude of the inner peak u2+
IP; (b), (c) outer-peak magnitude (u2OP) scaled in inner and

outer units, respectively; (black) ZPG; (orange) b1.4; (red) b1; (green) b2; (blue) m16; (♦) β = 1 DNS data
from Kitsios et al. (2016); (◦) experiments by Sanmiguel Vila et al. (2020b); (�) experiments by Skåre &
Krogstad (1994).

3.1. Comparison with experiments
The range of Reynolds numbers achieved in the b1.4 case allows for a direct comparison
of the statistics with the experimental results by Sanmiguel Vila et al. (2020b), where we
selected two cases with matching β and Reτ conditions. As shown in figure 2, the flow
history of this database differs from that of the b1.4 case, a fact that will be taken into
account when comparing the data.

Three different profiles have been chosen in figure 6 to show the mean streamwise
velocity and the streamwise RS from the simulation and the experiment at matching Reτ .
In the first row (Reτ = 1004) the experimental TBL has a very low β = 0.3, and it is very
close to the ZPG, with small differences in the near-wall peak of u2+

and a growing energy
in the outer region of the TBL. Here the simulation has a larger value of β = 1.6, and it
exhibits the most relevant features of APGs, including a prominent outer peak in u2+

. In
the middle row (Reτ = 1586) the experimental data and the numerical simulation b1.4
exhibit the same β � 1.4. Although the mean velocity profiles and the near-wall region

of u2+
are in good agreement in both cases, the simulation exhibits a larger fluctuation

peak. This is due to the effect of flow history (Bobke et al. 2017; Tanarro, Vinuesa &
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Figure 6. Mean velocity (a,c,e) and streamwise RS (b,d, f ) scaled in viscous units as a function of the inner
scaled wall-normal distance. The Reynolds numbers from top to bottom are Reτ = {1004, 1586, 2049}. The
black solid line represents the ZPG by Eitel-Amor et al. (2014), the orange line is the present b1.4 simulation
and the red circles represent the experimental data by Sanmiguel Vila et al. (2020b).

Schlatter 2020), but it is interesting to note that although the simulation is subjected
to a mildly decaying β(x) curve, the APG is rapidly increasing in the experiment. This
implies that the smaller scales adapt more quickly to the local PG, whereas the larger
scales require a longer streamwise distance. Finally, the higher-Reynolds-number profile
(Reτ = 2049), where both TBLs have a value of β � 1.1, exhibits a better collapse in
both inner and outer peaks of u2+

, as well as in the mean velocity U+. This implies
that, despite the different flow histories upstream, the two TBLs have been exposed
to a similar PG magnitude for a sufficiently long streamwise distance such that their
local turbulence features converge. Several profiles have been compared for Reτ > 1586,
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LES of a moderate-APG TBL at high Re

and the best agreement between simulation and experiment is obtained for Reτ = 2049.
Upstream of this position the outer-peak value of the experimental data is still developing
towards the value of the b1.4 case. The streamwise distance between the profiles at
Reτ = 1586 and 2049, which are subjected to a similar β history, is around 11δ99 for
both simulation and experiment, where δ99 is the average BL thickness between those
profiles. A similar albeit lower of around 7δ99 was reported by Bobke et al. (2017) for
m16 simulation to converge towards b2 simulation at Reτ = 786. One possible explanation
for the longer distance reported here may be the higher Reynolds number, in which
the large scales may require longer streamwise lengths to adapt to a particular PG
condition.

The APG in the simulation is achieved through a free-flow BC, the turbulence is
achieved through a tripping, therefore, the turbulence is confined inside the BL with the
RSs being negligible outside of it. The experiments are performed inside a wind tunnel,
the APG is imposed through changes in the geometry of the upper wall where another
TBL develops. Even though the methods to establish the two APG TBLs are different,
the results are remarkably similar. Although the region outside of the BL in the wind
tunnel can be seen as the flow in the core of a channel where the mean U does not
exhibit a significant change, the free-flow APG condition has a negative ∂U/∂y. This
gradient, even if small, is present over a large distance in y, and when the mean profile is
represented in a logarithmic scale it gives the impression of a drastic reduction of the mean
velocity for y > δ99. This comparison between numerical simulation and experiments
shows a satisfactory collapse and, thus, validates the high-Reynolds-number region of this
numerical simulation.

4. Scaling considerations

One important question of wall-bounded turbulence research is to find a scaling that
produces a collapse of statistical quantities such as the mean velocity or the RSs in different
parts of the TBL. Ideally, the scaling parameters should include the information of the
forces/BCs that could affect the flow, i.e. PGs, temperature gradients, friction forces, flow
history, etc. Here we have an incompressible simulation of a flat-plate TBL where outside
of the BL there is an initial ZPG condition, which after a certain streamwise distance
evolves into an APG condition. The scaling parameters should include the effects of
the friction at the wall (τw), the PG, the Reynolds number and the flow history. In the
literature there are many studies of self-similarity (or self-preservation) focused on the
equation of momentum conservation in x under some ansatz and simplifications (Rotta
1950; Townsend 1956b; Castillo, Wang & George 2004; Kitsios et al. 2016; Gibis et al.
2019). Most of those studies find parameters that should be kept constant to achieve
self-similarity. Another question regarding self-similarity is whether it can be achieved
across the whole BL or whether the BL can only be self-similar in different regions, with
various scales.

Following the considerations about self-similarity in Gibis et al. (2019), two sets of
scalings will be considered in the outer region for the b1.4 and ZPG databases: the edge
and the Zagarola–Smits (ZS) scalings as discussed later. The equilibrium character of the
BL will be assessed using the Rotta–Clauser PG parameter β together with the PG BL
growth parameter Λinc for the chosen outer scalings:

Λinc = Ls

ρU2
s (dLs/dx)

dp
dx

. (4.1)
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Figure 7. Different PG parameters based on the self-similarity analysis for the outer layer performed in Gibis
et al. (2019): (a), (c) the edge scaling, where Ls = δ∗ and Us = Ue; (b), (d) the ZS scaling with Ls = δ99 and
Us = Ueδ

∗/δ99. A Savitzky–Golay filter has been applied to dLs/dx as in Gibis et al. (2019). The black solid
line represents the ZPG by Eitel-Amor et al. (2014) and the orange line is the present b1.4 simulation.

In the parameter Λinc, Ls represents the chosen length scale and Us the velocity length
scale. If Ls = δ∗ and Us = uτ , then the difference with respect to the parameter β will
be given by the streamwise derivative of the length scale dLs/dx, which contains some
information of the flow history linking the local profile with the surrounding flow. The
different scalings with their respective velocity and length scales are summarised in
table 3. In figure 7 the PG parameter Λinc is shown for simulation b1.4 in the first row.
While the edge scaling (figure 7a and 7c) shows a monotonically rising Λinc from the
beginning, the ZS scaling (figure 7b and 7d) exhibits an initial peak, then a plateau and,
finally, a slowly increasing region. On the other hand, β (figure 2) exhibits a maximum
and a slow monotonic decrease throughout the domain. Recalling that the ROI starts at
Reτ = 800, the range of variation of the PG parameter within the ROI is [0.2, 0.25] for
the edge scaling, [3.2, 4] for the ZS scaling and [1.65, 1.2] for β. The rates of variation of
the PG parameters and dLs/dx over the ROI, although not constant, are relatively small,
which is a requirement for similarity according to the various studies.

In figure 8 we use the edge and ZS scalings for the streamwise mean velocity defect and
the streamwise RS for the profiles within the ROI. The first observation is the common
good agreement of both scalings from the logarithmic region all the way to the edge of the
TBL in the ZPG.
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LES of a moderate-APG TBL at high Re

Scaling Ls Us Reference

Rotta–Clauser U+
e δ∗ uτ Clauser (1956)

Edge δ∗ Ue Kitsios et al. (2016)
Zagarola–Smits δ99 Ue(δ

∗/δ99) Zagarola & Smits (1998)

Table 3. Parameters for different scalings, where Ls and Us correspond to the length and velocity scales,
respectively.
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Figure 8. (a), (b) Mean velocity defect and (c), (d) streamwise RS scaled with (a), (c) edgeand (b), (d) ZS
scalings. Profiles from Reτ = 800 to Reτ = 2000. Lines in gray scale represent ZPG data (Eitel-Amor et al.
2014), increasing the Reynolds number from white to black. APG data from the b1.4 simulation increases
Reynolds number from yellow to red.

The definition of δ∗ is∫ δ99

0
(Ue − U) dy = Ueδ

∗ ⇒
∫ δ99/Ls

0

Ue − U
Us

d( y/Ls) = 1. (4.2)

For the ZS and edge scalings, the velocity and length scales are just a combination of the
parameters present in (4.2) (Ue, δ∗, δ99), therefore we can divide both sides by the term
Ueδ

∗ and using the length and velocity scales in table 3 it is possible to rewrite the integral
in a common form (right-hand side of (4.2)) for both ZS and edge scalings.

Using this form we can directly relate the integral with the mean defect velocity curves
in figure 8. The value of the normalised integral of the mean velocity defect is the same for
both scalings, where the integrands are the various curves and the only difference would
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be the upper limit of the integration. That upper limit in the ZS scaling does not change
with the Reynolds number: it is 1 because Ls = δ99. The upper limit for the edge scaling is
variable with Reynolds number because Ls = δ∗. The functional form in the edge scaling
fixes all the profiles to start from the same point, thus the differences between profiles
increase from the wall. The functional form of the ZS scaling makes the profiles start from
different values for each Reynolds number, and because the value of the integral is the
same and the upper limit is also the same for all profiles, the differences are concentrated
close to the wall, allowing for a better collapse in the outer region of the TBL. This can be
observed in figure 8(b), where the ZS scaling exhibits a better collapse even in the overlap
region. The edge scaling, figure 8(a), exhibits a good collapse in the wake region, with
differences in the overlap region.

We have previously discussed that the inner peak of u2 has a location y+ � 15. As shown
in figures 8(c) and 8(d), and also in figures 4(b) and 8(c), the outer-peak location for the
edge scaling is at y/δ∗ = 1.4 and around y/δ99 = 0.35 for the ZS scaling. Although there
is a better collapse in the outer region of the mean defect profiles using the ZS scaling, the
u2 profiles collapse in the outer region when using the edge scaling. Our results suggests
that it is not possible to collapse the wall-normal profiles at all positions with a single
length scale. In the mean flow, the inner region collapses in inner scaling and the outer
region using the ZS scaling. Regarding the streamwise RS, the location of the near-wall
peak slightly varies around y+ � 15, it slowly grows with the Reynolds number and the
slope is larger with higher β, whereas both the magnitude and location of the outer peak
are fixed using the edge scaling. As the inner and outer scales are related by Reτ , to achieve
self-similarity throughout the whole profile would require that Reτ remains constant in x,
which is not the case even in the ZPG.

In the next similarity analysis we consider the Reynolds shear stress, where in
figures 9(a) and 9(b) we consider U2

s , and in figure 9(c) and 9(d) we use U2
s dLs/dx as

in Kitsios et al. (2016) and Gibis et al. (2019). The edge scaling leads to a moderate
collapse of the uv profiles in the outer region, although the collapse is not as good as
that observed for u2. The additional term dLs/dx applied to the Reynolds shear stress,
worsens the collapse for the APG in both scalings, whereas it improves the collapse for
the ZPG in the edge scaling.

To summarise, the edge scaling yields a good scaling of the APG profiles in the outer
region, and given the good collapse with viscous units close to the wall, it can be stated that
the APG TBL is in near-equilibrium (Marusic et al. 2010; Bobke et al. 2017) conditions in
the ROI. The ZS scaling leads to a better collapse in the outer region of the mean defect
profiles.

As observed in figure 10, comparing the first three profiles for both the ZPG and b1.4
cases a clear lack of collapse can be observed, and as discussed in figure 8 the profiles
only collapse in the inner or outer regions using the adequate scaling. We argue that any
claims of self-similarity throughout the complete BL may be based on limited regions
of near-equilibrium conditions, which may hide the existing Reynolds-number trends.
With these considerations we remark the importance of considering long regions of near
equilibrium, where it is possible to clearly observe the trends in the inner and outer layers
and to assess how the scales separate as the TBL develops.

5. Spectral analysis

The turbulent fluctuations are due to the interactions of a wide range of coherent
structures of different sizes. Each of these structures will have a characteristic length and

939 A34-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

22
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.221


LES of a moderate-APG TBL at high Re

10–3 10–2 10–1 100 101
–2.5

–2.0

–1.5

–1.0

–0.5

0(a) (b)

(c) (d )

10–3 10–2 10–1 100
–0.05

–0.04

–0.03

–0.02

–0.01

0

10–3 10–2 10–1

y/Ls y/Ls

100 101
–2.0

–1.5

–1.0

–0.5

0

10–3 10–2 10–1 100
–160

–140

–120

–100

–80

–60

–40

–20

0

uv
/U

2 s
uv

/(
U

2 s 
d
L s/

d
x)

(×10–3)

Figure 9. Reynolds shear stress uv scaled with: (a), (c) edge and (b), (d) ZS scalings. The second row shows
the effect of the evolution of the characteristic length scale dLs/dx. Profiles from Reτ = 800 to Reτ = 2000.
Lines in gray scale represent ZPG data (Eitel-Amor et al. 2014), increasing the Reynolds number from white
to black. APG data from the b1.4 simulation increases Reynolds number from yellow to red.

energy content. Depending on the approach used to decompose the energy content of
the RS components in space/time we can have different types of representations. The
spectral analysis used here is based on a Fourier decomposition of the spanwise two-point
correlations. The velocity correlation between two points along the spanwise direction
provides an idea of lengths at which the fluctuations are highly correlated, and this gives
an indication of the presence of a certain structure or pattern. In a multi-scale phenomenon
such as turbulence at high Reynolds numbers, the two-point correlations will contain a mix
of all the different scales and it will be difficult to obtain meaningful information from it.
As the spanwise direction is periodic, a Fourier decomposition of the two-point correlation
is possible, and the result is a spectral decomposition of the energy content in different
wavenumbers kz associated with their corresponding wavelengths λz = 2π/kz. In the next
sections we show the premultiplied power-spectral density of the different RS components
at matched values of Reτ = 500, 1000, 1500, 2000. For reference, an additional contour
has been added in gray for the maximum Reτ = 2386 in the ZPG simulation.

5.1. One-dimensional power-spectral density in z
The premultiplied power-spectral energy density of the streamwise velocity fluctuations
is shown in figure 11; note that this corresponds to the highest energetic components
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Figure 10. Mean streamwise velocity defect and RS tensor components u2, v2, w2, uv scaled using the edge
scaling as in Kitsios et al. (2016), and using the streamwise derivative of the length scale ∂xδ

∗ in the case of
uv. The purple asterisks are used for the collapsed data by Kitsios et al. (2016). The profiles have been taken at
Reθ = {3500, 4150, 4800, 8200}, where the first three are in the same range as Kitsios et al. (2016) and the last
is the highest Reθ available in ZPG and b1.4 cases. Gray lines show the ZPG data growing in Re from light to
dark. The b1.4 lines show increase in Reynolds number from yellow to red.

of the TKE. This figure shows that the low-Reynolds-number case Reτ = 500 exhibits
similarities between the b1.4 and the ZPG TBLs. The APG starts to show its effects by
lifting small scales with λ+z ≈ 100 from the wall to the outer region, and increasing the
energy of the scales with λ+z ≈ 400 in the outer region. The near-wall spectral peak located
at y+ ≈ 15 and λ+z ≈ 100 remains similar in the APG and ZPG cases. For increasing
Reynolds number, the near-wall peak magnitude does not exhibit significant changes in
the APG, but the maximum value shifts to the outer region at Reτ ≈ 700, and is associated
with scales of wavelength λz = δ99. The inner and outer peaks are separated by a region
of lower energy content, and the lowest-energy contour shows the characteristic rising of
small scales by the APG in the outer region (Vinuesa et al. 2018; Tanarro et al. 2020).
The rest of the spectra exhibit similar features between the ZPG and the APG, except for
a wider range of λ+z across the BL at the same Reτ , which is an effect of the footprint of
large scales residing in the logarithmic region, similar to what was reported by Hoyas &
Jiménez (2006) for channel flows. Note that at these Reynolds numbers the outer spectral
peak of the APG has a magnitude similar to that of the near-wall peak in the ZPG.

In figure 12 we show the premultiplied cospectra kz|φuv| at the same matched Reτ as
in figure 11. At the lowest Reτ the contours in the APG and the ZPG are similar, with
the difference that the maximum value is in the outer region in the former (y+ = 120 and
λ+z = 307) and closer to the wall (y+ = 26 and λ+z = 109) in the latter. In the 10 % and
50 % contours, it is possible to see a small contribution of the small scales in the outer
region compared with the ZPG contours. At higher Reynolds numbers, the ZPG develops
a plateau of energy with contour levels following a straight line of slope C, which in a
logarithmic plot corresponds to a power law of the form: y+ = (λ+z )C. This line connects
the near-wall peak with the outer region. Furthermore, the plateau indicates a progressive
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Figure 11. Premultiplied spanwise power-spectral density kz|φuu| scaled with the local maximum for the b1.4
and ZPG cases at matched Reτ : (a) Reτ = 500, (b) Reτ = 1000, (c) Reτ = 1500 and (d) Reτ = 2000. Contours
taken at 10 %, 50 % and 90 % of the maximum value. Reference contour in gray colour: ZPG at Reτ = 2386.
Contours with (black) for ZPG and (orange) for b1.4.

growth of the region containing this level of energy following the previous power law,
which at Reτ = 1000 develops an outer peak with a magnitude similar to that of the
near-wall peak. Note that at higher Reynolds numbers the outer peak progressively rises
over the magnitude of the near-wall peak. The effect of the APG is to displace the near-wall
energy to the outer region, which becomes dominant in the premultiplied cospectra of the
Reynolds shear stress. At higher Reynolds numbers, the premultiplied cospectra exhibit a
peak at λz � δ99, which implies that this peak scales in outer units. The constant C which
defines the slope of the black dashed lines in figure 12 was reported to be approximately
one by de Giovanetti et al. (2016). The APG exhibits 10 % contours similar to those of the
ZPG, indicating the presence of some energy in the near-wall region. If a line from the
inner peak of the ZPG is drawn towards the APG peak in the outer region (orange dashed
lines in figure 12), its slope is larger than that of the ZPG. If a self-similar hierarchy of
motions in the log-layer is suggested by the black dashed line, in connection with the
attached-eddy hypothesis (Townsend 1976; Deshpande et al. 2021), then the APG either
rises the slope of that hierarchy of scales or follows the same hierarchy of motions as in
the ZPG with an additional contribution in the outer region by small scales risen from the
wall by the wall-normal convection of the APG and by the more energetic large scales.

The premultiplied spectra for the wall-normal fluctuations is shown in the first row
of figure 13. It exhibits features similar to those of the cospectra of the Reynolds shear
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Figure 12. Premultiplied cospectra kz|φuv | scaled with the local maximum for the b1.4 and ZPG cases at
matched Reτ : (a) Reτ = 500, (b) Reτ = 1000, (c) Reτ = 1500 and (d) Reτ = 2000. Contours taken at 10 %,
50 % and 90 % of the maximum value. Reference contour in gray colour: ZPG at Reτ = 2386. Dashed black
lines show the curve y+ = 0.27λ+z as in de Giovanetti, Hwang & Choi (2016), whereas the orange dashed lines
represent y+ = 0.1(λ+z )1.2, which is the ridge for the b1.4 case: (black) ZPG; (orange) b1.4.

stress: small-scale energy in the outer region due to the APG and a different location
of the maximum power-spectral density in the ZPG and the APG. Although the ZPG
exhibits an elongated 90 % contour around λ+z ≈ 150 at y+ ≈ 90 for the different Reynolds
numbers, the APG starts to stretch the peak at the lowest Reτ = 500, and at Reτ = 1000
the peak is located in the outer region with scales of the order of λz � δ99. In the ZPG
the 10 % contours in the wall-normal spectra exhibit a shape similar to that of the 50 %
contours in the cospectra. Approximating the 10 % contour by an ellipse, the major axis
also follows a trend y+ = (λ+z )C with C = 1, as in the cospectra. The 50 % contours also
exhibit linear regions, but in the wall-normal spectra the slopes are different. This could
still be related to a hierarchy of motions in the logarithmic layer, just indicating that the
range of wall-normal scales grows with the wall-normal location and, as before, the APG
adds an extra contribution from the small and highly energetic large scales in the outer part
of the logarithmic layer. The 10 % contours of the APG follow the trend dictated by Reτ

and far from the trend marked by y+ = (λ+z )C; for this reason, we have not included those
linear trends. As can be observed in the second row of figure 13, the spectra of the spanwise
fluctuations exhibit effects similar to those shown in the wall-normal spectra in the first
row for the ZPG and the APG. In particular, we identify the small-scale contribution to
the outer region and a stable 90 % contour for the ZPG expanding a long range of scales
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Figure 13. Premultiplied spanwise power-spectral density of (a)–(d) kz|φvv | and (e)–(h) kz|φww| (scaled with
the local maximum for the b1.4 and ZPG cases at matched Reτ . Contours taken at 10 %, 50 % and 90 % of the
maximum value. Reference contour in gray colour: ZPG at Reτ = 2386. Contours with (black) for ZPG and
(orange) for b1.4. From left to right: Reτ = 500, Reτ = 1000, Reτ = 1500 and Reτ = 2000.

from λ+z ≈ 15 to λ+z ≈ 70 in a region between y+ = 15 and y+ = 100, which is inside the
overlap region. This 90 % contour is displaced by the APG towards regions farther than
y+ = 300, already in the wake region. The λ+z of this peak also scales with the Reynolds
number.

5.2. Two-dimensional power-spectral density
The 2D power-spectral energy Euiuj(kz, kt, y) is obtained using temporal series of the
velocities in all the spanwise grid points at selected streamwise and wall-normal positions.
Once the mean in time and spanwise direction is substracted, the turbulent components are
transformed to Fourier space in the spanwise wavenumbers. To obtain the power spectra
in time, Welch’s method is used with 8 independent subdivisions in time overlapped
with 7 subdivisions for a total of 15 bins. The window function is a Hamming window.
The spectral energy is then divided by �kz�kt to obtain the 2D power-spectral density
φ(kz, kt, y). As previously, the figures used to illustrate the effects of the Reynolds number
and the APG in the spectral density content will be premultiplied, in this case, with
the factor kzkt. It has been verified that the addition of the spectral energy for all the
wavenumbers in time yields the one-dimensional power-spectral energy in the spanwise
direction Euiuj(kz, y).

5.2.1. Two-dimensional power-spectral density in the near-wall region
The premultiplied power-spectral density in time and the spanwise direction kzktφ(λz, λt)
is first analysed at y+ = 15, a wall-normal location which shows the characteristics of
the near-wall peak of the streamwise RS and the production of TKE. For all the Reynolds
numbers shown in figure 14 there is a near-wall spectral peak with λ+z ≈ 100 and λ+t of the
order of 100. The blue dashed line represents λ+z = 1.5λ+t , which describes the evolution
with Re of the ridge in the upper-right part of the spectrum. This ridge was documented
by Hoyas & Jiménez (2006) for channels, Sillero et al. (2011), for ZPG TBLs and Tanarro
et al. (2020) for APG TBLs. The APG does not significantly modify the spectrum around
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Figure 14. Two-dimensional premultiplied power-spectral density kzkt|φuu| at y+ = 15 scaled with the local
maximum. Contours taken at 10 %, 50 % and 90 % of the maximum value: (a) Reτ = 500, (b) Reτ = 1000, (c)
Reτ = 1500 and (d) Reτ = 2000. The dashed blue line represents λ+z = 1.5λ+t . Contours with (black) for ZPG
and (orange) for b1.4.

the near-wall peak and the local viscous length and time scales lτ and tτ lead to the collapse
of the inner region for the three displayed contour levels. Some extra energy is seen in the
APG with the 50 % contours in the region with larger λ+z and λ+t . The biggest difference
in the inner region is seen for the lowest Reynolds number, which is upstream of the ROI
where near-equilibrium is achieved. At higher Reτ values of 1000, 1500 and 2000, the
spectra around the near-wall peak are identical for each simulation and grow closer to
the ZPG contours. In figure 15, only the contours at Reτ = 500 and 2000 are represented
to show the differences in the region around the near-wall peak due to Reτ = 500 being
outside of the near-equilibrium region and to show the growth of the largest spatiotemporal
scales.

Surprisingly, the cospectra of the Reynolds shear stress shown in figure 15(c) at y+ = 15
does not exhibit significant differences between APG and ZPG nor with increasing Reτ .
The behaviour of the streamwise and spanwise components is similar, because at higher
Reynolds numbers the ZPG and the APG contours grow closer, both developing a region
with larger values of λ+z , λ+t with a higher energy content. The wall-normal RS does not
develop a region with larger scales, and the lowest-density contour grows in the direction
of smaller λ+z , λ+t . The effect of Reτ = 500 not being in near-equilibrium, as opposed to
the higher-Reτ profiles at 1000, 1500 and 2000 is reflected in a different slope of the 10 %
contour in the lower region of the premultiplied spectra for the normal RSs.

5.2.2. Two-dimensional power-spectral density in the overlap region
The analysis for the overlap region will be done at y+ = 150 as in Tanarro et al. (2020)
to compare the trends of λ+z = f (λ+t ) previously reported for channel flows in del Álamo
et al. (2004) and for BLs in Chandran et al. (2017). In figure 16 we show for y+ = 150
the contour levels of energy 0.05 and 0.15 for the ZPG and for b1.4. At this wall-normal
location and for the energy level 0.15, it was reported in Tanarro et al. (2020) a lower
bound for small time and spanwise scales following λ+z ∝ (λ+t )0.5 (blue-dashed line) and
an upper bound composed by the red-dashed line (λ+z ∝ λ+t ) for shorter time scales, as
well as the cyan-dashed line for longer time scales (same slope as the blue-dashed line).
For the ZPG it is possible to see that for short scales there is a good collapse for different
Reynolds numbers, and the lower limit (blue line) serves as a good approximation in spite
of a small tendency with higher Reynolds numbers (at higher λ+t ) to go towards wider
scales for the same time scale. The lower energetic level 0.05 also presents a good collapse
for the different Reynolds numbers, however, the slope of the trend (0.4) is slightly smaller
than that for energy level 0.15 (0.5). The upper part of the contours are more curved
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Figure 15. Evolution with the Reynolds number of the 2D premultiplied power-spectral density in time and z
for the various RS components kzkt|φuiuj | at y+ = 15 scaled with the local maximum. Spectra of: (a) uu, (b) vv,
(c) uv and (d) ww. Contours taken at 10 %, 50 % and 90 % of the maximum value. Solid lines for Reτ = 500
and dotted lines for Reτ = 2000: (black) for ZPG and (orange) for b1.4.

than the lower part, therefore it is harder to come up with a linear trend in a logarithmic
plot (potential law). The red line approximates a short region, λ+t ∈ (20, 60), whereas
the cyan line seems to be a good approximation for the larger scales at higher Reynolds
numbers. The tangent lines to the energetic contour 0.15 of the ZPG are presented also in
figure 16(b) as a way to compare with the same energetic contour in b1.4. It is clear that in
inner-scaling, the same energy contour is bigger in the APG than in the ZPG, expanding
over shorter and larger scales. There is also a bigger dispersion of the contours due to
the increasing Reynolds numbers. The lower limits exhibit a slightly different slope than
the blue line, however, with an increasing Reynolds number (dotted orange line) the trend
is closer to the blue-dashed line. As this is a fixed location at y+ = 150 (see figure 11)
at higher Reynolds numbers the differences between APG and ZPG are shifted towards
higher wall-normal positions and larger λ+z scales. The red line (λ+z ∝ λ+t ) appears to
be a better approximation for the upper limit that will expand over a longer region, i.e.
λ+t ∈ (10, 200) for Reτ = 2000 compared with the case of the ZPG. The cyan line also
seems to be a good approximation for the larger scales. For Reτ = 2000 the location of
the local maximum for APG and ZPG is very similar. If the power-spectral density is
non-dimensionalised by the local maximum as in figure 16(c) the 10 % and 50 % contours
of the ZPG and APG cases appears to collapse, except for some extra energy in the APG
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Figure 16. Two-dimensional premultiplied power-spectral density kzkt|φuu| at y+ = 150. The line styles solid,
dashed, dash-dotted and dotted correspond to Reτ = 500, 1000, 1500 and 2000, respectively. (a), (b) are scaled
with inner units, u2

τ , and show the contour levels 0.05 and 0.15 of the ZPG and b1.4 respectively. In (a), (b) the
red, blue and cyan lines are tangent to the contour level 0.15 of the ZPG. (c) Representation of both ZPG and
b1.4 scaled with the local maximum marked as a black dot for ZPG and as a red dot for b1.4. The contours are
taken at 10 % and 50 % of the maximum value. In (c) the red, blue and cyan lines are moved to be tangent to
the 10 % contour. Blue and cyan lines follow λ+z ∝ (λ+t )0.5, whereas the red line represents λ+z ∝ λ+t : (black)
for ZPG and (orange) for b1.4.

in the largest λ+z and λ+t . The trends marked by the blue, red and cyan dashed lines are a
better approximation at the higher Re.

For the lowest Reτ in figure 17 there is not a clear separation of scales. For each
wall-normal plane, the local maximum of kzkt|φuu| evolves from the characteristic
inner-peak wavelengths of λ+z = 100 at y+ = 15 towards wider scales λz of the order
of δ99 in the outer region. At a higher Reynolds number as Reτ = 1000 the location
of the maxima in these premultiplied plots changes radically from scales λ+z ≈ O(100)

and λ+t ≈ O(λ+z /2) to scales λz ≈ O(δ99). This change appears at y+ ≈ 23 for b1.4 and
y+ ≈ 40 for the ZPG.

At the position y+ = 150 the peak of kzkt|φuu(kz, kt)| is already in scales λz ≈ δ99 as it
can be seen in figure 17(c). The other components of the RS tensor are shown in figure 18.
As it was seen near the wall, at the lowest Reτ = 500 (solid lines), the 10 % contour
shows an additional content of energy for b1.4 in the smaller λ+z scales with lower λ+t .
The APG effects are manifested as a deviation of the local peak position and as it was
seen near the wall, in the presence of small scales with shorter λ+t in the wall-normal
component, see figure 18(b). Previously, near the wall, the spectra containing wall-normal
velocities in figures 18(b) and 18(c) was practically unaffected by an increase in the
Reynolds number. On the other hand, in the outer region, both components develop larger
spatiotemporal scales when the Reynolds number is increased. As observed in figure 17(d)
(and also in figure 16c), the red dashed line which approximates the contours for scales up
to λ+t = 100 in the ZPG, reaches scales up to λ+t = 200 in the APG (Chandran et al.
2017). The extra energy in the small scales with lower λ+t is only seen in the lower
Reτ = 500 profiles of b1.4; for Reτ = 1000, 1500 and 2000 that region is exhibits collapse.
In the 2D spectra shown in Tanarro et al. (2020), the profiles were taken at different
levels of the premultiplied spectral density scaled either in viscous or outer units. They
reported that at the same contour level the APG effects extend over a wider range of
scales compared with the ZPG contours at the same low Reτ = 305. However, note that
in their case the Reynolds number was low, the APG very strong and their BLs were not
in near-equilibrium, exhibiting a rapid change in the β(x) curve. Even if they achieved a
value of β larger than in the b1.4 simulation and an increase of the energy in the outer
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Figure 17. Two-dimensional premultiplied power-spectral density kzkt|φuu| at y+ = 150 scaled with the local
maximum. Contours taken at 10 %, 50 % and 90 % of the maximum value: (a) Reτ = 500, (b) Reτ = 1000,
(c) Reτ = 1500 and (d) Reτ = 2000. The dashed blue and cyan lines represent λ+z ≈ (λ+t )1/2, the dashed red
line represents λ+z ≈ λ+t . The red and black dots mark the position of the local maximum for b1.4 and ZPG,
respectively; (black) for ZPG and (orange) for b1.4.

regions of the u2+
TKE production profiles, the separation of scales in their study was not

sufficient to observe the effects exhibited by the b1.4 simulation.

6. Summary and conclusions

A new well-resolved LES of a TBL developing on a flat plate subjected to an APG has
been presented. The relevance of this simulation lies in the high Reynolds number we
achieve starting from a laminar flow under similar conditions to those in experiments,
and obtaining a long region where the TBL is in near-equilibrium. To the best of the
authors’ knowledge, this is the first TBL under approximately constant APG magnitude
(β ≈ 1.4) over a long near-equilibrium region up to Reθ = 8700. The characteristics of
this simulation have enabled a direct comparison with experimental data in a similar range
of β and Reτ , as well as the comparison with other near-equilibrium databases at lower
Reynolds number as discussed in the following. The data obtained from the simulation
consists of 2D turbulence statistics for all the grid points in the xy plane, together with time
series and two-point correlations at 20 streamwise locations (containing all the spanwise
grid points), with 10 of those profiles in the near-equilibrium ROI.
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Figure 18. Evolution with the Reynolds number of the 2D premultiplied power-spectral density of the RS
components kzkt|φuiuj | at y+ = 150 scaled with the local maximum. The panels show spectra of: (a) uu, (b) vv,
(c) uv and (d) ww. Contours taken at 10 %, 50 % and 90 % of the maximum value. Solid lines for Reτ = 500
and dotted lines for Reτ = 2000: (black) for ZPG and (orange) for b1.4.

The turbulence statistics were compared with lower-Reynolds-number simulations of
different APGs (Bobke et al. 2017), with another high-Reynolds-number well-resolved
LES of a ZPG (Eitel-Amor et al. 2014) and also with high-Reynolds-number experiments
(Sanmiguel Vila et al. 2020b) with a similar β(x) development. These comparisons
highlight the need of more simulations with long near-equilibrium regions to be able
to distinguish the effects of the APG and the effects of the Reynolds number. The
near-equilibrium features have been analysed with the Rotta–Clauser PG parameter β

and the parameter Λinc for different sets of velocity and length scales, i.e. the edge and
the ZS scalings. Near-equilibrium conditions were obtained in the region from Reτ =
800 to around 2000. The results were also compared with another constant-β database
(Kitsios et al. 2016), and we showed that any self-similarity analysis has to be performed
along regions of near-equilibrium at high Reynolds numbers to be able to study the
collapse of the different regions in the TBL. For the APGs under study here, the viscous
scaling collapses the near-wall region for the streamwise mean velocity and although
the magnitude of the near-wall peak of the streamwise RS increases in inner scaling, its
location remains close to y+ � 15. Furthermore, the outer scaling shows a good collapse
of the outer region.
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The large scales associated with the APG have an effect in the inner and outer regions,
similarly to the large scales present in the flow at high Reynolds numbers in simpler
geometries, such as channel flow (Hoyas & Jiménez 2006). This was assessed for the
various terms of the RS tensor using the spanwise one-dimensional power-spectral density
and the 2D power-spectral density in spanwise spatial scales and the temporal scales. This
study shows that the displacement of small scales with λ+z � 100 from the inner to the
outer region, documented in APGs at low Reynolds numbers by Tanarro et al. (2020) and
Vinuesa et al. (2018), is also observed in high-Re APGs. The present analysis at higher
Reynolds numbers shows that there is an energisation associated not only with the small
scales but also with longer spatial and temporal scales in the streamwise and spanwise
RSs near the wall and in the overlap region. The current database enables spatiotemporal
analysis over a wide range of Reynolds numbers in near-equilibrium conditions due to
the long near-equilibrium region at high Re. This type of high-quality APG TBL in near
equilibrium is necessary to deepen our insight into the similar but different effects of
Reynolds number and APG, and to further understand the role of flow history on the local
features of wall-bounded turbulence
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Appendix A

For the sake of completeness and documentation, the usual time- and spanwise-averaged
statistics are shown for the b1.4 simulation. They are compared with those of the ZPG
case to analyse the APG effects for a wide range of Reynolds numbers. The lower-Re APG
simulations b1 and b2 are used to compare the effects of different APG intensities at low
Reynolds numbers.

In figure 19 we show the development of the Reynolds number based on friction
velocity (Reτ = uτ δ99/ν) and momentum thickness (Reθ = Ueθ/ν) along the streamwise
coordinate x/δ∗

0 . The evolution of Reτ , which corresponds to the development of the
BL thickness in viscous units δ+

99, is very similar for all the simulations. The effects of
the APG are more noticeable in the evolution of Reθ where the APGs starts to diverge
from the ZPG around x/δ∗

0 ≈ 200 (Reθ ≈ 400) and among the APGs the divergence
is seen at x/δ∗

0 ≈ 400 (Reθ ≈ 700). In figure 20 we show the skin-friction coefficient
cf = 2(uτ /Ue)

2 and the shape factor H12 as a function of Reθ (plotted against Reτ would
show similar trends). For all the simulations the data was trimmed close to the fringe
region, where there was a clear growing tendency in cf . The APG simulations by Bobke
et al. (2017) and the ZPG case exhibit a decreasing trend in cf for increasing Re, whereas
the b1.4 simulation suggests an asymptotic behaviour of cf for growing Re, where the value
of the asymptote may be set by the PG magnitude and the flow history. The APGs exhibit
local minima in H12 after the transition region (Reθ ≈ 600), and local maxima located very
close to the respective maxima in β. Note that this behaviour is not observed for ZPGs.
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Figure 19. Streamwise development of (a) the friction Reynolds number Reτ and (b) the Reynolds number
based on momentum thickness Reθ as a function of the streamwise coordinate x/δ∗

0 : (black) ZPG; (orange)
b1.4; (red) b1; (green) b2.
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Figure 20. Evolution of (a) the skin-friction coefficient cf and (b) the shape factor H12 as a function of the
momentum-thickness-based Reynolds number Reθ : (black) ZPG; (orange) b1.4; (red) b1; (green) b2.

A.1. Statistics in the wall-normal direction
The mean streamwise velocity U is represented in viscous scaling in figure 21. It is possible
to see the collapse for all the simulations for y+ ≤ 10. For the lowest Reτ = 500, there is
a difference in the buffer and logarithmic region, where an increasing APG is reflected
in a lower U+. Although b1 and b1.4 have the same β � 1.2 at this Reτ , the b1.4 case
has been exposed to lower values of β in the upstream region than the b1 case. This is
manifested in the buffer region, which exhibits a lower accumulated PG effect with its
values being closer to the ZPG than those of the b1 APG. If we compared both curves
at Reτ = 587 where cf is the same for b1 and b1.4, we would be matching U+

e and both
curves would show a better collapse; note that at this position the PG of b1.4 is higher and
in the buffer region we could see that b1 is closer to the ZPG. This is also an example
that even matching local Reτ and β does not imply a collapse of profiles as in Tanarro
et al. (2020), and the effects of the flow history need to be taken into account, not only
the local states. At around y+ = 200 the overlap region ends at these Reynolds numbers,
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Figure 21. Inner-scaled streamwise mean velocity at different friction Reynolds numbers: (a) Reτ = 500
where β(Reτ ) intersects for the simulations b1 and b1.4; (b) Reτ = 1004; (c) Reτ = 1586; (d) Reτ = 2049;
(black) ZPG; (red) b1; (orange) b1.4; (green) b2; (◦) exp; as in table 1.

and the curves diverge in the wake region, showing different values of U+
e because the cf

are different. Increasing the Reynolds number we can see a better collapse of the b1.4 and
ZPG simulations along the inner region including the overlap layer. The APG effects are
then confined to the wake region for the mean streamwise velocity.

A.2. TKE-budget equations

The transport equation of the TKE, defined as k̄ = 1/2(u2 + v2 + w2), is decomposed into
the following terms:

∂

∂t
k̄ = Pk + εk + Dk + Tk + Πk + Ck, (A1)

where the production term is computed as Pk = −uiuj(∂Ui/∂xj), the dissipation as
εk = −ν(∂ui/∂xj)2 or −2ν(sijsij), (where sij is the fluctuating strain rate), the viscous
diffusion is defined as Dk = (ν/2)(∂2uiui/∂x2

j ), the velocity–PG correlation Πk =
−(1/ρ)(∂pui/∂xi), the turbulent transport Tk = −(1/2)∂uiuiuj/∂xj) and the convection
is Ck = −(1/2)Uj(∂uiui/∂xj).

The TKE budgets are shown in inner scale in figure 23 and in outer scale in figure 24.
As seen previously in the inner region of the streamwise RS, the magnitude of the various
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Figure 22. RSs scaled with the edge velocity Ue at various matched Reτ : (a) Reτ = 500 where β(Reτ )

intersects for the simulations b1 and b1.4; (b) Reτ = 1000; (c) Reτ = 1500; (d) Reτ = 2000; (——) u2/U2
e ;

(· · · · ·) v2/U2
e ; (– – –) w2/U2

e ; (–·–·) uv/U2
e ; (black) ZPG; (red) b1; (orange) b1.4; (green) b2; (◦) exp; as in

table 1.

budget terms increases in inner scaling with the APG, as opposed to the behaviour in outer
scale where the APG produces a reduction of these magnitudes.

Figure 23 shows that, as the distance from the wall is increased, differences in the
velocity–PG correlation are observed.

As the Reynolds number is increased, the general magnitude of each TKE-budget
term as well as the relative differences between the various simulations are reduced.
The most prominent effects of the APG are seen in the viscous sub-layer for the pair
viscous-diffusion/dissipation and in the wake region for production/dissipation. The outer
scaling leads to an excellent collapse of the velocity–PG correlation for all the simulations
in all the regions of the TBL. The phenomena discussed previously for the RS terms
where the APG leads to the development of an outer peak in all the components of the
tensor, is manifested here as a second peak in the TKE production and dissipation in
the outer region. Note that while the near-wall production peak becomes progressively
smaller for higher β when scaled in outer units, the outer-production peak exhibits the
opposite behaviour and grows with β. The value of β decreases slowly in b1.4 with
Reynolds number, and the outer peak in the TKE budget terms is also reduced at higher
Re, approaching the ZPG values in inner scale.

The equations for the different terms of the TKE budgets are the same for ZPG and APG,
but the magnitude of the streamwise gradients (∂/∂x) is larger in the APG compared to
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Figure 23. Inner-scaled TKE budget at different Reτ : (a) Reτ = 500 where β(Reτ ) intersects for the
simulations b1 and b1.4; (b) Reτ = 1000; (c) Reτ = 1500; (d) Reτ = 2000; (——) b1.4; (· · · · ·) ZPG;
(– – –) b1 and (–·–·) b2. The colours correspond to the following terms of the TKE budget: production (blue),
dissipation (green), turbulent transport (yellow), velocity–PG correlation (orange), viscous diffusion (magenta)
and convection (black).

the ZPG. We analyse the major differences seen for the production Pk = −u2∂U/∂x −
v2∂V/∂y − uv(∂U/∂y + ∂V/∂x) in inner units.

The largest contribution to Pk is given by the third term −uv∂U/∂y, which is much
larger than the other three.

In the inner region the main differences come from the first two terms, because the
magnitude of ∂U/∂x for APGs is greater than for the ZPG and as a result of the continuity
equation, the magnitude of ∂V/∂y is also larger for APG than for ZPG. As discussed
previously, a larger β leads to a larger inner-scaled near-wall peak of u2 for the APG than
for the ZPG, therefore the first term of Pk is also larger. In the outer region of the APG, all
the terms in the RS tensor exhibit an outer peak, and these outer peaks, together with the
gradients of U and V being larger than in the ZPG, produce an outer peak in the production
term. Note from figure 21 that the slope of U, which is ∂U/∂y, is larger for APG than for
the ZPG.

Appendix B

Turbulent flows are characterised by fluctuations of the flow variables, which may have
different amplitudes and frequencies, and are linked with a wide range of eddy structures
of different spatial and temporal scales.
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Figure 24. Outer-scaled TKE budget at different Reτ : (a) Reτ = 500 where β(Reτ ) intersects for the
simulations b1 and b1.4; (b) Reτ = 1000; (c) Reτ = 1500; (d) Reτ = 2000; (——) b1.4; (· · · · ·) ZPG;
(– – –) b1 and (–·–·) b2. The colours correspond to the following terms of the TKE budget: production (blue),
dissipation (green), turbulent transport (yellow), velocity–PG correlation (orange), viscous diffusion (magenta)
and convection (black).

As the TBL develops and the Reynolds number increases, the range of scales of the
eddies grows, and a finer grid is needed to properly resolve all the scales. In this work,
we implement a well-resolved LES which resolves the larger eddies in a suitable grid
and a SGS model is used to take into account the effects of the smaller scales. The SGS
model used in this study is the approximate deconvolution model with a relaxation term
(ADM-RT), which is further documented in Schlatter et al. (2004). This model does not
involve an eddy viscosity, and it is based on filters applied on the equidistant grids in
Fourier space and on the non-equidistant wall-normal direction. As stated in Schlatter et al.
(2004), the model does not disturb the flow development as long as it is still sufficiently
well resolved, otherwise it adds the additional necessary dissipation. The relaxation term
can be seen as an SGS force of the form:

∂τij

∂xj
= χHN ∗ ūi, (B1)

which is added to the right-hand side of the filtered Navier–Stokes equations. The
coefficient χ = 0.2 is proportional to the inverse of the time step of the integration. The
high-order filter HN uses a cutoff frequency ωc ∈ (0, π] (in this simulation ωc = 2π/3),
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LES of a moderate-APG TBL at high Re

which only affects the smallest scales. The filter is applied through a convolution (denoted
by the symbol ∗) to the velocities ui. The velocities are marked with an overline to indicate
that they are implicitly filtered because of the lower resolution of the LES grid.

This SGS model has been compared with DNS simulations on multiple occasions: for
transitional channel flow in Schlatter et al. (2004), for ZPG TBL in Eitel-Amor et al. (2014)
and for turbulent wings in Negi et al. (2018). The filter has been used in the APG cases
by Bobke et al. (2016, 2017). Eitel-Amor et al. (2014) reports for Reτ = 3600, 87.2 % of
the dissipation of the DNS being resolved by the LES, whereas the addition of the SGS
contributed to recovering 99.8 %.
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